

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

755 EVALUATOR CMC

EVALUATION DATE 2/14/92

METHOD 5: SECONDARY EMISSIONS TEST REPORT EVALUATION

STATE: WY

FACILITY: EMC - Wyoming Legs.

TEST DATE: 6/5/85

PROCESS(ES) TESTED: scenic plant

RA-26 fluid bed calciner w/scrubbers

SAMPLING DURATION

must have at least 3 runs, each \geq 1 hour duration, with sampling \geq 2 minutes at each traverse point, and total sampling volume \geq 30 dscf

3

SAMPLING TEMPERATURE

both probe and filter must be maintained at $248 \pm 25^{\circ}\text{F}$ or other temperature specified in NSPS

3

PRODUCTION RATE

is process or production rate during testing representative of normal rates

3

BACK-HALF

if any, what method was used to catch and recover condensable matter

2

None reported

CONTROL DEVICE(S)

are devices described, and their efficiencies given

2

na

EQUIPMENT were a borosilicate glass probe liner and a glass fiber filter used

2

no doc

METHOD 1

are calculations accurate, and is figure provided

2

no

CALIBRATION were both pre- and post-test calibrations performed for meter box

2

pitot tube

2

temperature sensor

2

nozzle (3 #)

2

no doc

METHOD 4

are data and calculations included for moisture content determination, and is moisture content realistic ($<$ saturation)

3

LEAK CHECKS both pre- and post-test

3

FIELD DATA is field data on standard forms, and does raw data correspond with printout

3

BLANKS were filter and reagent blanks analyzed, and were any problems addressed

3

SAMPLE PREP

filter desiccation and tare weights documented

3

BOILER TESTS

calculation of F_0 from Orsat accurate

NA

ISOKINETICS within $100 \pm 10\%$ for all runs

3

FMC Wyoming Corporation

Box 872
Green River Wyoming 82935
307 875 2580

Certified Mail No: P 25 4537564

*Mike
Randall
P.L.*

August 28, 1985

Mr. Randolph Wood, Administrator
Air Quality Division
Department of Environmental Quality
Herschler Building
122 West 25th Street
Cheyenne, Wyoming 82002

AIR QUALITY DIVISION
LANDER WYOMING

Re: CT-534

Dear Mr. Wood:

Sesqui Fluid-Bed Calciner

Enclosed you will find the report for the compliance tests run on the new RA-26 fluid-bed calciner, which is located in our sesqui process as a replacement for two steam-tube calciners RA-13 and RA-14. The report contains the following information:

- o A discussion of the testwork
- o A summary of the results
- o Supporting field and laboratory data
- o Calculation of feed rate
- o Control room logsheet to document operating conditions

The method used to calculate the feed rate to the fluid bed and the control room logsheet are presented in a separate packet marked CONFIDENTIAL, as provided for in § 35-11-1101 of the Wyoming Environmental Quality Act. We consider this information to be trade secret and proprietary, and would appreciate you treating it as such.

If you have any questions about the report or the testwork which was done, please call Dee Peverley at extension 273.

Very truly yours,

J.W. Coykendall
J.W. Coykendall
Resident Manager

cc: Lee Gribovicz - DEQ, Lander
JE Lyon*, GD Peverley* - Office

Compliance Test Report
Sesqui Fluid-Bed Calciner
RA-26
Permit No. CT-534

FMC Wyoming Corporation
Green River, Wyoming

Report Date: August 28, 1985

Compliance Test Report
RA-26

Section

Introduction

Summary of Results

Sampling and Analysis Procedures

Calculation of Fluid-Bed Feed Rate
Control Room Log Sheet
(Included in separate packet marked "confidential")

Appendix

Test Data

Field Data Sheets
Laboratory Data Sheets
Test Calculations
Preliminary Test Data

Introduction

Compliance tests on the new fluid-bed calciner, located in the sesqui plant, were conducted on June 5. Construction of this unit was permitted by the Air Quality Division's Permit No. CT-534. Observing the testwork for the Department of Environmental Quality, Air Quality Division, were:

Mr. Lee Gribovicz Air Quality District Engineer

Mr. Mike Crawford Air Quality Engineering Associate

FMC Wyoming Corporation personnel taking part in the testwork were as follows:

Carl Demshar Environmental Engineering Supervisor

Ted Brown Environmental Engineer

Simon Lee Environmental Engineering Aide

Keith Norris Senior Laboratory Analyst

Summary of Results

This section summarizes the results of the compliance tests performed on RA-26 fluid-bed calciner. Table I is a summary of the compliance tests, identified as CT-534-1, CT-534-2, and CT-534-3. Details of the individual tests, including field data sheets, laboratory data sheets, and calculations sheets can be found in the Appendix.

From Table I, it is apparent that the RA-26 fluid-bed calciner emissions are well below the allowable of 12 pounds per hour.

