

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITYCN 027
TRENTON, N.J. 08625AP-42 Section 9.13.2
Reference 7
Report Sect.
Reference

July 9, 1987

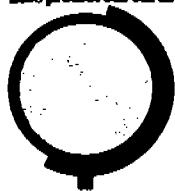
MEMORANDUM

TO: Don Patterson through Lou Mikolajczyk

FROM: Edward Choromanski *EDC*

SUBJECT: Premium Coffee - Wall, New Jersey
DEP ID No. 20004

Emission tests were conducted at the above referenced facility on the Afterburner Stack (NJ Stack No. 002). The purpose of the tests was to determine the particulate emission rate from the Afterburner Stack.


Dipak Ghayal reviewed the final test report. His review indicates that the particulate emission rates from the Afterburner Stack during Runs No. 1 and 2 exceeded the standard and during Run No. 3 was within the standard stated on Permit No. P-75409, as filed under N.J.A.C. 7:27-8.

During the tests the coffee bean rate was 67.5% of the permit standard. Also, the temperature of the Afterburner was between 1300 and 1400° F. Permit No. P-75409 required a afterburner temperature of 1500° F.

Since two of the three test runs exceeded the permit standard at 67.5% of the operating conditions proper enforcement action is recommended.

Edward M. Choromanski
Edward M. Choromanski
Supervisor/Technical Review
Bureau of Technical Services

cc Milt Polakovic
Harold Christiff
Rich Craig
Joe DePierro
Dipak Ghayal

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY

CN 027
 TRENTON, N.J. 08625

July 1, 1987

MEMORANDUM

TO: Edward Choromanski
 FROM: Dipak Ghayal
 SUBJECT: Premium Coffee, Wall New Jersey
 N.J.D.E.P. I.D. No. 20322

Stack tests were conducted at Premium Coffee, Wall, NJ on Roaster After Burner Exhaust (N.J. Stack No. 002) by Princeton Testing Lab, Princeton, NJ on January 14, 1987. The purpose of the test was to determine particulates emission rate from Roaster After Burner Exhaust, covered by Tracking No. 86-2269, filed under N.J.A.C. 7:27-8.2 and N.J.A.C. 7:27-6.2.

The test results are as follows:

PARTICULATES EMISSION RATE

Run No.	Allowable Emission Rate (as per 86-2269) lbs/hr	Actual Emission Rate lbs/hr
1	0.09	0.152
2	0.09	0.138
3	0.09	0.081

Technical Services calculations using the raw data supplied, produced substantially the same results.

The operating conditions reported are as follows:

Run No.	Afterburner Temp. °F	Natural Gas Burning Rate CF/hr	Coffee Bean Feed Rate lbs/hr
1	1300 - 1400	1876	1350
2	1300 - 1400	1821	1350
3	1300 - 1400	1864	1350

As per Log No. 86-2269, minimum required afterburner temperature is 1500° F and coffee beans feed rate is 2000 lbs/hr.

As per reported test results, particulates emission rates from Roaster Afterburner exhaust exceeds the standards during Run No. 1 and 2 and are within standards during Run No. 3.

As per reported operating conditions, Coffeebean feed rate is 67.5% of the required feed rate, during all tests. The reported emission rates during Run No. 3 is close to allowable emission rate.

Considering above conditions, the particulates emission rate from Roaster Afterburner Exhaust (N.J. Stack No. 002) are out of compliance with standards stated on Log No. 86-2269.

As per reported operating conditions and emission rates, proper enforcement actions are recommended.

Dipak B. Ghayal
Assistant Env. Engineer
Bureau of Technical Services

DBG:ss

CONTENTS

1.0 Summary of Results

2.0 Lab & Field Data

3.0 Test Procedures

4.0 Calibrations

5.0 Calculations

SECTION I.O

Summary of Results

SOURCE TEST REPORT
Particulate Emissions
Premium Coffee
Wall, New Jersey
Roaster/Cyclone/Afterburner

Client: Premium Coffee
Route #34
Wall, New Jersey

Testing Firm: Princeton Testing Lab
P.O. Box 3108
Princeton, New Jersey

CLIENT:

Premium Coffee
Hwy 34 & Ridgewood Road
Wall, New Jersey 07719

TEST LOCATION:

Premium Coffee
Hwy 34 & Ridgewood Road
Wall, New Jersey 07719

UNIT TESTED:

Roaster/Cyclone Collector/Afterburner

TEST PURPOSE:

Determine the particulate emission rate as required by the State of New Jersey to determine compliance with applicable air pollution control regulations.

TEST EQUIPMENT:

Research Appliance Company
"STAKSAMPLR" Portable Gas Sampler, Model #2343.

