

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Background Report Reference

AP-42 Section Number: 9.13.2

Background Chapter: 4

Reference Number: 10

Title: Melitta USA, Inc. Emission
Compliance Test Program

AirNova, Inc.

AirNova, Inc.

October 1991

Project No. 1257

Melitta USA

Emission Compliance
Test Program
Log No. 89-5296

J. Robert Gallog — P.E.
Certified By

Prepared for:

Mr. John Thodan
Melitta USA Inc.
1401 Berlin Rd.
Cherry Hill, NJ 08003

October 1991

#10

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
Bureau of Technical Services
CN 411
Trenton, N.J. 08625-0411
(609) 530-4041

December 18, 1991

MEMORANDUM

TO: Chief
Bureau of Enforcement Operations

FROM: Edward Choromanski, Chief
Bureau of Technical Services

SUBJECT: Melitta USA Inc. - Cherry Hill, New Jersey
Stack Emissions Test Program
APC Plant ID No. 50365
NJ Stack No. 020
P/CT No. 97950 (Log No. 89-5296)

Stack emission tests were conducted at the above referenced facility on October 15, 1991 on the Probat Radial Roaster controlled by a catalytic oxidizer. The purpose of these tests was to quantify the emissions of particulates, carbon monoxide and total hydrocarbons being emitted to the atmosphere. In addition, VOS destruction efficiency across the oxidizer was demonstrated.

Dan Strochak reviewed the submitted stack emission test report. His review indicates that the particulate, CO and THC emissions were within the standard stated on the permit, for all test runs. In addition, the VOS destruction efficiency exceeded the minimum 95 percent standard required by the permit.

The test report review indicates that the results should be accepted as demonstrating compliance with the permit standards. A five year certificate can be issued if no other permit conditions are outstanding and with the approval of the Southern Regional Office.

c Milton Polakovic
Louis Mikolajczyk
Scott Hawthorne
Dan Strochak

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
Bureau of Technical Services
CN 411
Trenton, N.J. 08625-0411
(609) 530-4041

December 11, 1991

MEMORANDUM

TO: Edward Choromanski
FROM: Dan Strochak J.S.
SUBJECT: Melitta USA Inc.
APC ID No. 50365
NJ Stack No. 020
P/CT No. 97950 (Log No. 89-5296)

Air Nova, Inc. conducted an emission test program at the above mentioned facility on October 15, 1991. Sampling was conducted at the inlet and outlet of a Probat Catalyzer. The tests were for volatile organic compound (VOC) and particulate emissions resulting from coffee roasting. The results of these tests are as follows.

CONTAMINANT	RUN 1	RUN 2	RUN 3	ALLOWABLE
<u>INLET</u>				
THC ppm-dry	705	472	486	
lb/hr	1.8	1.2	1.1	
<u>OUTLET</u>				
CONTAMINANT	RUN 1	RUN 2	RUN 3	ALLOWABLE
<u>PARTICULATE</u>				
lb/hr	0.05	0.04	0.06	0.20
grains dscf-dry	0.015	0.011	0.015	-
CO ppm-dry	25	20	25	
ppm-dry @7% O ₂	39	31.2	39	
lb/hr	0.05	0.04	0.04	1.45

Technical Services calculations of the raw data supplied, indicates substantially the same results. The tests results indicate that all of the contaminants were within P/CT 91277 allowables for all three runs. The catalytic incinerator had a control efficiency of 99.5, 99.1 and 99.1 percent for runs one, two and three respectively. These were above the 95 percent permit minimum.

According to Walter Beland (SRO), the catalyzer temperature was approximately 1000° F during the tests, which is above the 800° permit minimum. The roaster was operating at the permit maximum of 80 lbs/batch.

Table of Contents

	Page
1.0 Introduction	1
2.0 Site Information	2
3.0 Test Results	4
4.0 Test Methodologies	8
Appendix A - Field Data and Calculations	
Appendix B - Calibration Data	
Appendix C - NJDEP Emission Test Production Report	

1.0 INTRODUCTION

AirNova, Inc. conducted an emission test program at the Melitta USA Inc. facility located in Cherry Hill, New Jersey for the purpose of demonstrating compliance with applicable State of New Jersey Department of Environmental Protection (NJDEP) regulations. Sampling was conducted at the inlet and outlet of a Probat Catalyzer. The catalyzer is operated is for the purpose of controlling volatile organic compound (VOC) emissions emanating from coffee roasting operations. The specific parameters determined as part of this test program included the following:

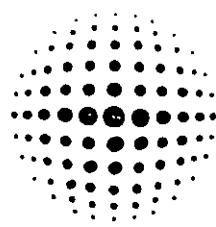
Inlet Test Location

Total Hydrocarbons

Outlet Test Location

Total Hydrocarbons
Particulate
Carbon Monoxide

This report contains the complete results of the test program.