Table I
SUMMARY OF STACK SAMPLING CALCULATIONS

Stack RA-26

	TEST 1	TEST 2	TEST 3
Test Code Number	CT534-1	CT534-2	CT534-3
Barometric pressure at site,(in Hg)	23.970	23.970	23.970
Absolute stack gas pressure,(in Hg)	23.970	23.970	23.970
Absolute average stack gas temp.,(R)	627.800	604.700	596.900
Absolute average dry gas meter temp.,(R)	546.400	544.800	546.700
Total volume of water collected,(ml)	309.200	317.900	293.200
Volume of gas through dry gas meter,(ft ³)	45.244	47.110	46.080
Average pressure drop across orifice,(in H ₂ O)	1.514	1.580	1.523
Pitot tube coefficient	0.840	0.840	0.840
Average velocity head of stack gas,(in H ₂ O)	0.994	1.020	1.000
Cross sectional area of stack,(ft ²)	19.630	19.630	19.630
Front-half particulate collected,(gm)	0.022	0.025	0.028
Back-half particulate collected,(gm)	0.000	0.000	0.000
Total particulate collected,(gm)	0.022	0.025	0.028
Total sampling time,(min)	60.000	60.000	60.000
Cross sectional area of nozzle,(ft ² *10 ⁻⁴)	2.835	2.986	2.986
Gas volume,(acf m*1000)	84.371	84.933	82.546
Gas volume,(scfm*1000)	57.063	59.638	58.719
Percent isokinetic	101.490	95.854	93.402
Emission rate,(lb/hr)	3.323	3.811	4.331

Avg = 3.8217

Sampling and Analysis Procedure

The compliance tests run on the fluid-bed calciner were done using EPA Method 5, "Determination of Particulate Emissions from Stationary Sources". Each test consisted of traversing both sample diameters, with six points sampled on each diameter for five minutes per point. Total testing time for each test was 60 minutes. During the second test, a restriction developed in the sampling train which made it impossible to maintain the sampling rate. Therefore, the testing was immediately suspended and the problem was found to be silica gel plugging the glassware stem in the fourth impinger. After the silica gel was removed the test was resumed and finished with no additional problems. To ensure continuity in the test, the starting and ending times of the unplanned interruption were recorded on the field data sheet.

After the second test, a problem developed with the product belt zero-speed switch which required the fluid bed to be shut down for approximately 30 minutes. After operation was restored, it was allowed to stabilize for about one hour, at which time the third compliance test was started. All sample recovery and laboratory work was performed in the FMC Wyoming Corporation Environmental Department work area.

Calculation of Fluid-Bed Production Rate

From the information shown on the control room logsheet, and the factors used to determine production, feed of centrifuge cake to the unit was 89.6 tons per hour during all three tests. Details of this calculation are contained in the attached CONFIDENTIAL packet.

APPENDIX

WYOMING DEPARTMENT OF ENVIRONMENTAL QUALITY

DIVISION OF AIR QUALITY

Company FMC CORPORATION

Address P O Box 872, Green River, Wyoming 82935

Unit Tested RA-26

Test Date June 5, 1985

SINK SWELLING FIELD DATA

Company FM C Wyo. Corp.

Plant Location G. R. Wyo.

Run No. CT-534-1

Sampling Location RA-26

Date 6-5-85

Start Time 08:57/09:34

Finish Time 09:27 / 10:04

Filter No.

Assumed Moisture, 25 2.33

Probe Tip Diameter, in. 0.228

Probe Length, ft. 6

Ambient Temperature, °F

Bar. Pressure, in. Hg. 23.97

Initial Leak Check, cfs

CFM. 002 at 15 in. Hg.

Final Leak Check, CFS

CFM 1.001 at 8.0 in. Hg.

Point No.	Time (min)	Dry Gas Meter	Pitot in. H ₂ O	Orifice ΔH in. H ₂ O	Dry Gas Temp. of	Pump Vacuum in. Hg Gauge	Sample Box Temp. of	Impinger Temp. of	Stack Press. in. Hg
		FT ³	P VP	Desired Actual	Inlet Outlet				
SE									
1	0	792.4	160.850.822	1.30	1.30	78	70	5.2	1260
2	5	901.8	11.0 100.11.5	3	1.53	86	74	6.9	267
3	10	905.5	11.05 100	1.60	1.60	92	75	7.5	1266
4	15	807.3	11.0 100	1.53	1.53	93	76	7.3	256
5	20	813.1	11.0 100	1.53	1.53	103	91	7.5	247
6	25	816.9	10.95 0.975	1.45	1.45	93	94	6.9	229
30	920.6							56	
NE									
1	0	920.1	10.850.922	1.30	1.30	106	95	5.6	1244
2	5	924.1	10.9 100	1.38	1.38	113	97	6.0	249
3	10	927.6	0.990.990	1.51	1.51	113	93	6.0	249
4	15	831.3	11.1 100	1.68	1.68	108	92	6.3	250
5	20	835.3	11.1 100	1.68	1.68	107	93	7.0	246
6	25	839.3	11.1 100	1.68	1.68	112	99	7.3	243
30	943.7	0						6.8	

1.994

15 (4)

1938

(553.9)

546.4°E

TEST NO. CT534-1

DATE 06/05/85

VELOCITY AND VOLUME DETERMINATION

DRY GAS VOLUME

$V_{mstd} = (17.71 \text{ deg R/in. Hg}) * V_m * (P_{bar} + \Delta H / 13.6) / T_m$

Where V_{mstd} =Volume (ft³) of gas sample at 70F and 29.92 in. Hg

V_m =Volume (ft³) of gas at meter conditions

T_m =Average dry gas meter temperature (R)