TEST METHOD:

Particulates: New Jersey Air Test Method 5

TEST PERSONNEL:

Michael J. Mease
Tony Damato

TEST OBSERVERS:

Edward Choromanski
Scott T. Hawthorne
New Jersey State Department of Environmental Protection

TESTING FIRM:

Princeton Testing Laboratory
P.O. Box 3108
Princeton, New Jersey 08540
609-452-9050

TEST ENGINEER:

Michael J. Mease
New Jersey Professional Engineer No. 24320

TEST DATA SUMMARY

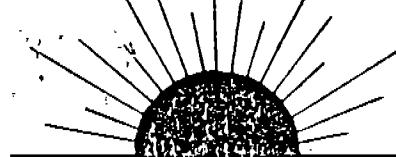
Process:

Roaster/Cyclone/Afterburner

	Run #1	Run #2	Run #3
Test Date and Times	1-14-87 10:29- 11:47am	1-14-87 12:28- 1:42 pm	1-14-87 2:11- 3:25 pm
Stack Diameter, Inches	18	18	18
Sampling Nozzle Diameter, Inches	0.313	0.313	0.313
Testing Time, Minutes	72	72	72
Stack Gas Volume Sampled, ACF	37.371	37.600	37.554
Stack Gas Volume Sampled, SCF @ 70 deg. F., 29.92 in.Hg., dry	37.3	37.1	36.9
Stack Gas Temperature, deg. F.	620	614	601
Stack Gas Moisture Content, %	11.6	12.3	12.6
Stack Gas Composition, %CO ₂ %O ₂	1.90 19.2	1.90 19.4	2.00 18.5
Stack Gas Molecular Weight	27.8	27.7	27.7
Stack Gas Velocity, Ft./Sec.	35.5	34.8	34.2
Stack Gas Flowrate, ACFM	3,760	3,690	3,620
Stack Gas Flowrate, SCFM @ 70 deg. F., 29.92 in.Hg., dry	1,640	1,600	1,590
Particulate Captured, Grams	0.0261	0.0242	0.0143
Particulate Concentration, Grains/SCF Grains/ACF	0.011 0.005	0.010 0.004	0.006 0.003
Particulate Mass Rate, Lb./Hr.	0.152	0.138	0.081
Percent Isokinetic of Test	105	106	107

TEST PROCEDURE SUMMARY

A series of three particulate source emission tests were conducted on the roaster/cyclone/afterburner exhaust. The tests were conducted January 14, 1987.


The two test ports were located on the roof approximately thirty six inches from flow disturbances (afterburner) and forty eight inches upstream from the stack exhaust. Two separate traverses of twelve sampling points were conducted for a total of twenty four sampling points on this eighteen inch diameter stack. The sampling points were located at the following distances, in inches, from the inside stack walls: 1.00, 1.21, 2.12, 3.19, 4.50, 6.41, 11.59, 13.50, 14.81, 15.88, 16.79, and 17.00. Each point was sampled for a period of three minutes each for a total test time of seventy-two minutes. Three separate tests were conducted without interruption using New Jersey Air Test Method 1 for particulates.

Prior to sampling, a cyclonic flow check was performed to determine if cyclonic flow was evident from the cyclone exhaust. Tests showed the gases to be exiting vertically; apparently straightened by the rectangular afterburner chamber and combustion.

Stack gas composition was determined with a separate test train which collected gas samples over the course of the particulate tests. This test train consisted of a probe, glass wool moisture trap, sample pump, and sample bag. Three tests were conducted simultaneously with the particulate emission tests.

SECTION 2.0

Lab & Field Data

Mease Engineering Associates

Environmental Consultants

LABORATORY WORKSHEET

Client: PREMIUM COFFEE

Run No. & Date: 1 - 1-14-87

Process: ROASTER/CYCLONE

Sample Box No.: 1

Filter Analysis:

Filter Wt., grams 0.6507
Filter Tare, gms 0.6280
Part. Increase, gm. 0.0227

Probe Wash Analysis:

Wash Volume, ml. 120
Acetone Density, mg/ml _____
Blank Volume, ml _____
Blank Residue #34
Final Wt. 157.5412
Tare Wt. 157.5411
Part. Wt. 0.0001 *OK*
Wash Analysis, Bottle No. 64
Beaker Wt., gms 155.7350
Tare Wt. (No. 31) 155.7318
Part. Wt., gms 0.0032

Impinger Water Increase:

Silica Gel Impinger (#4):
Final Wt., gms 831.5
Tare Wt., gms 820.9
H₂O Increase 10.6

Total Water Volume Increase:
Impinger #1 77 ml
Impinger #2 15 ml
Impinger #3 1 ml
Impinger #4 10.6 ml
TOTAL INCREASE 103.6 ml

Impinger Analysis:

Wash Bottle No. _____
Filter Wt., gms _____
Filter Tare, gms _____
Total Insoluble _____
Final Beaker Wt. _____
Tare Wt. (No. ____)
Total Soluble _____

Particulate Weight Summary:

Filter 0.0229
Probe Wash 0.0032
Impingers (Sol.) _____
Impingers (Insol.) _____
Total (w/imp.) _____ grams
Total (w/o imp.) 0.0261 grams

Signature: Michael J. Mease

Date: 1-19-87

Mease Engineering Associates

Environmental Consultants

LABORATORY WORKSHEET

Client: PREMIUM COFFEE

Run No. & Date: 2 1-14-87

Process: ROASTER/CYCLONE

Sample Box No.: 2

Filter Analysis:

Filter Wt., grams 0.6464
Filter Tare, gms 0.6297
Part. Increase, gm. 0.0167

Probe Wash Analysis:

Wash Volume, ml. 125
Acetone Density, mg/ml _____
Blank Volume, ml _____
Blank Residue