2.0 SITE INFORMATION

The emission control device under evaluation is a Probat catalyzer designed for the control of waste air from the roasting operation by catalytic post-combustion of the odorous gases. The catalyzer consists of a filter-like hollow cylinder made of an active substrate situated in a conical insulated casing. The catalytic reaction of the Volatile Organic Compounds (VOCs) takes place at a temperature which is available during the roasting process following the hot-air furnace. Following treatment, the exhaust gases are routed to atmosphere.

Outlet emission sampling was conducted in a vertical section of 14 inch ID exhaust ducting. Two sample ports situated 90° apart were used for sampling traverses. The ports were situated 10.9 duct diameters downstream and 1.1 duct diameters upstream from any flow disturbance.

Inlet sampling was conducted in a vertical section of 13 inch ID ducting located 1 duct diameter downstream and 1 duct diameter upstream from the nearest flow disturbance. Two sample ports situated 90° apart were utilized for all sampling.

A system diagram, indicating the test locations is presented in Figure 2-1.

AirNova, Inc.

**5845-A Clayton Avenue, Pennsauken, New Jersey 08109
(609) 486-1500 • FAX 486-9896**

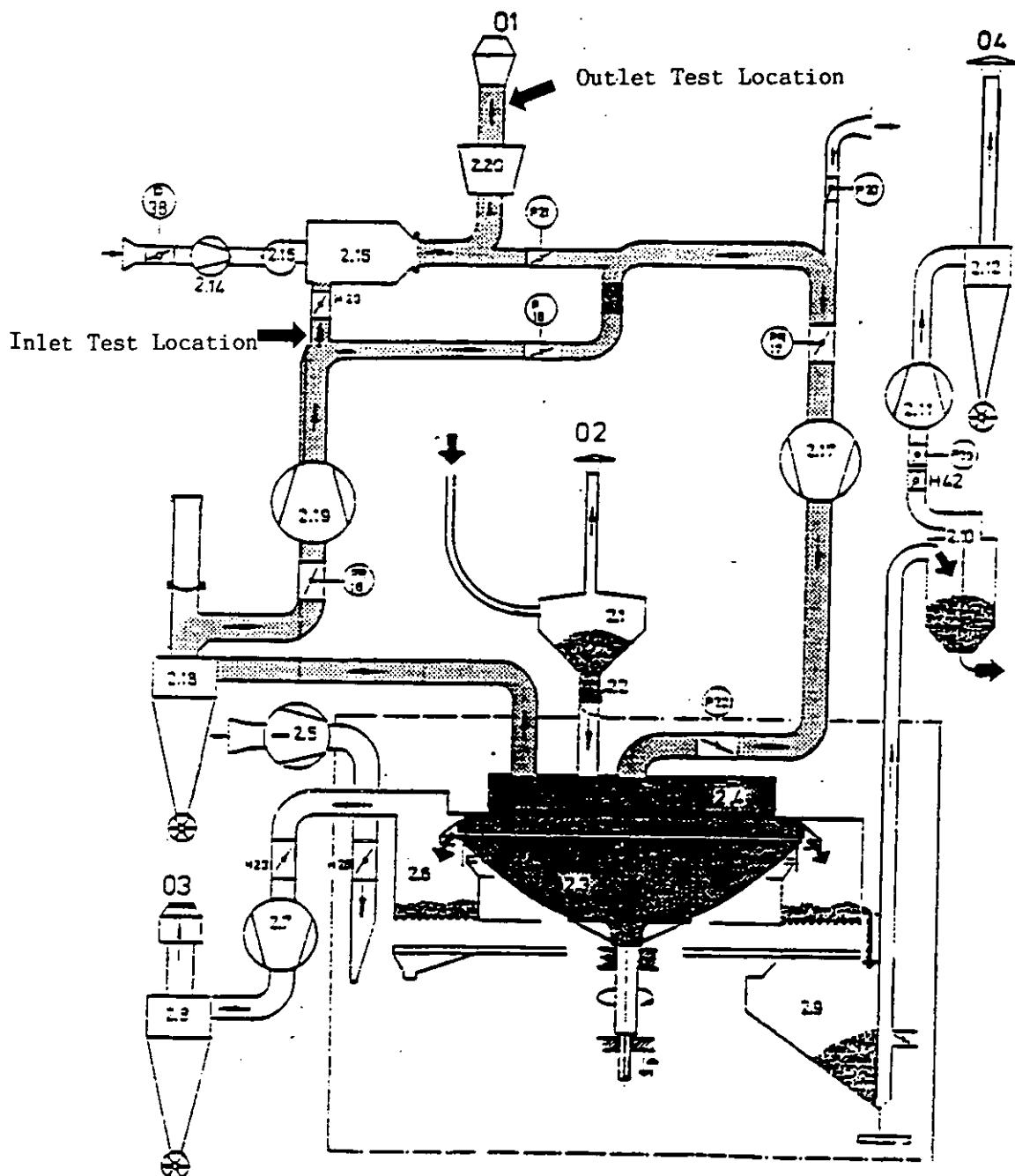


Figure 2-1 Emission Test Locations

3.0 TEST RESULTS

The results of the test program are presented in this section. Summary tables are presented as follows:

<u>Table No.</u>	<u>Description</u>	<u>Page</u>
3-1	Particulate Emission Summary	5
3-2	Total Hydrocarbon Emission Summary	6
3-3	Carbon Monoxide Emission Summary	7