P_{bar} =Barometric pressure (in. Hg)

ΔH =Pressure drop across orifice (in. WG)

$$V_{mstd} = 17.71 * 45.24 * (23.97 + 1.514 / 13.6) / 546.4 = 35.314 \text{ ft}^3$$

VOLUME OF WATER VAPOR

Where V_{wstd} =Volume (ft³) of water vapor

V_{lc} =Total volume of water collected (ml)

$$V_{wstd} = .00474 * 309.2 = 14.656 \text{ ft}^3$$

MOISTURE CONTENT

$B_{wo} = V_{wstd} * 100 / (V_{wstd} + V_{mstd})$

Where B_{wo} =Percent moisture

$$B_{wo} = 14.66 * 100 / (14.66 + 35.31) = 29.330 \text{ percent}$$

CONCENTRATION

$C_{s'} = (15.43 \text{ grains/gm}) * M_n / (V_{mstd} + V_{wstd})$

Where $C_{s'}$ =Concentration (grains/scf)

M_n =Total particulate collected (gm)

$$C_{s'} = 15.43 * 0.0220 / (35.31 + 14.66) = 0.0068 \text{ grains/scf}$$

STACK VELOCITY

$V = K_p * 85.48 * \sqrt{\Delta P} * \sqrt{M_w * P_s}$

Where V =Stack velocity (ft/sec)

T_s =Stack absolute temperature (R)

ΔP =Average pitot reading (in. WG)

M_w =Molecular wt. of stack gas (lb/lb mole)

K_p =Pitot tube coefficient

$$M_w = 0.18 * 29.33 + 0.44 * 2.76 + 0.32 * 12.30 + 0.28 * 55.62 = 26.000 \text{ lb/mole}$$

$$V = 0.84 * 85.48 * 0.994 * \sqrt{627.8 / (26.00 * 23.97)} = 71.634 \text{ ft/sec}$$

STACK VOLUME

$ACFM = V * A * 60 \quad \text{AND} \quad SCFM = ACFM * 530 * P_s / (T_s * 29.92)$

Where $ACFM$ =Actual cubic Ft per minute at stack conditions

A =Stack area (ft²)

$SCFM$ =Standard cubic ft. per min. (29.92 in. Hg & 530 R)

$$ACFM = 71.63 * 19.630 * 60 = 84371 \text{ acfm}$$

$$SCFM = 84371 * 530 * 23.97 / (627.8 * 29.92) = 57063 \text{ scfm}$$

CALCULATED DUST LOAD

$1b/hr = C_{s'} * SCFM * 60 / 7000 \text{ grains/1b}$

$$\text{DUST LOAD} = 0.0068 * 57063 * 60 / 7000 = 3.32 \text{ Lb/Hr}$$

ISOKINETIC RATE

$$I = 101.5012 \%$$

LABORATORY DATA

Company FMC Run No. CT-534 - 1
 Sampling Location RA-26 Date 6-5-85

MOISTURE COLLECTED

		Water Weight/Volume Gain G/ML
IMPINGER 1	Final Weight/Volume Initial Weight/Volume Increase	G/ML 772.0 553.0 219.6
IMPINGER 2	Final Weight/Volume Initial Weight/Volume Increase	G/ML 638.1 570.9 67.2
IMPINGER 3	Final Weight/Volume Initial Weight/Volume Increase	G/ML 434.2 426.2 8.0
IMPINGER 4	Final Weight/Volume Initial Weight/Volume Increase	G/ML 671.2 656.8 14.4
	TOTAL MOISTURE CATCH	<u>309.2</u>

PARTICULATE COLLECTED

FRONT-HALF ANALYSIS (Nozzle, Probe, Cyclone, Filter Front-Half)

<u>Orsat</u>	<u>0.4862</u>	
%CO ₂ = 3.9	<u>0.4780</u>	#1 <u>74.3823</u>
%O ₂ = 17.4	<u>0.0089</u>	<u>74.2680</u>
%CO = 0.0	<u>0.0143</u>	<u>0.0143</u>
	<u>0.0025</u>	
	<u>0.0005</u>	
	<u>0.0220</u>	

BACK-HALF ANALYSIS (Impingers, Filter Back-Half)

Extractable Weight	<u>76.4924</u>	
Boil Down Weight	<u>76.4919</u>	
Impinger Catch	<u>0.0005</u>	
Water Blank		
TOTAL BACK CATCH	<u>0.0005</u>	
TOTAL TRAIN CATCH	<u>0.0005</u>	

C T - 534-1

PRELIMINARY DATA

Company SMC WY. CORP.

Sampling Location P A-26

Stack inside diameter, in. 60

Stack area, sq. ft. 19.63

Port extension, in. 4.25

Pitot tube correction factor 0.84

Stack Pressure - 0 -

Pitot tube traverse 12

Traverse Pt. No.	Velocity Head		Temperature Stack
	P	Y ^P	
SE			
1	0.94	0.969	
2	1.10	1.049	
3	1.10	1.049	
4	1.10	1.049	
5	1.05	1.025	
6	0.97	0.985	
NE			
1	0.95	0.922	163
2	0.93	0.964	163
3	1.0	1.000	167
4	1.1	1.049	166
5	1.1	1.049	166
6	1.05	1.025	166
Average	Y ^P	1.011	
Average Temperature			

STACK SAMPLING FIELD DATA

Company FMC WY. CORPAssumed Moisture, % 25 7.936Plant Location G. R., WYProbe Tip Diameter, in. .234Run No. CT-534-2Probe Length, ft. 6Sampling Location RA-26

Ambient Temperature, °F

Date 6-5-85Bar. Pressure, in. Hg. 23.97Start Time 10:22/11:16 ^{2nd TRG}

Initial Leak Check, CFS

Finish Time 10:49/11:19CFM 0.000 at 15 in. Hg.Filter No.

