

#6

AirRecon

Division of
RECON SYSTEMS, Inc.

Route 202 North, P.O. Box 460
Three Bridges, NJ 08887-0460
(201) 782-5900

Connecticut (203) 293-1212
Massachusetts (508) 752-4217
Pennsylvania (215) 433-5511
FAX (201) 782-0072

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AP-42 Section 7.13.2
Reference 10
Report Sect. _____
Reference _____

**COMPLIANCE
STACK SAMPLING REPORT**

For

**General Foods Corporation
Maxwell House Division
1125 Hudson Street
Hoboken, New Jersey 07030**

Source Tested:

Afterburner Inlet and Outlet

**In Fulfillment of
Purchase Order No. 3362-88-MHD**

RECON Project No. 0641

Test Date: January 31 and February 1, 1989

Report Date: March 13, 1989

0641 (ST-K)

STACK SAMPLING REPORT FOR
General Foods Corporation
Maxwell House Division
Hoboken, New Jersey
on Afterburner Inlet and Outlet

INTRODUCTION

The above referenced locations were sampled for particulates. The outlet stack was also sampled for carbon monoxide and total hydrocarbon emissions on January 31 and February 1, 1989. This report contains the following information.

	<u>PAGE</u>
SUMMARY	2
PERSONNEL AND CERTIFICATIONS	3
SAMPLING LOCATIONS	4
VELOCITIES/FLOW RATES	6
CYCLONIC FLOW CHECK	8
GAS COMPOSITION	10
PARTICULATE EMISSIONS	12
HYDROCARBON AND CARBON MONOXIDE EMISSIONS	14
PROCESS INFORMATION	15
ALLOWABLE EMISSIONS	20
PROTOCOL/PROCEDURES	21
CALIBRATION DATA	34
ORIGINAL DATA AND CALCULATION SHEETS	48

SUMMARY

The following results were obtained:

	<u>INLET</u>		
Run No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1145	0802-0921	1047-1247
<u>Emissions Data</u>			
<u>Particulates</u>			
pounds/hour	0.49	0.66	0.44
grains/dscf	0.035	0.046	0.032
grains/scf	0.032	0.042	0.030
	<u>OUTLET</u>		
Run No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1151	0750-0920	1045-1245
<u>Emissions Data</u>			
<u>Particulates</u>			
pounds/hour	0.19	0.28	0.12
grains/dscf	0.011	0.016	0.007
grains/scf	0.010	0.015	0.007
<u>Total Hydrocarbons</u>			
<u>(as methane)</u>			
pounds/hour	0.10	0.18	0.15
ppmv (wet)	18	33	28
ppmv (dry)	20	36	31
<u>Carbon Monoxide</u>			
pounds/hour	1.14	3.70	1.40
ppmv (wet)	121	384	150
ppmv (dry)	131	416	166
<u>Carbon Monoxide Emissions</u>			
<u>Corrected to 10% Oxygen</u>			
ppmv (dry)	236	741	334
		737	
<u>Afterburner Efficiency</u>			
Particulates, %	61.2	57.6	72.7

Samples from this project will be retained for sixty days from the date of this report unless otherwise directed.

PERSONNEL AND CERTIFICATIONS

Field sampling on this project was performed by:

P. F. Marshall

S. J. Culmo

C. D. Ruff

T. F. Mattei

T. P. Brown

Laboratory work on this project was performed by:

R. N. Schaffer

A. W. McNeal

Calculations and report preparation were by:

P. F. Marshall

The testing was observed by:

Rob Tenbrevilla
Stafford Stewart
Michael Ciosek

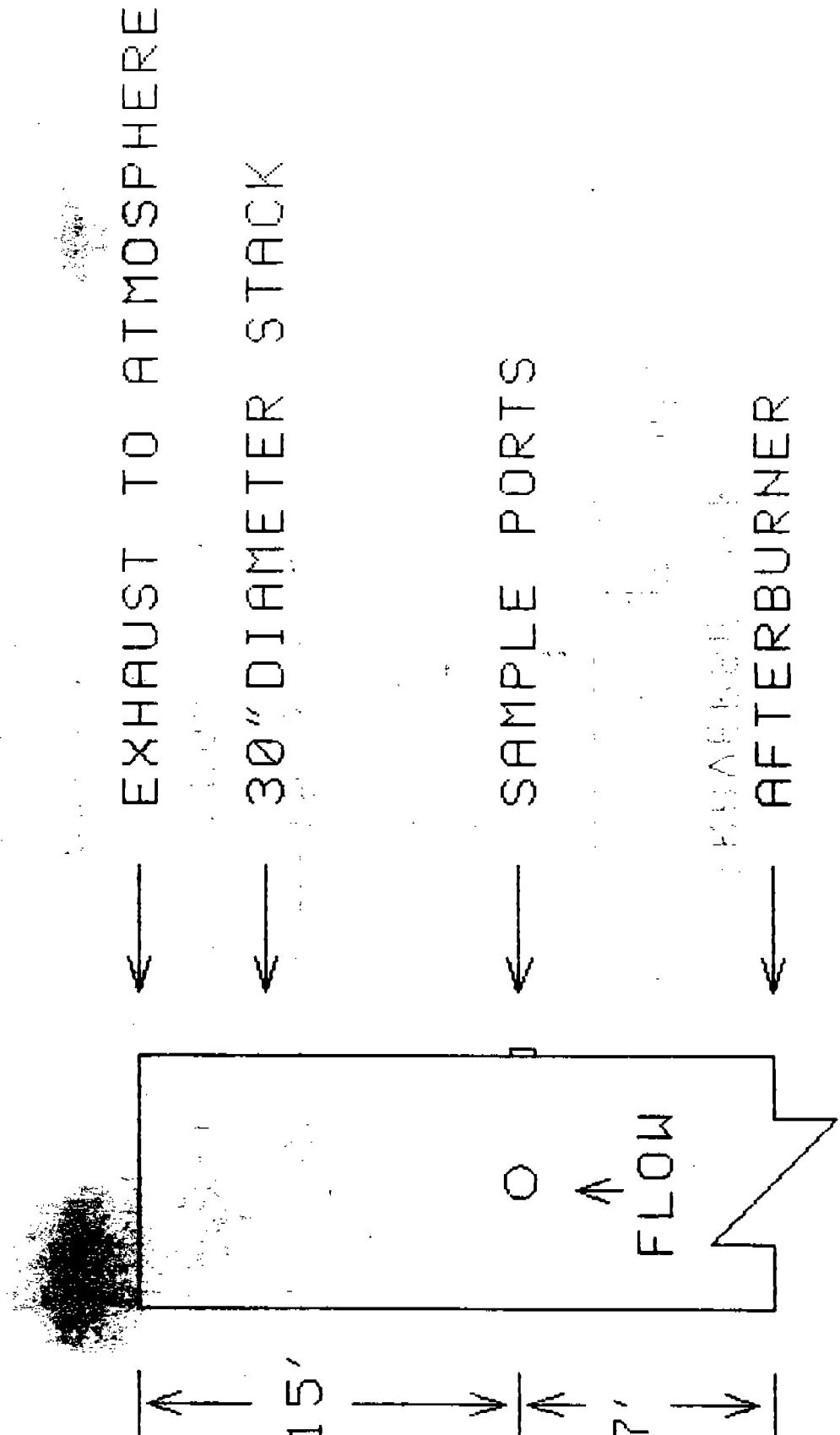
61- NJDEP
110- NJDEP
110- NJDEP
010- NJDEP

This Report is submitted by:

Peter F. Marshall
Peter F. Marshall
Manager, Senior Environmental Specialist

Frank W. Swetits
Frank W. Swetits
Vice President

Professional Engineer Certification

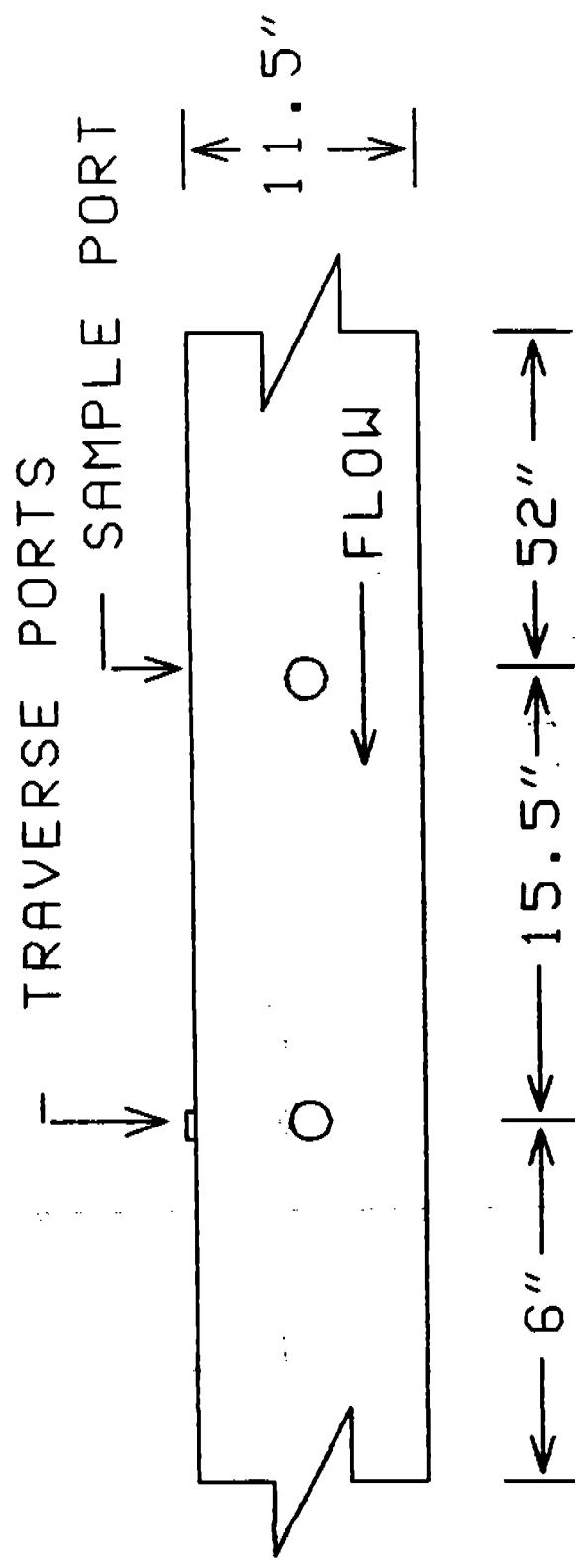

I am in responsible charge of RECON's stack test work, and have discussed and reviewed the procedures and results of this set of tests with the relevant field and laboratory personnel.

Norman J. Weinstein, P.E.
New Jersey License 19536

PPM/cp(ST-K)

JK

GENERAL FOODS CORPORATION
MAXWELL HOUSE DIVISION
AFTERBURNER OUTLET



EPA DISTANCE "A": 6.00

EPA DISTANCE "B": 2.80

SAMPLE POINTS: 24

GENERAL FOODS CORP.
MAXWELL HOUSE DIVISION
INCINERATOR OUTLET

|← 6" →|← 15.5" →|← 52" →|

UPSTREAM DISTURBANCE: AFTERBURNER

DOWNSTREAM DISTURBANCE: ~~EXHAUST~~ CLONE

EPA DISTANCE "A": 0.52

EPA DISTANCE "B": 4.52

STACK DIAMETER: 11.5"

TRAVERSE POINTS: 24

SAMPLE POINTS: 1

VELOCITY AND FLOW RATE DATA - Inlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1145	0802-0921	1047-1247
Stack Diameter (in)	11.5 -----		
Stack Cross Section (sq ft)	0.72 -----		
Barometric Pressure ("Hg)	29.91	29.78	29.80
Average Stack Temperature (°F)	163	194	201
Stack Pressure ("H ₂ O-gage)	-4.40	-4.30	-4.20
Moisture (% vol)	9.8	9.0	9.0
Average Velocity (ft/sec)	49.4	53.2	52.4
Actual Flow Rate (acfm)	2,140	2,300	2,270
Standard Flow Rate (scfm)	1,800	1,840	1,790
Dry Standard Flow Rate (dscfm)	1,620	1,670	1,630

Standard Conditions are 70°F, 29.92 "Hg.