Particulate emissions for the catalyster exhaust are limited to 0.03 lb/hr. The average particulate emission rate for the three test runs was determined to be 0.05 lb/hr. Carbon monoxide emissions are limited to 100 ppmV-dry at 15% oxygen. The average carbon monoxide concentration was determined to be 36.4 ppmV-dry at 15% oxygen. Total hydrocarbon emissions averaged 0.01 lb/hr with an allowable limit of 1.65 lb/hr.

Table 3-1
Particulate Emission Summary
Melitta USA, Inc.

Run No.	1	2	3
Date	10/15/91	10/15/91	10/15/91
Test Period	1045-1150	1248-1350	1500-1603
Temperature (°F)	965	898	849
Moisture Content (%)	20.1	20.1	18.7
Molecular Wt. (lb/mole)	26.89	26.89	27.04
Velocity (FPM)	1,312	1,219	1,206
Flow Rate (DSCFM)	416	404	422
Isokinetic Rate (%)	104	109	104
Oxygen (%)	12.00	12.00	12.00
Carbon Dioxide (%)	0.0 ← 4.0	0.00 ← 4.0	0.00 ← 4.0
Carbon Monoxide (%)	4.00 0	4.00 0	4.00 0
Particulate			
Concentration (gr/DSCF-dry)	0.015	0.011	0.015
Emission Rate (lb/hr)	0.05	0.04	0.06

Standard Conditions: 70°F, 29.92 in Hg

Table 3-2
Total Hydrocarbons Emission Summary
Melitta USA, Inc.

Run No. Location	1		2		3	
	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
Concentration *						
(ppmV-dry)	705	8.6	472	9.9	486	9.5
Emission Rate						
(lb/hr)	1.8	0.01	1.2	0.01	1.1	0.01
Removal Efficiency						
(%)	99.52		99.19		99.11	

* All concentrations are expressed as methane

Standard 70°F, 29.92 in Hg.

Table 3-3

Carbon Monoxide Emission Summary
Melitta USA, Inc.

Run No.	1	2	3
Date	10/15/91	10/15/91	10/15/91
Test Period	1050-1150	1250-1350	1500-1600
Concentration			
(ppmV-dry)	25.0	20.0	25.0
(ppmV-dry @ 7% O ₂)	39.0	31.2	39.0
Emission Rate			
(lb/hr)	0.05	0.04	0.05

Standard Conditions: 70°F, 29.92 in Hg.