Final Leak Check, CFS

CFM 0.000 at 14 in. Hg.

* Off @ 11 min/30 sec. @ 10:33 hrs. Pressure Problem

Point No.	Time (min)	Dry Gas	Pitot	Orifice	Dry Gas Temp.	Pump	Sample	Impinger	Stack	St		
		Meter FT ³	in. H ₂ O	ΔH in. H ₂ O	in. Hg	Vacuum Gauge	Box Temp. °F	Temp. °F	Press. in. Hg	Temp. °F		
SE				Desired	Actual	Inlet	Outlet					
1	0	843.5	10.36	0.29	11.30	11.30	91	85	19.0	240	51	115
2	5	847.1	11.05	1.025	11.59	11.59	92	81	11.9	1250	41	115
3	10	850.9	11.11	1.049	11.67	11.67	85	77	14.08	243	37	115
4	15	854.9	11.11	1.049	11.67	11.67	86	78	12.01	232	45	115
5	20	852.6	11.05	1.025	11.59	11.59	87	79	11.9	230	44	115
6	25	850.8	11.05	1.025	11.59	11.59	89	79	10.9	270	45	115
7	30	866.7										
10	10	866.7	10.86	0.29	11.30	11.30	87	80	8.1	276	43	114
5	15	870.3	11.0	1.01	11.52	11.52	90	82	9.0	265	39	114
3	19	874.11	11.05	1.025	11.59	11.59	91	82	10.2	260	39	114
4	15	878.11	11.15	1.022	11.74	11.74	91	82	11.7	259	42	114
5	20	882.11	11.15	1.022	11.74	11.74	90	81	12.0	265	46	114
6	25	896.2	11.10	1.049	11.67	11.67	90	81	11.5	272	52	114
7	31	890.279										
46.104	41.081	47.110				1069	967					
*	as a	-	2	11 min - 178 sec								
74	mp	Step - 1	1.00	1.00								
Total	Vm	47.610	12.245	18.967		3036						1731
Average			1.020	1.580		84.8°F						144.1
						514.8°F						144.1

TEST NO. CT534-2

DATE 06/05/85

VELOCITY AND VOLUME DETERMINATION

DRY GAS VOLUME

$V_{mstd} = (17.71 \text{ deg R/in. Hg}) * V_m * (P_{bar} + \Delta H / 13.6) / T_m$

Where V_{mstd} =Volume (ft³) of gas sample at 70F and 29.92 in. Hg

V_m =Volume (ft³) of gas at meter conditions

T_m =Average dry gas meter temperature (R)

P_{bar} =Barometric pressure (in. Hg)

ΔH =Pressure drop across orifice (in. WG)

$$V_{mstd} = 17.71 * 47.11 * (23.97 + 1.580 / 13.6) / 544.8 = 36.886 \text{ ft}^3$$

VOLUME OF WATER VAPOR

Where V_{wstd} =Volume (ft³) of water vapor

V_{lc} =Total volume of water collected (ml)

$$V_{wstd} = .00474 * 317.9 = 15.068 \text{ ft}^3$$

MOISTURE CONTENT

$B_{wo} = V_{wstd} * 100 / (V_{wstd} + V_{mstd})$

Where B_{wo} =Percent moisture

$$B_{wo} = 15.07 * 100 / (15.07 + 36.89) = 29.003 \text{ percent}$$

CONCENTRATION

$C_s' = (15.43 \text{ grains/gm}) * M_n / (V_{mstd} + V_{wstd})$

Where C_s' =Concentration (grains/scf)

M_n =Total particulate collected (gm)

$$C_s' = 15.43 * 0.0251 / (36.89 + 15.07) = 0.0075 \text{ grains/scf}$$

STACK VELOCITY

$V = K_p * 85.48 * \sqrt{\Delta P} * \sqrt{M_w * P_s}$

Where V =Stack velocity (ft/sec)

T_s =Stack absolute temperature (R)

ΔP =Average pitot reading (in. WG)

M_w =Molecular wt. of stack gas (lb/lb mole)

K_p =Pitot tube coefficient

$$M_w = 0.18 * 29.00 + 0.44 * 2.72 + 0.32 * 12.19 + 0.28 * 56.09 = 26.022 \text{ lb/mole}$$

$$V = 0.84 * 85.48 * 1.020 * \sqrt{604.7 / (26.022 * 23.97)} = 72.112 \text{ ft/sec}$$

STACK VOLUME

$ACFM = V * A * 60 \quad \text{AND} \quad SCFM = ACFM * 530 * P_s / (T_s * 29.92)$

Where $ACFM$ =Actual cubic Ft per minute at stack conditions

A =Stack area (ft²)