Final Wt. _____

Tare Wt. _____

Part.Wt. _____

Wash Analysis, Bottle No. 69

Beaker Wt., gms 152.084

Tare Wt. (No. 32) 152.0768

Part.Wt., gms 0.0075

Impinger Water Increase:

Silica Gel Impinger (#4):
Final Wt., gms 801.8
Tare Wt., gms 791.5
H₂O Increase 10.3

Total Water Volume Increase:

Impinger #1 80 ml
Impinger #2 19 ml
Impinger #3 1 ml
Impinger #4 10.3 ml
TOTAL INCREASE 110.3 ml

Impinger Analysis:

Wash Bottle No. _____
Filter Wt., gms _____
Filter Tare, gms _____
Total Insoluble _____
Final Beaker Wt. _____
Tare Wt. (No.) _____
Total Soluble _____

Particulate Weight Summary:

Filter 0.0167
Probe Wash 0.0075
Impingers (Sol.) _____
Impingers (Insol.) _____
Total (w/imp.) _____ grams
Total (w/o imp.) 0.0242 grams

Signature: Michael J. Mease

Date: 1-19-87

Mease Engineering Associates

Environmental Consultants

LABORATORY WORKSHEET

Client: PREMIUM COFFEE

Run No. & Date: 3 1-14-87

Process: ROSTER/CKLONE

Sample Box No.: 3

Filter Analysis:

Filter Wt., grams 0.6410
Filter Tare, gms 0.6326
Part. Increase, gm. 0.0084

Probe Wash Analysis:

Wash Volume, ml. 135

Acetone Density, mg/ml

Blank Volume, ml

Blank Residue

Final Wt.

Tare Wt.

Part.Wt.

Wash Analysis, Bottle No. 686

Beaker Wt., gms 158.1982

Tare Wt. (No. 33) 158.1923

Part.Wt., gms 0.0059

Impinger Water Increase:

Silica Gel Impinger (#4):
Final Wt., gms 783.7
Tare Wt., gms 772.8
H₂O Increase 10.9

Total Water Volume Increase:

Impinger #1 85 ml
Impinger #2 16 ml
Impinger #3 1 ml
Impinger #4 10.9 ml
TOTAL INCREASE 112.9 ml

Impinger Analysis:

Wash Bottle No. _____
Filter Wt., gms _____
Filter Tare, gms _____
Total Insoluble _____
Final Beaker Wt. _____
Tare Wt. (No. _____)
Total Soluble _____

Particulate Weight Summary:

Filter 0.0084
Probe Wash 0.0059
Impingers (Sol.) _____
Impingers (Insol.) _____
Total (w/imp.) _____ grams
Total (w/o imp.) 0.0143 grams

Signature: Michael J. Mease

Date: 1-19-87

MEASE ENGINEERING
ASSOCIATES

FIELD DATA

Run no. 1
Location PREMIUM COFFEE
Date 1-14-86 87
Operator MEASE / DAMATO
Sample box no. 1

Initial dry gas meter reading 847.85 847.882

K Factor 0.25
C_P 0.84
C_M 0.987

Stack dimen. 18" Ø
Stack press., in. H₂O - D. 08
Gas composition, % O₂ 19.2
INTEGRATED % CO₂ 19
% N₂ —
Time, start 10:29 AM
Time, finish 11:47 AM

Ambient Temp., °F 40
Bar. press., in. hg. 30.01
Assumed moisture, % 3.4
Probe tip diameter, in. 5/16
Probe length 3' C.W.S.S
Probe heater setting 200
Box heater setting 60
Leak checks, pre : 0.015 CFM & 2°C H₂
post : 0.004 CFM & 11°F H₂

Wash bottle no. 1550-1
Notes : - E&E. CHICK 47°C INLET
PC&TS 30" FROM A/BUNNEL
45° FROM TOP STACK

(GRW)

Point	Clock time	Dry gas meter	Pitot in. H ₂ O ΔP	Orifice in. H ₂ O ΔH	Dry gas temp. °F	Stack temp. °F	Pump vacuum in. Hg.	Impinger temp. °F	Box temp. °F	PRE-FLUTER TEMP °F	POST-FLUTER TEMP °F
1	3	848.681	0.11	0.60	60	52	6.0	≤ 52	430.358	258	130
2	3	846.935	0.12	0.58	63	61	646	6.0	332	120	
3	3	851.212	0.14	0.60	67	62	796	6.0	344	123	
4	3	832.541	0.14	0.64	68	62	725	6.5	359	127	
5	3	853.894	0.14	0.69	68	62	624	7.0	370	131	
6	3	855.332	0.16	0.80	69	62	620	7.5	389	132	
7	3	836.971	0.21	1.05	68	62	612	9.0	401	144	
8	3	858.960	0.21	1.06	69	62	606	6.0	421	160	
9	3	862.254	0.24	1.17	71	62	650	9.0	431	145	
10	3	862.548	0.25	1.22	72	62	645	9.5	420	160	
11	3	862.3347	0.25	1.20	73	62	610	10.0	472	170	
12	3	863.648	0.24	1.20	73	62	622	10.0	472	170	
13	3	867.313	0.21	1.03	65	59	632	9.0	462	167	
14	3	869.008	0.23	1.17	76	63	601	9.0	464	148	
15	3	870.642	0.21	1.02	76	64	652	8.0	470	147	
16	3	872.301	0.20	1.03	76	64	591	8.0	475	167	
17	3	873.834	0.18	0.92	75	66	602	8.0	478	171	
18	3	875.1	0.18	1.00	78	66	520	8.0	483	172	
19	3	877.133	0.19	0.99	78	66	588	8.0	482	191	
20	3	878.773	0.20	1.02	77	66	603	8.5	438	173	
21	3	880.503	0.21	1.16	77	66	522	9.5	348	167	
22	3	882.216	0.21	1.09	77	66	538	9.0	381	168	
23	3	884.0	0.17	0.88	76	66	586	8.0	362	167	
24	3	885.261	0.16	0.85	75	65	562	8.0	355	160	