4.0 TEST METHODOLOGIES

The emission test program was performed in determination of the following parameters utilizing the test methods specified for each below:

<u>Test Location</u>	<u>Parameter</u>	<u>Test Methodology</u>
Inlet/Outlet	Total Hydrocarbons	New Jersey Air Test Method 3-7 "Procedures for the Direct Measurement of VOC Using a Flame Ionization Detector" NJAC 7:27B-3.7
Outlet	Particulate	New Jersey Air Test Method 1 "Sampling and Analytical Procedures for Determining Emissions of Particles from Manufacturing Processes"
Inlet/Outlet	Moisture	EPA Reference Method 4 "Determination of Moisture Content in Stack Gas"
Outlet	Carbon Monoxide	EPA Reference Method 10 "Determination of Carbon Monoxide Emission from Stationary Sources"
Inlet/Outlet	Oxygen/Carbon Dioxide	EPA Reference Method 3. "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources"

In addition to the above specified procedures, EPA Reference Methods 1 and 2 were performed at each test location in determination of sampling points, temperature, velocity and volumetric flow rate. All sampling was conducted simultaneously at the inlet and outlet test locations. Each test run was a minimum of one hour in duration with triplicate test runs performed for each parameter.

A full description of the methodologies utilized in determination of the above listed parameters is as follows:

4.1 Cyclonic Flow Determination

The presence of laminar flow was demonstrated at the inlet and outlet locations according to Section 2.4 of EPA Reference Method 1. A type S pitot tube was connected to a manometer. The pitot tube was placed at each of the traverse point locations, in a position such that the openings of the pitot tube are perpendicular to the stack gas flow. An angle finder was placed on the pitot tube, which was rotated until a reading of zero (0) was obtained. The "yaw" angle was then recorded.

4.2 Total Hydrocarbons

The total hydrocarbon content of the inlet and outlet gas streams was determined by New Jersey Air Test Method 3.7 in evaluation of the Volatile Organic Compound destruction efficiency.

Volatile organic compounds were measured continuously using separate heated total hydrocarbon analyzers. Sample gas was transported from each test location through a heated Teflon sampling line directly to each instrument. This instrument uses a Flame Ionization Detector (FID) with a heated sample path maintained at 320°F to prevent the condensation of high molecular weight hydrocarbons. The detector is fueled with hydrogen and uses blended air as the oxidant. The instrument was calibrated using three certified ($\pm 2\%$) mixtures of methane in air and zeroed with hydrocarbon free air (<0.01 ppm-C) both before and after each test run. The span gases corresponded to approximately 30%, 50% and 90% of instrument span.

A total of three 1-hour test runs were completed in the determination of inlet and outlet emissions of total hydrocarbons. Prior to the start of

sampling, the entire system was leak checked from the sample probe and a no flow condition verified at the analyzer.

4.3 Particulate

Outlet determinations of particulate were conducted isokinetically using a NJ Air Test Method 1 sampling system. The sample train consisted of a unitized quartz glass probe with a quartz glass nozzle. A type "S" pitot tube attached to the sample probe monitored the exhaust gas flow rate in order to maintain isokinetic sampling conditions and determine the volumetric flow rate. A type "k" thermocouple was used to measure the exhaust gas temperature. Source gas samples were extracted from the exhaust stream by a vane-type vacuum pump pulling the sample stream through the nozzle and probe. The sample stream passed through a heated glass fiber filter for the collection of particulate matter. From the filter, the source gas sample passed through two impingers (each containing 100 milliliters of distilled water), one dry impinger, and a fourth impinger containing 200-300 g of tared silica gel. The sample stream subsequently passed through a dry gas meter for volume quantification.

Sampling was conducted in triplicate 1-hour sampling events with a minimum sample volume of 30 cubic feet collected for each event. At sampling completion, the probe, nozzle, and front half of the filter holder were repeatedly brushed and rinsed with acetone with the washings placed in a glass container sealed with a Teflon-lined cap. The tared glass fiber filter was placed in a petri dish and sealed. The impinger contents were measured for volume increase and discarded.

The volume of the front half acetone wash was measured to the nearest milliliter then evaporated to dryness at 70°F and one atmosphere in a tared beaker. The beaker was then heated to 220-270°F, desiccated at room temperature then tared to a constant weight. After adjusting for the field blank, the results are reported to the nearest 0.1 mg.