$SCFM$ =Standard cubic ft. per min. (29.92 in. Hg & 530 R)

$$ACFM = 72.11 * 19.630 * 60 = 84933 \text{ acfm}$$

$$SCFM = 84933 * 530 * 23.97 / (604.7 * 29.92) = 59638 \text{ scfm}$$

CALCULATED DUST LOAD

1b/hr= $C_s' * SCFM * 60 / 7000$ grains/1b

$$\text{DUST LOAD} = 0.0075 * 59638 * 60 / 7000 = 3.81 \text{ Lb/Hr}$$

ISOKINETIC RATE

$$I = 95.86929 \%$$

LABORATORY DATA

Company FMCRun No CT-534-2Sampling Location RA-26Date 6-5-85MOISTURE COLLECTED

			Water Weight/Volume Gain G/ML
IMPINGER 1	Final Weight/Volume Initial Weight/Volume Increase	<u>759.9</u> <u>540.4</u> <u>219.5</u>	<u>219.5</u>
IMPINGER 2	Final Weight/Volume Initial Weight/Volume Increase	<u>644.5</u> <u>574.1</u> <u>70.7</u>	<u>70.7</u>
IMPINGER 3	Final Weight/Volume Initial Weight/Volume Increase	<u>457.2</u> <u>446.0</u> <u>11.8</u>	<u>11.8</u>
IMPINGER 4	Final Weight/Volume Initial Weight/Volume Increase	<u>680.6</u> <u>664.7</u> <u>15.9</u>	<u>15.9</u>
	TOTAL MOISTURE CATCH		<u>317.9</u> <u>X</u>

PARTICULATE COLLECTED

FRONT-HALF ANALYSIS (Nozzle, Probe, Cyclone, Filter Front-Half)

Orsat
%CO₂: 3.83
%O₂: 17.17
%CO: 0.0

Filter & Particulates	<u>0.4855</u>	
Filter Tare Weight	<u>0.4795</u>	
Particulate	<u>0.0060</u>	#3 <u>75.1052</u>
Washings	<u>0.0197</u>	<u>75.1055</u>
Particulate Catch	<u>0.0057</u>	<u>0.0197</u>
Acetone Blank	<u>0.0006</u>	
TOTAL FRONT CATCH	<u>0.0051</u>	

BACK-HALF ANALYSIS (Impingers, Filter Back-Half)

Extractable Weight		
Boil Down Weight		
Impinger Catch		
Water Blank		
TOTAL BACK CATCH		<u>75.4712</u>
TOTAL TRAIN CATCH		<u>75.4706</u>
		<u>0.0006</u>

CT-534-2

PRELIMINARY DATA

Company Smcwv.Corp.

Sampling Location RA - 26

Stack inside diameter, in. 60

Stack area, sq. ft. 19.63

Port extension, in. 4.95

Pitot tube correction factor 0.84

Stack Pressure - 0 -

Pitot tube traverse 12

Traverse Pt. No.	Velocity Head		Temperature Stack
	P	Y ^P	
SE			
1	0.85	0.922	165
2	1.10	1.049	166
3	1.10	1.049	165
4	1.05	1.025	164
5	1.0	1.000	163
6	0.98	0.990	161
NE			
1	0.98	0.990	144
2	1.05	1.025	144
3	1.10	1.049	143
4	1.15	1.072	143
5	1.2	1.095	143
6	1.05	1.025	143
Average	Y ^P	1.024	154.6° F
Average Temperature			614.6° F.

STACK SAMPLING FIELD DATA

Company FMC WY. CORP.

Assumed Moisture, % 25

Plant Location G.R. Wyo.

Probe Tip Diameter, in. 0.234

Run No. G T - 534 + 3

Probe Length, ft. 6

Sampling Location RA-26

Ambient Temperature, °F 23.97

Date 6-5-85

Bar. Pressure, in. Hg.

Start Time 13:39 11/17

Initial Leak Check, cfs

Finish Time 14:09 14:17

— 1 —

Filter No. 1 + 01 74.41

Final Leak Check, CFS

TEST NO. CT534-3

DATE 06/05/85

VELOCITY AND VOLUME DETERMINATION

DRY GAS VOLUME

$V_{mstd} = (17.71 \text{ deg R/in. Hg}) * V_m * (P_{bar} + \Delta H / 13.6) / T_m$

Where V_{mstd} =Volume (ft³) of gas sample at 70F and 29.92 in. Hg

V_m =Volume (ft³) of gas at meter conditions

T_m =Average dry gas meter temperature (R)

P_{bar} =Barometric pressure (in. Hg)

ΔH =Pressure drop across orifice (in. WG)

$$V_{mstd} = 17.71 * 46.08 * (23.97 + 1.523 / 13.6) / 546.7 = 35.948 \text{ ft}^3$$

VOLUME OF WATER VAPOR

Where V_{wstd} =Volume (ft³) of water vapor

V_{lc} =Total volume of water collected (ml)

$$V_{wstd} = .00474 * 293.2 = 13.898 \text{ ft}^3$$

MOISTURE CONTENT

$B_{wo} = V_{wstd} * 100 / (V_{wstd} + V_{mstd})$

Where B_{wo} =Percent moisture

$$B_{wo} = 13.90 * 100 / (13.90 + 35.95) = 27.881 \text{ percent}$$

CONCENTRATION

$C_s' = (15.43 \text{ grains/gm}) * M_n / (V_{mstd} + V_{wstd})$

Where C_s' =Concentration (grains/scf)