U3425 9500 1046 742 670.71 619.75

MEASE ENGINEERING
ASSOCIATES

FIELD DATA

Run no. 2
Location PREM. COFFEE
Date 1-14-87
Operator MEASE / Durante
Sample box no. 2

Initial dry gas meter reading

885.517

K Factor	<u>10.25</u>
C_p	<u>0.84</u>
C_m	<u>0.87</u>
Stack dimen.	<u>18" \varnothing</u>
Stack press., in. H_2O	<u>19.4</u>
Gas composition, % O_2	<u>1.9</u>
% CO_2	<u>1.9</u>
% N_2	<u>1.9</u>
Time, start	<u>12.28 PM</u>
Time, finish	<u>1.42 PM</u>

Ambient Temp., °F 50
Bar. press., in. hg. 30.0
Assumed moisture, % 3-5
Probe tip diameter, in. 5/16
Probe length 3.5 in. \times 1/2 in.
Probe heater setting 60
Box heater setting 220
Leak checks, pre: 0.011 CFM at 17" Hg
post: 0.003 CFM at 17" Hg
Wash bottle no. 153-7
INTEGRATED OFFSET

Notes: LEAK CHECKS AT INNER INLET

Point	Clock time	Dry gas meter	Pilot in. H_2O ΔP	Orifice in. H_2O ΔH	Dry gas temp. °F	Stack temp. °F	Pump vacuum in. Hg.	Impinger temp. °F	Box temp. °F	PRE-FILTER TEMP °F	POST-FILTER TEMP °F
1	8:46.941	0.24	1.16	6.4	632	9.0	<50	29.6	91	130	
2	8:52.048	0.25	1.27	6.9	606	9.0	<50	39.6		143	
3	8:56.746	0.23	1.17	7.3	612	9.0	<50	42.9		124	
4	8:52.1	0.22	1.07	7.4	656	9.0	<50	41.5		154	
5	8:44.178	0.23	1.15	7.5	631	9.0	<50	40.8		157	
6	8:55.831	0.21	1.06	7.5	621	8.5	<50	38.4		120	
7	8:57.314	0.15	0.77	6.9	601	8.0	<50	37.0		184	
8	8:58.741	0.15	0.75	7.7	630	7.5	<50	36.9		190	
9	9:00.141	0.14	0.72	7.7	603	7.0	<50	36.5		194	
10	9:01.470	0.13	0.66	7.7	618	7.0	<50	36.1		162	
11	9:02.791	0.12	0.62	7.7	637	7.0	<50	34.5		163	
12	9:04.113	0.12	0.63	7.7	576	6.5	<50				
13	9:05.796	0.23	1.13	7.3	69	647	9.0	34.5		163	
14	9:07.461	0.23	1.11	7.5	70	666	9.0	40.1		194	
15	9:08.136	0.22	1.11	7.7	70	621	9.0	43.3		202	
16	9:10.741	0.18	0.92	7.7	70	609	8.0	38.0		200	
17	9:12.296	0.17	0.87	7.6	70	589	8.0	42.0		210	
18	9:13.909	0.18	0.93	7.6	70	599	8.0	37.6		221	
19	9:15.531	0.23	1.13	7.5	70	615	9.0	34.9		211	
20	9:17.311	0.21	1.07	7.6	70	611	8.5	38.0		206	
21	9:18.837	0.16	0.83	7.6	70	622	8.0	30.0		196	
22	9:20.343	0.16	0.81	7.8	71	631	7.0	35.0		286	
23	9:21	0.16	0.70	7.8	71	576	6.5	<50		193	
24	9:23.117	0.13	0.69	7.8	71	576	6.5	<50		184	
	4:26:01	0.13	0.69	7.8	71	576	6.5	<50		282	
	4:26:01	0.13	0.69	7.8	71	576	6.5	<50		194	
					72	334	72.334	10.7442	614.42		

MEASE ENGINEERING
ASSOCIATES

FIELD DATA

K Factor 10.25

C_p 0.84

C_m 0.987

Stack dimen. 18" x 6"

Stack press., in. H_2O 18.5

Gas composition, % O_2 2.0

INTEGRATED % CO_2 2.0

% N_2 95.9

Time, start 2:11 PM

Time, finish 3:25 PM

Initial dry gas meter reading 923.228

Initial dry gas meter reading 923.228

Ambient Temp., °F 50

Bar. press., in. hg. 30.0

Assumed moisture, % 3-5

Probe tip diameter, in. 5/16

Probe length 3' 6 1/2"