4.4 Carbon Monoxide

The carbon monoxide concentration of the afterburner exhaust gas was determined by EPA Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources". The sample gas was transported from the test location through an air cooled condenser, Teflon sample line, glass fiber filter and a leak free diaphragm pump to a rotometer and then to the non-dispersive infrared analyzer. The instrument was calibrated with three concentrations of CO in nitrogen of approximately 30%, 50% and 90% of instrument span and zeroed with zero grade nitrogen before and after each test period. The sampling system was leak checked before and after each test run. Verification of a no-flow condition was demonstrated by the rotometer.

4.5 Moisture Determination

The moisture content of the inlet and outlet stack gases was determined by EPA Method 4, "Determination of Moisture Content in Stack Gases". A gas sample was extracted from the gas stream stack at a constant rate then collected in a condenser train for subsequent volumetric and gravimetric analysis.

The EPA Method 4 sampling train consisted of the following apparatus connected in series:

- Heated sample probe
- A modified Greenburg-Smith impinger containing 100 ml of water
- A Greenburg-Smith impinger containing 100 ml of water
- An empty modified Greenburg-Smith impinger
- A modified Greenburg-Smith impinger containing 250 g of silica gel desiccant
- Leak free pump
- Dry gas meter equipped with inlet and outlet thermometers
- Differential pressure gauge

A minimum of 30 ft³ was collected during each of three 1-hour test runs. At the end of the sampling run the increase in volume of the impinger contents and mass of the silica gel was determined.

4.6 Carbon Dioxide and Oxygen

Carbon dioxide (CO₂) and oxygen (O₂) content were determined by EPA Method 3 at each test location. The sampling trains consisted of a stainless steel probe packed with a plug of glass wool for particulate filtration. The sampling probe was attached to an ice-cooled condenser used to remove excess moisture from the sample stream. The condenser was attached to a leak-free diaphragm pump with an in-line needle valve to adjust the sample flow rate. The sample stream was drawn through a rotameter to measure the sampling flow rate within ± 5 percent of the selected flow rate for the test. The sample stream passed through the rotameter into a leak-free Tedlar bag. Sampling was conducted concurrent with each 1-hour test period at each test location. Analysis was conducted in accordance with the EPA Method 3 (ORSAT analysis).

Appendix A
Field Data and Calculations

GAS ANALYSIS DATA FORM

PLANT MetLife

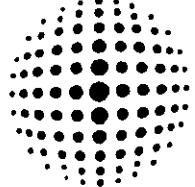
DATE 10-16-91 TEST NO 1

SAMPLING TIME (24-h CLOCK) 6 am - 6 pm

SAMPLING LOCATION Tire Leve

SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) bag

ANALYTICAL METHOD Gaspet


AMBIENT TEMPERATURE 75

OPERATOR mc

COMMENTS:

GAS	RUN			MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _W		
	1	2	3	AVERAGE NET VOLUME	MULTIPLIER	
	ACTUAL READING	NET	ACTUAL READING	NET		
CO ₂	4.0%	4.0%	4.0%	4.0%	4.0	44.100
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	19.0%	15.0%	19.0%	19.0%	15.0	32.100
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)	0.0%	0.0%	0.0%	0.0%	0.0	28.100
N ₂ (NET IS 100 MINUS ACTUAL CO READING)	60.0%	60.0%	60.0%	60.0%	60.0	28.100
						TOTAL

46

AirNova, Inc. AIR QUALITY SAMPLING AND ANALYSIS

AIR QUALITY SAMPLING AND ANALYSIS

GAS ANALYSIS DATA FORM

COMMENTS

PLANT met 110 TEST NO. 91
DATE 12/14-91 SAMPLING TIME (24-hr CLOCK) 60 min.
SAMPLING LOCATION encl. A SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) bag
ANALYTICAL METHOD or 5197 AMBIENT TEMPERATURE 75
OPERATOR kgc

GAS ANALYSIS DATA FORM

PLANT MELLITA
 DATE 10-14-91 TEST NO 3
 SAMPLING TIME (24-hr CLOCK) 6:00 a.m.
 SAMPLING LOCATION Turnout
 SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) bags
 ANALYTICAL METHOD or 3 set
 AMBIENT TEMPERATURE 75°
 OPERATOR PC

COMMENTS:

GAS	RUN			MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _w		
	1	2	3	AVERAGE NET VOLUME	MULTIPLIER	TOTAL
	ACTUAL READING	NET READING	ACTUAL READING	NET		
CO ₂	3%	3%	4%	4%	1/100	1/100
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	18%	19%	18%	18%	32/100	32/100
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)					28/100	28/100
N ₂ (NET IS 100 MINUS ACTUAL CO READING)						

GAS ANALYSIS DATA FORM

PLANT Melchitt

DATE 10/6/91 TEST NO 1

SAMPLING TIME (24-hr CLOCK) 60 min.