VELOCITY AND FLOW RATE DATA - Outlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1151	0750-0920	1045-1245
Stack Diameter (in)	30.0	-----	-----
Stack Cross Section (sq ft)	4.91	-----	-----
Barometric Pressure ("Hg)	29.91	29.78	29.80
Average Stack Temperature (°F)	1506	1513	1526
Stack Pressure ("H ₂ O-gage)	-0.02	-0.02	-0.02
Moisture (% vol)	7.9	7.6	9.3
Average Velocity (ft/sec)	27.5	28.0	27.2
Actual Flow Rate (acfm)	8,110	8,240	8,020
Standard Flow Rate (scfm)	2,180	2,200	2,130
Dry Standard Flow Rate (dscfm)	2,010	2,030	1,930

Standard Conditions are 70°F, 29.92 "Hg.

CYCLONIC FLOW - Inlet

Angle, Degrees

<u>Point</u>	<u>Port A</u>	<u>Port B*</u>
1	0	-
2	2	-
3	4	-
4	4	-
5	2	-
6	2	-
7	4	-
8	4	-
9	5	-
10	7	-
11	5	-
12	<u>2</u>	-

Avg. 3.4

NOTE: since the average value of the cyclonic flow check is less than 20 degrees, the location is an appropriate location to determine flow rate (U.S. EPA Method 1).

*Cyclonic flow could not be determined from this port because of the horizontal stack.

CYCLONIC FLOW - Outlet

Angle, Degrees

<u>Point</u>	<u>Port A</u>	<u>Port B</u>
1	5	8
2	3	7
3	2	7
4	2	4
5	2	4
6	3	3
7	3	4
8	7	6
9	7	5
10	6	6
11	4	7
12	<u>6</u>	<u>7</u>
Avg.	4.2	6.2

NOTE: Since the average value of the cyclonic flow check is less than 20 degrees, the location is an appropriate location to determine flow rate (U.S. EPA Method 1).

CYCLONIC FLOW - Outlet

Angle, Degrees

<u>Point</u>	<u>Port A</u>	<u>Port B</u>
1	5	8
2	3	7
3	2	7
4	2	4
5	2	4
6	3	3
7	3	4
8	7	6
9	7	5
10	6	6
11	4	7
12	<u>6</u>	<u>7</u>
Avg.	4.2	6.2

NOTE: Since the average value of the cyclonic flow check is less than 20 degrees, the location is an appropriate location to determine flow rate (U.S. EPA Method 1).

STACK GAS COMPOSITION - Inlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1151	0750-0920	1045-1245

% By Volume
(Dry Basis)

ONSITE FYRITE

CO ₂	0.5	0.0	0.0
O ₂	20.5	20.0	20.5
N ₂ (By Difference)	79.0	80.0	79.5

LAB ORSAT

CO ₂	0.0	0.0	0.0
O ₂	21.0	21.0	21.0
N ₂ (By Difference)	79.0	79.0	79.0

STACK GAS COMPOSITION - Outlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1145	0802-0921	1047-1247

By Volume
(Dry Basis)

ONSITE FYRITE

CO ₂	4.0	6.0	5.0
O ₂	14.0	15.0	15.0
N ₂ (By Difference)	82.0	79.0	80.0

LAB ORSAT

CO ₂	5.4	5.8	6.0
O ₂	13.2	13.1	14.0
N ₂ (By Difference)	81.4	81.1	80.0

PARTICULATE EMISSIONS - Inlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1145	0802-0921	1047-1247

Sampling Data

Nominal Nozzle Size (in)	1/2 -----
No. of Sampling Points	1 -----
Sampling Time (min)	60 -----
Sample Volume (dscf)	43.7 47.6 44.3
% Isokinetic	89 94 91

Emissions Data

<u>Particulates</u>			
Grains/dscf	0.0355	0.0463	0.0318
Grains/scf	0.0319	0.0421	0.0300
Pounds/hour	0.49	0.66	0.44

PARTICULATE EMISSIONS - Outlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1151	0750-0920	1045-1245

Sampling Data

Nominal Nozzle Size (in)	1/2 -----		
No. of Sampling Points	24 -----		
Sampling Time (min)	72	60	60
Sample Volume (dscf)	38.4	33.7	32.1
% Isokinetic	95	99	100