Probe heater setting 220

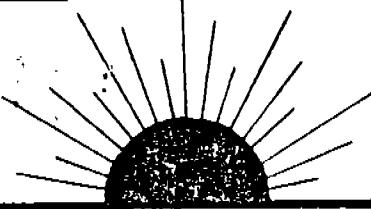
Box heater setting 220

Leak checks, pre: 0.008 CFM & 15" Hg

post: 0.009 CFM & 15" Hg

Wash bottle no. U.S.C. - 9

LEAK CHECK AT LINER INLET


Notes:

Point	Stack time	Dry gas meter	Pilot in. H_2O ΔP	Orifice in. H_2O ΔH	Dry gas temp. °F	Stack temp. °F	Pump vacuum in. Hg.	Impinger temp. °F	Box temp. °F	PIG-FIRE OF	PIG-FIRE OF	PIG-FIRE OF
1	3	929.016	0.25	1.27	69	68	602	9.5	<50	224	94	
2	3	926.891	0.24	1.21	73	71	622	9.5	<50	262	132	
3	3	928.614	0.23	1.19	76	71	601	9.5	<50	285	157	
4	3	930.330	0.20	1.06	78	71	576	9.0	<50	303	188	
5	3	932.022	0.21	1.08	79	71	602	9.0	<50	302	187	
6	3	933.681	0.21	1.07	79	71	619	9.0	<50	308	186	
7	3	935.140	0.15	0.77	76	71	610	8.0	<50	293	189	
8	3	936.488	0.13	0.65	80	71	630	7.5	<50	280	191	
9	3	937.801	0.12	0.61	80	72	615	7.0	<50	273	192	
10	3	939.079	0.12	0.62	79	71	602	7.0	<50	274	198	
11	3	940.501	0.13	0.69	79	71	577	7.5	<50	277	210	
12	3	941.943	0.14	0.75	79	72	569	7.5	<50	250	186	
13	3	943.624	0.22	1.10	74	71	633	9.0	<50	242	187	
14	3	945.315	0.22	1.12	79	72	614	9.0	<50	266	194	
15	3	947.967	0.21	1.07	81	73	621	9.0	<50	302	203	
16	3	948.560	0.18	0.95	81	73	583	9.0	<50	324	213	
17	3	950.143	0.18	0.92	81	73	612	9.0	<50	333	210	
18	3	951.743	0.18	0.94	81	73	598	9.0	<50	330	210	
19	3	953.440	0.22	1.13	51	73	64	9.0	<50	302	206	
20	3	955.134	0.21	1.11	81	74	576	9.5	<50	303	202	
21	3	956.706	0.17	0.91	81	74	566	9.0	<50	311	207	
22	3	958.096	0.14	0.72	81	74	610	8.5	<50	306	200	
23	3	959.363	0.11	0.57	80	74	602	8.0	<50	300	192	
24	3	960.783	0.14	0.74	79	74	576	8.0	<50	290	186	