M_n =Total particulate collected (gm)

$$C_s' = 15.43 * 0.0278 / (35.95 + 13.90) = 0.0086 \text{ grains/scf}$$

STACK VELOCITY

$V = K_p * 85.48 * \sqrt{\Delta P} * \sqrt{M_w * P_s}$

Where V =Stack velocity (ft/sec)

T_s =Stack absolute temperature (R)

ΔP =Average pitot reading (in. WG)

M_w =Molecular wt. of stack gas (lb/lb mole)

K_p =Pitot tube coefficient

$$M_w = 0.18 * 27.88 + 0.44 * 2.60 + 0.32 * 12.76 + 0.28 * 56.76 = 26.138 \text{ lb/mole}$$

$$V = 0.84 * 85.48 * 1.000 * \sqrt{596.9 / (26.14 * 23.97)} = 70.085 \text{ ft/sec}$$

STACK VOLUME

$ACFM = V * A * 60 \quad \text{AND} \quad SCFM = ACFM * 530 * P_s / (T_s * 29.92)$

Where ACFM=Actual cubic Ft per minute at stack conditions

A =Stack area (ft²)

SCFM=Standard cubic ft. per min. (29.92 in. Hg & 530 R)

$$ACFM = 70.09 * 19.630 * 60 = 82546 \text{ acfm}$$

$$SCFM = 82546 * 530 * 23.97 / (596.9 * 29.92) = 58719 \text{ scfm}$$

CALCULATED DUST LOAD

$lb/hr = C_s' * SCFM * 60 / 7000 \text{ grains/lb}$

$$\text{DUST LOAD} = 0.0086 * 58719 * 60 / 7000 = 4.33 \text{ Lb/Hr}$$

ISOKINETIC RATE

$$I = 93.41699 \%$$

LABORATORY DATA

Company FMCRun No. CT-534-5Sampling Location RA-16Date 6-5-85MOISTURE COLLECTED

		Water Weight/Volume Gain GM/L
IMPINGER 1	Final Weight/Volume <u>294.9</u>	
	Initial Weight/Volume <u>571.7</u>	
	Increase <u>223.2</u>	<u>223.2</u>
IMPINGER 2	Final Weight/Volume <u>613.9</u>	
	Initial Weight/Volume <u>561.2</u>	
	Increase <u>52.7</u>	<u>52.7</u>
IMPINGER 3	Final Weight/Volume <u>422.3</u>	
	Initial Weight/Volume <u>417.3</u>	
	Increase <u>5.0</u>	<u>5.0</u>
IMPINGER 4	Final Weight/Volume <u>687.5</u>	
	Initial Weight/Volume <u>677.2</u>	
	Increase <u>12.3</u>	<u>12.3</u>
	TOTAL MOISTURE CATCH <u>293.2</u>	<u>293.2</u>

PARTICULATE COLLECTED

FRONT-HALF ANALYSIS (Nozzle, Probe, Cyclone, Filter Front-Half)

Orsat
%CO₂: 3.6
%O₂: 17.7
%CO: 0.0

Filter & Particulates	<u>0.4835</u>	<u>83.3844</u>
Filter Tare Weight	<u>0.4783</u>	<u>73.3582</u>
Particulate	<u>0.0052</u>	
Washings	<u>0.0065</u>	<u>0.0262</u>
Particulate Catch	<u>0.0314</u>	
Acetone Blank	<u>0.0036</u>	
TOTAL FRONT CATCH	<u>0.0078</u>	

BACK-HALF ANALYSIS (Impingers, Filter Back-Half)

Extractable Weight	
Boil Down Weight	
Impinger Catch	
Water Blank	
TOTAL BACK CATCH	
TOTAL TRAIN CATCH	

74.3645
74.3645
0.0036

CT-534-3

PRELIMINARY DATA

Company Smc Wy. Corp.

Sampling Location R A -26

Stack inside diameter, in. 60

Stack area, sq. ft. 19.63

Port extension, in. 4.25

Pitot tube correction factor 0.84

Stack Pressure - 0 -

Pitot tube traverse 12

Traverse Pt. No.	Velocity Head		Temperature Stick
	P	Y ^P	
SE			
1	0.88	0.938	142
2	1.05	1.025	
3	1.10	1.049	
4	1.00	1.000	
5	0.95	0.975	
6	0.95	0.975	
NE			
1	0.87	0.933	
2	0.95	0.990	
3	1.05	1.025	
4	1.03	1.015	
5	1.05	1.025	
6	0.95	0.980	
Average	Y ^P	0.994	
Average Temperature			

DA10 D
File:

MEMORANDUM

TO: FMC Soda Ash Plant (Green River)

THROUGH: Chuck Collins, Air Quality Supervisor
Lee Gribovicz, District Air Quality Engineer ~~xx~~

FROM: Mike Crawford, Air Quality Associate Engineer ~~

SUBJECT: Compliance Testing of CT-534

DATE: October 2, 1985

On March 29, 1984, the Air Quality Division granted to FMC permit CT-534. This permit was for the construction of a new fluid bed dryer (RA-26) in the sesqui plant. On March 22, 1985, this unit commenced operation and as required by Section 21(j) of the Wyoming Air Quality Standards and Regulations, FMC conducted performance testing on this unit June 5, 1985.