SAMPLING LOCATION OUTLET

SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) bag

ANALYTICAL METHOD On site

AMBIENT TEMPERATURE 75°

OPERATOR unc

COMMENTS:

GAS	RUN	1			2			3			MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _w	MULTIPLIER	
		ACTUAL READING	NET READING	NET	ACTUAL READING	NET	NET	AVERAGE NET VOLUME					
CO ₂		4.2%	4.2%	4.2%	5.0%	5.0%	5.0%	4.7%				44.160	
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)												32.100	
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)												28.100	
N ₂ (NET IS 100 MINUS ACTUAL CO READING)												28.100	
													TOTAL

GAS ANALYSIS DATA FORM

PLANT Metlitz TEST NO 2
 DATE 12-11-91 SAMPLING TIME 12:45
 SAMPLING LOCATION at stack
 SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) bag
 ANALYTICAL METHOD Dr SOT
 AMBIENT TEMPERATURE 75
 OPERATOR M.C.

COMMENTS:

GAS	RUN	1			2			3			AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M _w
		ACTUAL READING	NET READING	ACTUAL READING	NET READING	ACTUAL READING	NET READING	ACTUAL READING	NET READING	ACTUAL READING			
CO ₂		4%	4%	4%	4%	4%	4%	4%	4%	4%	4100		
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)		12%	17%	15%	15%	15%	15%	15%	15%	15%	32100		
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)											28100		
N ₂ (NET IS 100 MINUS ACTUAL CO READING)											28100		
													TOTAL

A11

GAS ANALYSIS DATA FORM

PLANT Metlitzia
 DATE 10-11-91 TEST NO 3
 SAMPLING TIME (24 hr CLOCK) 60 min
 SAMPLING LOCATION outlet
 SAMPLE TYPE (BAG, INTEGRATED, CONTINUOUS) bags
 ANALYTICAL METHOD or 5BT
 AMBIENT TEMPERATURE 75°
 OPERATOR mc

COMMENTS:

RUN GAS	1			2			3			AVERAGE NET VOLUME	MULTIPLIER	MOLECULAR WEIGHT OF STACK GAS (DRY BASIS) M_d
	ACTUAL READING	NET READING	ACTUAL READING	NET READING	ACTUAL READING	NET READING						
CO ₂	4%	4%	3%	3%	4%	4%	4%	4%	4%	44,100		
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	16%	16%	13%	13%	12%	12%	12%	12%	12%	32,100		
CO(NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)										28,100		
N ₂ (NET IS 100 MINUS ACTUAL CO READING)										28,100		
												TOTAL

AII

Project Number _____ Test Number _____

Orsat Analysis

Plant PELITADate 10-15-91 Time _____Sampling Location INLETSample Type CYCLOONE

Run Number _____

Operators JM/RB

Ambient Temperature _____

Barometer _____

Sample Type (Bag, Integrated,
Continuous)

RUN GAS	1	2	3			
	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET
CO ₂						
O ₂						
CO						
N ₂						

Fyrite Analysis Pitot coefficient .85CO₂ _____O₂ _____

Field Data - Moisture

Time _____

Final Meter Vol. _____

Initial Mtr. Vol. _____

Total Meter Vol. _____

Meter Temp. In _____

Out _____

Rotameter Setting _____

Final H₂O Vol. _____Init. H₂O Vol. _____

Net Volume _____

Comments:

TRaverse Point Location & Velocity Data BY

TRaverse Point Number	A=Fraction of I.D.	B=All. D. ID=	C=8+NIPPLE NIPPLE=	Velocity Head in. H ₂ O	Stack Temperature (T ₁), °F
1				T5	
2				T7	
3				T8	
4				T4	
5				0	
6				T9	
7					
8				T10	
9				T8	
10				T5	
11				T3	
12				T2	
13				0	
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					