4207 1276 935.47 15.41 16.12 6.012

SECTION 3.0

Test Procedures

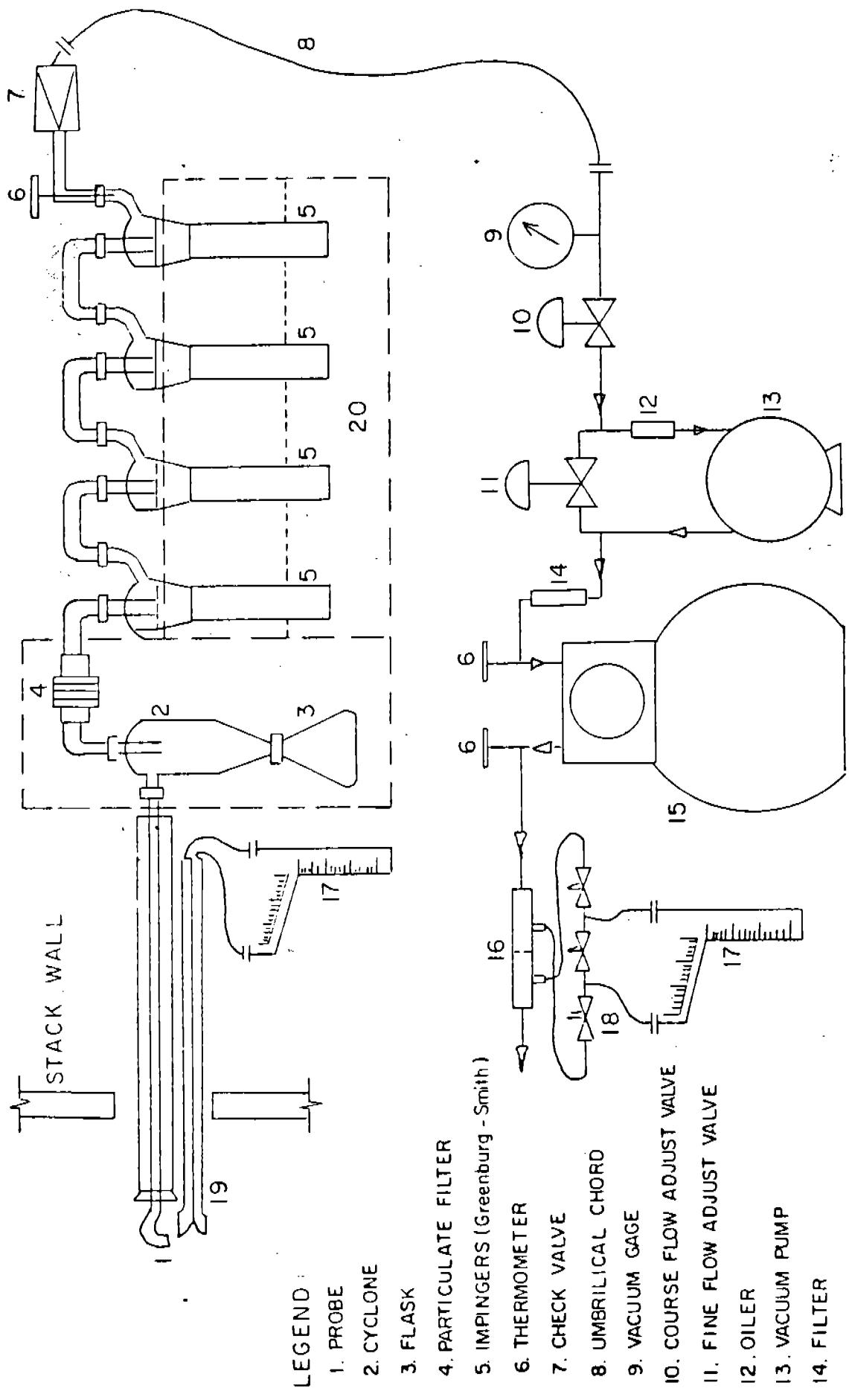
Mease Engineering Associates

Environmental Consultants

SAMPLING TRAIN COMPONENTS, METHOD OF USE, AND ANALYTICAL TECHNIQUES

A. Components

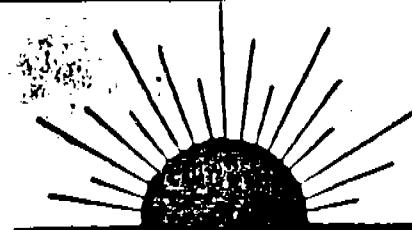
1. Stainless steel or glass probe with minimum 3/16 inch diameter opening, heated above the dew point of the gas stream to be sampled.
2. Glass cyclone efficient for removal of particles of 5 microns or greater, and cyclone collection flask. In cases of low particulate loadings, a glass cyclone eliminator may be substituted.
3. In-line filter of 0.3 micron porosity.
4. Heated chamber for maintaining glass fiber filter and cyclone above the dew point of the gas stream to be sampled.
5. Impingers placed in the following order:
 - a. A 500 ml. modified Greenburg-Smith impinger filled with 100 mls. of distilled deionized water.
 - b. A 500 ml. Greenburg-Smith impinger filled with 100 mls. of distilled deionized water.
 - c. A 500 ml. modified Greenburg-Smith impinger left dry to act as a water trap to remove entrained water.
 - d. A 500 ml. modified Greenburg-Smith impinger containing approximately 200 grams of precisely weighed silica gel.
6. An ice bath in which the impingers are partially submerged to maintain exit temperature well below the dew point of the gas to be sampled.
7. Dry gas meter equipped with a vacuum gage registering up to 30 inches of mercury, and a calibrated orifice.


B. General Sampling Procedure

1. Starting with clean equipment, a leak check is performed by drawing a vacuum of 15 inches on system as indicated on the vacuum gage. Leak checks are also performed post-test and corrections may be necessary to account for increases in the leakage rate.
2. The sample is collected at isokinetic rates based upon a velocity profile determined with the use of an "S" type pitot tube.
3. Samples are taken at multiple points across the gas stream representing equal areas of cross-sectional flow, and each point is sampled for as long a time as is feasible.
4. Moisture content of the gas stream is determined by the condensation method, using a series of cooled impingers described above (A-5).
5. The duration of the test depends on the number of sample points and the time required to equally sample each point. In no case will the sample time be less than that required to collect a sufficient sample for complete analysis.

C. Analytical Techniques

1. Before use, the filter is desiccated for a period of 24 hours and weighed to the nearest 0.1 mg.
2. When processing the sample, any material deposited inside the sample probe, glass cyclone (or cyclone eliminator) and the front half of the filter holder is washed into a container using acetone, or other suitable solvent, evaporated to dryness at either ambient conditions or below the boiling point of acetone (55°C), desiccated for a period of 25 hours, and weighed to the nearest 0.1 mg.
3. After sampling, the in-line glass fiber filter is desiccated for a period of 24 hours and weighed to the nearest 0.1 mg.
4. The moisture content is determined by collecting the liquid in the impingers described above and measuring. The difference between 200 ml. and the measurement is recorded as increase in water. The spent silica gel is weighed to the nearest 0.1 gram and the increase is included in the moisture content determination.
5. The liquid in the impingers may be analyzed for particulate matter and the weights may be included in the particulate catch.