In permit CT-534 the allowable particulate emission rate for the fluid bed dryer is 12 pounds per hour. Another condition of this permit is FMC can have on-line any two of three remaining steam-tube dryer units (RA-14, RA-15, RA-16) simultaneously with the fluid bed dryer.

Lee Gribovicz and I were on site June 5, 1985 and we observed the end of the first test and all of the second and third test runs. Mr. Gribovicz's memo of June 6, 1985 describes our observations on plant this date.

FMC determined the minimum number of traverse points was 12, with 6 points per traverse. FMC sampled for 5 minutes at each point for a total sampling time of 60 minutes per test.

The tests were submitted under cover of FMC's letter of August 28, 1985. FMC reported only the "front-half" collection of the sampling train. Dee Peverly, manager of FMC's Environmental Group, said that the "back-half" collection of the sampling train were not measured (875-2580 ext. 273, 9-13-85). Mr. Peverly said it was his understanding that if the Air Quality Division wanted the "back-half" it would have been requested.

Other than the "back-half" not being reported, there were no other procedural errors noted. Table A lists some average process parameters and "front-half" measured particulate emission rate.

TABLE A

	<u>TEST 1</u>	<u>TEST 2</u>	<u>TEST 3</u>
Process Rate (tph)	89.6	89.6	89.6
Avg. Steam Flow (pph)	61,500	67,500	64,000
Scrubber Flow Rate (gpm)	1,050	1,050	1,050
Avg. Scrubber Press. Drop (in. H ₂ O)	24.5	26.0	26.0
Makeup Flow Rate	30	30	30
"Front-Half" Measured Emission (pph)	3.36	3.81	4.36

Table B compares the average of the three tests to the designed values.

TABLE B

	<u>AVG. OF THE 3 TESTS</u>	<u>DESIGN VALUES</u>
Process Rate (tph)	89.6	85.5
Steam Flow (pph)	64,333	CONFIDENTIAL*
Scrubber Flow Rate (gpm)	1,050	1,270
Scrubber Pressure Drop (in. H ₂ O)	25.5	30
Makeup Flow Rate (gpm)	30	70
"Front-Half" Measured Emission (pph)	3.84	--
Allowable Emission (pph)	--	12.0

* Per Letter of January 4, 1984

Memorandum

Page 3

As seen in Table B, the process rate for the fluid bed dryer was 5% above the designed rate, while the scrubber was operating below its design parameters. The "front-half" average particulate emission rate of 3.84 pounds per hour is well below the allowable of 12 pounds per hour. If the "back-half" had been reported it is the Air Quality Division's opinion that these tests would still have passed. For example, if the "back-half" equalled 50% of the "front-half" the average particulate emission rate would be 5.75 pounds per hour well within the allowable emission rate of 12 pounds per hour.

I recommend these tests be accepted as proof of compliance for FMC's fluid bed dryer permitted as CT-534. I also recommend that a letter be sent to FMC stating that the "back-half" collection of the sampling train be included in future test reports.

STACK EMISSION REVIEW

COMPANY FMC WYOMING CORP (SODA ASH) LOCATION Sect. 23, T19N, R11W

TESTING FIRM FMC ENV Dept Soda Plant TESTS CONDUCTED BY CARL DEMASHAR

DATE TESTED JUNE 5, 1985 TED BROWN

SIMON Lee

Keith Morris

TEST OBSERVED BY Lee Gribavicz & Mike Crawford

TEST EVALUATED BY Mike Crawford

STACK DATA

Stack ht (ft) 95.0' Height to ports = 90'

Stack dia (ft) 5.0'

Process venting through stack escaping from one from calcining process

TRAVERSE POINTS

Nozzle diameter: Test 1 0.228" Test 2 0.234" Test 3 0.234"

Location of sampling ports 90' (18' eq. stack dia downstrm) 5' (1' eq. stack dia upstrm)

Number of traverse points per test: Test 1 12 Test 2 12 Test 3 12

Do sampling points follow EPA guidelines? Yes ✓ No

Comments:

EMISSIONS

	Test 1	Test 2	Test 3	
Process wt rate (ton/hr)	<u>89.6</u>	<u>89.6</u>	<u>89.6</u>	
Allowable emission (lb/hr)	<u>12.0</u>	<u>12.0</u>	<u>12.0</u>	
Measured emission (lb/hr)	<u>3.358</u>	<u>3.812</u>	<u>4.358</u>	Avg = <u>3.84</u> <u>lb/hr</u>
% Isokinetic	<u>100.01</u>	<u>95.42</u>	<u>93.12</u>	

Comments and recommendations:

Batch 6-16 was not reported or conducted by FMC.