Emissions Data

<u>Particulates</u>			
Grains/dscf	0.0113	0.0161	0.0073
Grains/scf	0.0104	0.0148	0.0066
Pounds/hour	0.19	0.28	0.12

HYDROCARBON AND CARBON MONOXIDE EMISSIONS - Outlet

Sample No.	1	2	3
Date	1/31/89	2/1/89	2/1/89
Time	1000-1151	0750-0920	1045-1245

Sampling Data

No. of Sampling Points	1 -----
Sampling Time (min)	60 -----
Sample Volume (dscf)	2.12 -----

Emissions Data

Total Hydrocarbons
(as methane)

pounds/hour	0.10	0.18	0.15
ppmv (wet)	18.5	36	31
ppmv (dry)	20.1	33	28

Carbon Monoxide

pounds/hour	1.14	3.70	1.40
ppmv (wet)	131	416	166
ppmv (dry)	121	384	150

PROCESS INFORMATION

The following process information was supplied to RECON by General Foods/Maxwell House Division personnel.

EMISSION TEST PRODUCTION
REPORT FORM

I. Company Name MAXWELL HOUSE APC Plant ID#
Plant Location HOBOKEN
Certificate Number
Designation of Equipment PILOT PLANT AFTERBURNER

III. Emission Test Date(s) 31 JAN 89

Tests Conducted By:

Name of Firm RECON SYSTEMS

Business Address RT 202 N, PO Box 460, Three Bridges, NJ 08887

Phone Number (201) 782-5960

Test Team Representatives Peter Marshall

Dave Ruff

Tom Brown

Tom Matter

...and the *lateral* (lateral) and *anterior* (anterior) (Fig. 1).

Length of Test 60 mins

	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>
Test Time (Start/Finish)	/	/	/

III. Certificate Operating Conditions

A. List Conditions

Achieved (Yes or No)

yes

~~1500 °E~~

1900 F

—
—
—

**B. Log Certificate Conditions During Stack Test
(Record at least every 15 minutes)**

Condition Run # Readout Time of Recording

IV. Equipment Operation/Process Parameters

Number of Sources Connected 8
Number of Sources Operating 2

Production Rate: Normal $200 + 150 = 350 \text{ lbs/hr}$
Maximum ~~350 lbs/hr~~

A. Raw Materials: Green whole beans

	Test Run #1	Test Run #2	Test Run #3
Usage Rate (lbs/hr)	<u>350 lbs/hr</u>	<u>350 lbs/hr</u>	<u>350 lbs/hr</u>
	<u>200 lbs/hr</u>	<u>100 lbs/hr</u>	<u>100 lbs/hr</u>
Breakdown (% by weight)			

B. Surface Coating:

Material Being Coated N/A

Type of Coating _____

Coating Rate (Gals/Hr) _____

Is Coating Altered (Yes or No) _____

With _____

Distance From Coating Head to Exhaust Duct N/A

C. Fuel Burning - Incineration:

Type of Fuel Natural Gas

Fuel Burning Rate _____ (lbs/hr), (gals/hr), (ft³/hr)

Fuel Additives None, % _____

Meter Reading
(if available)

Time

_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Emission Report Form
page 3 of 4

Type of Waste Constituents _____
Auxiliary Fuel None
Burning Rate N/A

D. Other:

Description of Operation and Process Rate

Exhausts from two small pilot plant roasters are discharged into a thermal incinerator for destruction.

V. Control Equipment Parameters

CEMs Required (Yes/No) 1500 °F. Conditions were met.
Contaminant?

STACK TEST CEM READING

A. General Equipment performance Parameter

B. Additional Observations

Fugitive Emissions (Yes/No) _____
Equipment Location _____

Visible Emissions From Stack (Yes/No) _____

Odors Noticeable

Vicinity of Equipment (Yes/No) _____
Near Exhaust Stack (Yes/No) _____
Off Property (Yes/No) _____

VI. Samples

Type of Sample _____

Time of Sampling _____

Sampled By _____

Sample Taken From _____

To Be Analyzed For _____

Analyzed By _____

Form Information Supplied by: Name/Title (Please Print)

BRUNO S. PARDONANI, PROJECT ENGINEER

Signature(s)/Date

Bruno S. Padovani

DEP Usage Only		
Rec'd By	Sample Rec'd	Rev'd By
	Date/Time	

ALLOWABLE EMISSIONS

The following allowable emissions are based on our understanding of the applicable regulatory rules and regulations. Since we are not always privy to the situation, these should not be accepted without confirmation from relevant sources.