6. The total particulate in the system is the sum of that collected in Nos. 2,3 and possibly 5. The contribution of each portion shall be individually identified. The inclusion of the impinger particulate catch is to be considered on an individual basis.
7. The emission rate and calculations are made from suitable measurements of gas temperature, moisture content, velocities and materials collected. In order for a test to be considered valid, isokinetic sampling rates shall be between 90% and 110%.
8. All equipment, including orifice meter, probe tip nozzles, dry gas meter, and temperature measuring devices is calibrated on a regular basis, dependent on the frequency of equipment use.
9. The stack gas content is determined by collecting a sample of stack gas and analyzing the contents with an Orsat analyzer or Fyrite analyzer.

MEASE ENGINEERING ASSOC.
GENERAL ARRANGEMENT
SOURCE SAMPLING TRAIN

SECTION 4.0

Calibrations

8.6

Mease Engineering Associates

Environmental Consultants

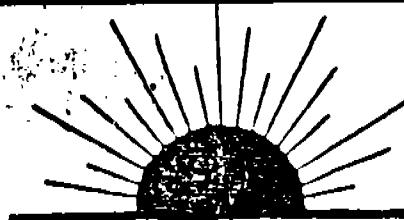
DRY GAS METER AND ORIFICE METER CALIBRATION

Model Number 2343

Calibration Date 1-12-87

Serial Number 1984

Signature Michael J. Mean


Meter Box No. "C"

Barometric Pressure, P_0 29.77

Wet Test Meter No. AC-20 14524

$$Y = \frac{V_w P_b (t_d + 460)}{V_d \left(P_b + \frac{\Delta H}{13.6} \right) (t_w + 460)}$$

$$\Delta H_b = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[\frac{(t_w + 460) \theta}{V_w} \right]$$

Mease Engineering Associates

Environmental Consultants

DRY GAS METER AND ORIFICE METER CALIBRATION

Model Number 2343

Calibration Date 1-13-87

Serial Number 1895

Signature Michael J. Mean

Meter Box No. "D" NEW

Barometric Pressure, P_0 29.77

Wet Test Meter No. AL-20 14524

$$Y = \frac{V_w P_b (t_d + 460)}{V_d \left(P_b + \frac{\Delta H}{13.6} \right) (t_w + 460)}$$

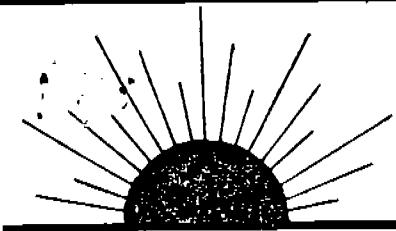
$$\Delta H_b = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[\frac{(t_w + 460) \theta}{V_w} \right]$$

Certificate

OF TRACEABILITY

This is to certify that the undersigned checked for
Ainsworth, Model TC

Mease Engineering
Balance Number 18185
on December 15, 1986


The following readings were obtained:

Sensitivity reciprocal unloaded	.8	Mg.	Readability	.1	Mg.
Sensitivity reciprocal at 100 Gm	.73	Mg.	Optical scale	NA	Gm.
Arm length error	4	PPM	Reading at half scale	NA	NA
Chain weight	NA	Mg.	Taring device error	NA	Mg.
Rider	10	Mg.	NA	Mg.	Mg.

Traceability is through National Bureau of Standards Test No. 732/221797 and/or New Jersey Test No. NJ 82419

Dated: December 30, 1986
MATAWAN, NEW JERSEY

John
OMEGA BALANCE SERVICE, INC.

Mease Engineering Associates

Environmental Consultants

PITOT TUBE CALIBRATION

All pitot tubes are geometrically aligned and within the limits as prescribed in the Federal Register. Therefore, they are assigned a value of 0.84. In the event that a pitot tube tip is altered during transport, and the geometric qualifications cannot be met, the pitot tube is calibrated according to the Federal Register. In this case, the new calibration factor is listed in the report and used in the calculations.

TEMPERATURE SENSING DEVICE CALIBRATIONS

All temperature sensing devices used during a test series, including thermocouples and thermometers are calibrated after each test series, as specified in the Federal Register. In the event that these calibration factors fall within the limits as specified, no corrections are necessary. In the event that a device is outside the limits, as specified, the correction factor is listed and used in the calculations.

SAMPLING NOZZLE CALIBRATION

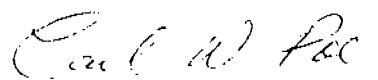
The sampling nozzle used during the test series is determined after each test series using a micrometer on several diameters as specified in the Federal Register.

CARL POE CO., INC.

99 REINERMAN ST. • HOUSTON, TEXAS 77007 • 713-861-3816

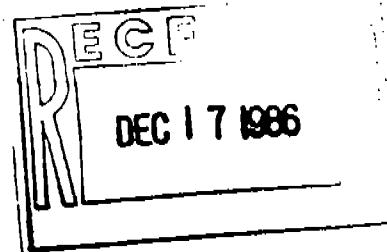
December 9, 1986

Princeton Testing Lab
P.O. Box 3108
Princeton, NJ 08543
Attn: Glenn


Dear Sir/Madam:

This is to certify that your Model AL-20 American Wet Test Meter, Serial No. 14524, has been calibrated with an American 5 Ft. Bell Prover, Serial No. 1045. It is traceable to the Bureau of Standards.

Reference No. 26727, PI-TAPE.


Sincerely,

CARL POE CO., INC.