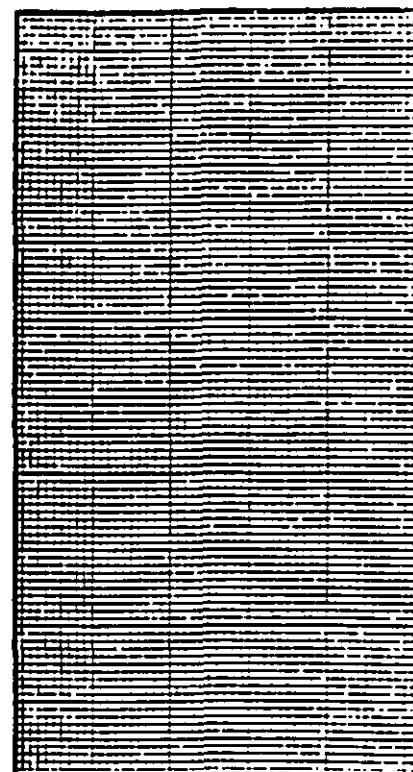


DIAGRAM OF STACK, PORTS, & TRAVERSE POINTS (indicate direction of flow)

INSIDE DIMENSIONS OF SAMPLE PLATE

STACK GAUGE PRESSURE in. H₂O _____

NEAREST UPSTREAM DISTURBANCE _____

NEAREST DOWNSTREAM DISTURBANCE _____

PROCESS & CONTROL EQUIPMENT DESCRIPTION _____

EMISSION TEST PRODUCTION
REPORT FORM

I. Company Name MCULTRITA USA, Inc. APC Plant ID# 50365
 Plant Location CHERRY HILL NJ
 Certificate Number LOG No. 89-5296
 Designation of Equipment Pass Port Register

II. Emission Test Date(s) 10/15/91

Tests Conducted By:

Name of Firm A.R. NOVA Inc.
 Business Address 5845 CLAYTON Ave Pennsauken NJ
 Phone Number 609/486-1500
 Test Team Representatives M. DACE R. BAILEY
T. MAY W. DENESAK
M. CUNNARAS
L. PURCELL

Length of Test 60 min / RUN

Run #1

Run #2

Run #3

Test Time (Start/Finish) 1045/1150 1245/1350 1500/1607

III. Certificate Operating Conditions

A. List Conditions

Achieved (Yes or No)

Oxidizer Temp > 800°F

YES

B. Log of Certificate Conditions During Stack Test
(Record at least every 15 minutes)

Condition	Run #	Readout	Time of Recording
-----------	-------	---------	-------------------

See Attachment			
_____	_____	_____	_____
_____	_____	_____	_____
_____	_____	_____	_____
_____	_____	_____	_____

Emission Report Form
page 2 of 4

IV. Equipment Operation/Process Parameters

Number of Sources Connected _____
Number of Sources Operating _____

Production Rate: Normal Maximum

A. Raw Materials:

B. Surface Coating:

Material Being Coated _____

Type of Coating _____

Coating Rate (Gals/Hr) 111

Is Coating Altered (Yes or No) / /

With _____

Distance From Coating Head to Exhaust Duct _____

C. Fuel Burning - Incineration:

Type of Fuel AlA

Fuel Burning Rate _____ (lbs/hr), (gals/hr), (ft/hr)

Fuel Additives _____, 2

Meter Reading (if available) _____ Time _____

Type of Waste Constituents _____

Auxiliary Fuel 111

Burning Rate 100

D. Other:

Description of Operation and Process Rate

Größe Rastung

V. Control Equipment Parameters

CEMs Required (Yes/No) _____

Contaminant? CO / O₂

STACK TEST CEM READING

A. Control Equipment performance Parameter

B. Additional Observations

Puritive Emissions (Yes/No)

Equipment Location _____

Visible Emissions From Stack (Yes/No)

Odors Noticeable

Vicinity of Equipment (Yes/No) _____

Near Exhaust Stack (Yes/No) _____

Off Property (Yes/No) _____

VI. Samples

Type of Sample _____

Time of Sampling _____

Sampled By _____

To Be Analyzed For _____

Analyzed By _____

Form Information Supplied by: Name/Title (Please Print)

Signature(s)/Date John Smith 10-21-91

DEP Usage Only
Rec'd By Sample Rec'd Rev'd By
 Date/Time