<u>Particulate</u>	<u>Reference</u>	<u>Allowable</u>
Federal Regulations	_____	_____
State Regulations	_____	_____
State Permit	X	<u>0.15 pounds/hr</u> <u>99% Unit Efficiency</u>
<u>Sulfur Dioxide</u>	_____	_____
Federal Regulations	_____	_____
State Regulations	_____	_____
State Permit	_____	_____
<u>Sulfur Trioxide and</u> <u>Sulfuric Acid</u>	_____	_____
Federal Regulations	_____	_____
State Regulations	_____	_____
State Permit	_____	_____
<u>Nitrogen Oxides</u>	_____	_____
Federal Regulations	_____	_____
State Regulations	_____	_____
State Permit	_____	_____
<u>Hydrocarbon (VOS, VOC)</u>	_____	_____
Federal Regulations	_____	_____
State Regulations	_____	_____
State Permit	_____	_____
Other:	_____	_____
Federal Regulations	_____	_____
State Regulations	_____	_____
State Permit	_____	_____

— We do not have sufficient information to determine allowable emissions.

PROTOCOL/PROCEDURES

Following is a copy of the original approved protocol.

0 025

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
CN 027, TRENTON, N.J. 08625

JORGE M. BERKOWITZ, PH.D.
DIRECTOR

(609) 292-5383

July 14, 1984

Dear Mr. Saxe:

Mr. Bruno S. Padovani
Project Engineer
General Foods Manufacturing Corporation
Maxwell House Division
1125 Hudson Street
Hoboken, New Jersey 07030

Enclosed is a copy of DEP's response to RECON's stack sampling protocol for your project # 0641. Please submit to me a revision to your protocol reflecting all DEP required changes. Your cooperation in this matter is greatly appreciated. Please provide a copy of this letter to Peter Marshall.

RE: Afterburner Stack
APC ID No. 10082
NJ Stack No. 068

Sincerely yours,
Bruno S. Padovani

Dear Mr. Padovani:

We have received the sampling and analytical protocol your company has submitted for the above referenced source. Emission tests are required to be conducted as a condition of approval of Permit No. P-82002.


Our review of the proposed procedures indicates several items which must be amended into the protocol prior to our approval. These items are as follows:

- 1) Emission tests for total hydrocarbons, as methane, must be conducted on the incinerator outlet. Sampling and analytical procedures to determine the total hydrocarbon emissions, must be submitted to our office for review and approval.
- 2) Carbon monoxide emission tests must follow the procedures outlined in EPA Reference Method 10.
- 3) Determination of oxygen concentrations must follow those outlined in EPA Reference Method Three.
- 4) Data on the determination of the absence of cyclonic flow must be presented to the on-site observer from this office prior to conducting the compliance tests.

You are required to respond to each item, in writing to our office. Until we have received and reviewed your comments, we can accept the submitted protocol.

If you have any questions please feel free to call me at (609) 530-4041.

Sincerely

Edward M. Choromanski
Chief
Bureau Technical Services

c Byron Sullivan (M.R.O.)

RECON SYSTEMS, INC.

0 0.3

Route 202 North, P.O. Box 460
Three Bridges, N.J. 08887
201-782-5900

New England 617-752-4217 Pennsylvania 215-433-5511

August 1, 1988

Mr. Edward M. Choromanski
NEW JERSEY DEPARTMENT OF
ENVIRONMENTAL PROTECTION
Technical Services Section
380 Scotch Road
W. Trenton, NJ 08628

Re: General Foods Corporation
Afterburner Stack
APC ID No. 10082
NJ Stack No. 068

RECON Project No. 0641

Dear Mr. Choromanski:

We have received your letter dated July 14, 1988 regarding protocol amendments for compliance testing at the above mentioned facility.

Response to these items are as follows:

1. The afterburner outlet will be tested in triplicate for total hydrocarbons as methane.
Proposed number of sampling points 1
Proposed time per sampling point 60
Proposed total stack gas sample size 2.12 dry standard ft³

Please see diagram of sampling train

Condensable material recovered in the impinger catches will be determined by a gas chromatograph equipped with a flame ionization detector for determination of total hydrocarbons.