Carl W. Poe

CWP:mv

SECTION 5.0

Calculations

SOURCE SAMPLING CALCULATIONS: NOMENCLATURE

An	= Nozzle Area, ft. ²
As	= Stack Area, ft. ²
Bwo	= Water Vapor Proportion, by volume, dimensionless
Cm	= Meter Correction Factor, dimensionless
Cp	= Pitot Coefficient, dimensionless
Cs	= Particulate Concentration, units specified
$\Delta H_{avg.}$	= Average Pressure Drop Across Orifice, in. H_2O
$\%H_2O$	= Water Vapor Content, dimensionless
Is	= Percent Isokinetic of Test, dimensionless
Kp	= 85.48, unit correction
Md	= Molecular Weight of Dry Gas
Mn	= Total Particulate Catch, grams
Ms	= Molecular Weight of Stack Gas
$(\sqrt{\Delta P})_{avg.}$	= Average of the Square Roots of the Velocity Head
Pbar	= Barometric Pressure, in. Hg.
pmr	= Pollutant Mass Rate, lb./hr.
θ	= Time, minutes
Pstd	= 29.92 in. Hg.
Qs	= Stack Gas Flowrate, actual cubic feet per minute
$(Qs)_{std}$	= Stack Gas Flowrate, standard cubic feet per minute
Ts	= Stack Gas Temperature, $^{\circ}R$
Tstd	= $530^{\circ}R$
Vfc	= Increase in Liquid Volume in Impingers, ml.
Vm	= Volume Sampled at Meter Conditions, ft. ³
Vmstd	= Volume of Air Metered at Standard Conditions
Vs	= Stack Gas Velocity, ft./sec.
Vsstd	= Stack Gas Velocity, standard conditions, ft./min.
Vwc	= Volume of Liquid Collected, cubic feet

SAMPLE CALCULATIONS: Run #1; Roaster/Cyclone/Afterburner

1. Volume of Water Collected

$$\begin{aligned} V_{WC} &= (0.04707)(V_{FC}) \\ &= (0.04707)(103.6) \\ &= 4.876 \end{aligned}$$

2. Volume of Air Metered

$$\begin{aligned} V_{MSTD} &= \frac{(V_m)(T_{std})(P_{bar} + \frac{\Delta H}{(T_m)})(C_m)}{(T_m)(P_{std})} \\ &= \frac{(37.371)(530)(30.01 + \frac{0.9590}{73.6})}{527.48} (0.987) \\ &= 37.260 \text{ SCF} \end{aligned}$$

3. Moisture Content

$$\begin{aligned} B_{WO} &= \frac{V_{WC}}{V_{WC} + V_{MSTD}} \\ &= \frac{4.876}{4.876 + 37.260} \\ &= 0.11573 \end{aligned}$$

4. Molecular Weights

$$\begin{aligned} M_d &= (%CO_2 \times 0.44) + (%O_2 \times 0.32) + ((%N_2 + %CO) \times 0.28) \\ &= (1.9 \times 0.44) + (19.2 \times 0.32) + (78.9 \times 0.28) \\ &= 29.072 \end{aligned}$$

$$\begin{aligned} M_s &= M_d(1-B_{WO}) + 18(B_{WO}) \\ &= (29.072)(1-0.11573) + 18(0.11573) \\ &= 27.791 \end{aligned}$$

5. Velocity of Exit Gases

$$\begin{aligned} V_s &= (K_p)(C_p) \sqrt{\frac{T_s}{(P_s)(M_s)}} \sqrt{(\frac{1}{P})_{avg.}} \\ &= (85.48)(0.84) \sqrt{\frac{1079.75}{(30.02)(27.791)}} (0.43425) \\ &= 35.482 \text{ FT./SEC.} \end{aligned}$$

SAMPLE CALCULATIONS: Continued

6. Flowrates

$$\begin{aligned} Q_s &= (V_s) (A_s) (60) \\ &= (35.482)(1.767)(60) \\ &= 3762.1 \text{ ACFM} \end{aligned}$$

$$\begin{aligned} Q_{sstd} &= \frac{(Q_s) (P_s) (T_{std}) (1-B_{wo})}{(P_{std}) (T_s)} \\ &= \frac{(3762.1)(30.00)(530)(1-0.11573)}{(29.92)(1079.75)} \\ &= 1637.5 \text{ SCFM} \end{aligned}$$

7. Particulate Concentration

$$\begin{aligned} C_s &= \frac{(M_n) (15.43)}{V_{mstd}} \\ &= \frac{(0.0261)(15.43)}{37.260} \\ &= 0.6108 \text{ GRAINS/SCF} \end{aligned}$$

8. Particulate Emission Rate

$$\begin{aligned} pmr &= \frac{(M_n) (Q_{sstd}) (60)}{(V_{mstd}) (454)} \\ &= \frac{(0.0261)(1637.5)(60)}{(37.260)(454)} \\ &= 0.1516 \text{ POUNDS/HOUR} \end{aligned}$$

9. Isokinetics

$$\begin{aligned} I_s &= \frac{V_{mstd}}{(A_n) (\theta) (V_{sstd})} \quad \text{where } V_{sstd} = \frac{Q_{sstd}}{A_s} = \frac{1637.5}{1.767} = 926.6 \\ &= \frac{37.260}{(0.000534)(72)(926.6)} \\ &= 1.0452 \end{aligned}$$