DATA SHEET

P_{std} = 29.92 in Hg

T_{std} = 530°R

		<u>Test 1</u>	<u>Test 2</u>	<u>Test 3</u>
P_{bar}	= barometric pressure at site (in Hg)	23.97	23.97	23.97
P_s	= absolute stack gas pressure (in Hg)	23.97	23.97	23.97
T_s	= absolute average stack gas temp. (°R)	627.8	604.7	596.9
T_m	= absolute average dry gas meter temp. (°R)	553.8	544.8	545.7
V_{ic}	= total volume of water collected (ml)	309.2	312.9	293.2
V_m	= volume of gas through dry gas meter (ft^3)	45.244	47.11	46.08
ΔH	= average pressure drop across orifice (in H_2O)	1.514	1.581	1.523
C_p	= pitot tube coefficient	0.84	0.84	0.84
$(\sqrt{\Delta P})_{ave}$	= average velocity head of stack gas (in H_2O)	0.994	1.020	1.000
A_s	= cross-sectional area of stack (ft^2)	19.63	19.63	19.63
M_n	= total amount of particulate collected (g)	0.0220	0.0251	0.028
θ	= total sampling time (min.)	60.0	60.0	60.0
A_n	= cross-sectional area of nozzle (ft^2)	$2.835(10^{-4})$	$2.986(10^{-4})$	$2.986(10^{-4})$

ORSAT ANALYSIS

	<u>Test 1</u>	<u>Test 2</u>	<u>Test 3</u>
% CO_2	3.9	3.83	3.6
% O_2	17.4	17.17	17.7
% CO	0.0	0.0	0.0
% N_2	78.7	79.0	79.7

CALCULATIONS

1. $V_{w \text{ std}}$ = volume of water vapor in gas @ STP (ft³)

$$V_{w \text{ std}} = 0.0474 \text{ ft}^3/\text{ml} \cdot V_{ic}$$

$$V_{w \text{ std}} = 14.66, 15.07, 13.90 \text{ ft}^3$$

2. $V_{m \text{ std}}$ = volume of gas sample through dry gas meter @ STP (ft³)

$$V_{m \text{ std}} = \left(17.71 \frac{\text{°R}}{\text{in Hg}} \right) V_m \left(\frac{P_{\text{bar}} + H}{T_m} \right)$$

$$V_{m \text{ std}} = 34.84, 36.89, 36.01 \text{ ft}^3$$

3. B_{wo} = proportion by volume of water vapor in gas stream (dimensionless)

$$B_{wo} = \frac{V_{w \text{ std}}}{V_{w \text{ std}} + V_{m \text{ std}}}$$

$$B_{wo} = 0.296, 0.290, 0.278$$

4. Molecular weight (lb/lb mole)

$$M_d = 0.44 (\% \text{ CO}_2) + .32 (\% \text{ O}_2) + .28 (\% \text{ N}_2 + \% \text{ CO})$$

$$M_d = 29.32, 29.30, 29.28 \text{ lb/lb mole}$$

$$M_s = M_d (1 - B_{wo}) + 18 B_{wo}$$

$$M_s = 25.97, 26.02, 26.14 \text{ lb/lb mole}$$

5. V_s = stack gas velocity (ft/sec)

$$V_s = 85.48 C_p (\sqrt{\Delta p})_{\text{ave}} \sqrt{\frac{T_s}{P_s M_s}}$$

$$V_s = 71.68, 72.11, 70.08 \text{ ft/sec}$$

6. Q_s = volumetric flow rate, dry basis, @ STP (ft³/min)

$$Q_s = 60 (1 - B_{wo}) V_s \cdot A_s \left(\frac{530}{T_s} \right) \left(\frac{P_s}{29.92} \right)$$

$$Q_s = 40,191.5, 42,340.9, 42,365.5 \text{ ft}^3 \text{ min}$$

82.540
 84.931
 84.931
 81.445
 83.965
 83.965
 avg

CALCULATIONS (CONTINUED)

7. C_s = concentration (lb/ft^3)

$$C_s = 2.205 \times 10^{-3} \frac{M_n}{V_m \text{ std}}$$

$$C_s = 1.3923, 1.5004, 1.7143 \text{ lb}/\text{ft}^3 \times 10^{-6}$$

8. E = emission rate lb/hr

$$E = C_s \cdot Q_s \cdot 60$$

$$E = 3.3575, 3.8118, 4.3577 \text{ lb}/\text{hr}$$

($\frac{FMC}{3.8217}$)

$$AVG = 3.8423 \frac{\text{lb}}{\text{hr}}$$

9. % Isokinetic

$$I = 1.667 T_s \left(0.00267 V_{ic} + \left[\frac{V_m}{T_m} [P_{bar} + \frac{\Delta H}{13.6}] \right] \right) \frac{\Theta V_s P_s A_n}{}$$

$$I = 100.01, 95.42, 93.12 \%$$

If 50% of Front-half = Back-half

$$\text{Total } M_{n_1} = \text{"Front-half" + 50% "Front-half"}$$

$$M_{n_1} = 0.0330 \text{ gm } E_1 = 5.04 \frac{\text{lb}}{\text{hr}}$$

$$M_{n_2} = 0.0377 \text{ gm } E_2 = 5.72 \frac{\text{lb}}{\text{hr}}$$

$$M_{n_3} = 0.0417 \text{ gm } E_3 = 6.49 \frac{\text{lb}}{\text{hr}}$$

$$E_{AVG} = 5.75 \frac{\text{lb}}{\text{hr}}$$