Gas bag samples will be directly injected into the GC/FID via a calibrated sample loop. Total hydrocarbon concentrations will be determined as above. Concentrations of both phases will be totaled and used to calculate emissions. Copies of chromatograms will be included in our final report showing identified responses plus any other unidentified peaks.

ENGINEERING, CONSULTING, LABORATORY,
PILOT PLANT, PLANT TEST SERVICES

POLLUTION CONTROL, WASTE DISPOSAL
RESOURCE RECOVERY, CHEMICAL PROCESS SYSTEMS

0 04

Mr. Edward M. Choromanski

-2-

August 1, 1988

2. We agree.
3. We agree.
4. We agree.

We anticipate a test date during the week of August 22, 1988. Please advise us of a test date that is convenient with your office.

Feel free to call if you have any questions or comments.

Very truly yours,

Richard F. Toro
Richard F. Toro
Executive Vice President
Peter Marshall
Per Peter F. Marshall
Senior Environmental Specialist

PPM/cp

cc: Bruno Padovani
General Foods Corporation
Maxwell House Division
1125 Hudson Street
Hoboken, NJ 07030

83022

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
CN 027, TRENTON, N.J. 08825

JORGE H. BERKOWITZ, PH.D.
DIRECTOR

August 9, 1988

(609) 292-6383

Mr. Richard F. Toro
Executive Vice President
Recon Systems, Inc.
P.O. Box 460
Three Bridges, New Jersey 08887

RE: General Foods Corporation
APC Plant ID No. 10082
NJ Stack No. 067 and 068

Dear Mr. Toro:

We have received your letter dated August 4, 1988 regarding the amendment to the emission test protocol for the above referenced facility. Our review of this additional information incorporating the previous submittal dated July 11, 1988 indicates the sampling and analytical procedures are acceptable.

In addition to the sampling and analytical protocol your company or a representative of General Foods, is required to complete the emission test production form which I have enclosed. The completed form must be sent to the Regional Office where the facility is located. A copy of the form must be included into the final test report.

You are required to contact this office to arrange a mutually acceptable test date, so that representatives of the Department may witness the tests.

If you have any questions, please feel free to call me at (609) -530-4041.

Sincerely,

Edward M. Choromanski
Chief
Bureau of Technical Services

c Byron Sullivan

RECON SYSTEMS, INC.

0 027

Route 202 North, P.O. Box 460
Three Bridges, N.J. 08887
201-782-5900

New England 617-752-4217 Pennsylvania 215-433-5511

STACK TEST PROTOCOL SUBMITTAL

NEW JERSEY DEPARTMENT OF
ENVIRONMENTAL PROTECTION
Technical Services Section
380 Scotch Road
W. Trenton, NJ 08628

Attn: Edward Choromanski

RE: General Foods/ Maxwell
House Division
1125 Hudson Street
Hoboken, NJ 07030

Contact: [REDACTED] LaSalle
Phone No. [REDACTED] 20-3731

RECON Project No. 0641

This protocol is submitted for stack testing planned by RECON SYSTEMS, INC. for the above referenced client.

Source to be tested: Afterburner Inlet and Outlet
ID No.: 068

Certificate Numbers: 082002

Approximate Date of Testing: August 1988

For Isokinetic Testing:

Inlet

Stack diameter:	12"
Nearest upstream disturbances:	6"
Nearest downstream disturbances:	5'
EPA Distance "A": 0.5 - EPA Distance "B":	5.0
Proposed number of sampling points:	24
Proposed time per sampling point:	3 minutes
Proposed total stack gas sample size:	-35.00 dry standard ft ³

Outlet

Stack diameter:	36"
Nearest upstream disturbances:	15'
Nearest downstream disturbances:	7'
EPA Distance "A": 5.00 - EPA Distance "B":	2.33
Proposed number of sampling points:	24
Proposed time per sampling point:	3 minutes
Proposed total stack gas sample size:	-35.00 dry standard ft ³

ENGINEERING, CONSULTING, LABORATORY,
PILOT PLANT, PLANT TEST SERVICES

POLLUTION CONTROL, WASTE DISPOSAL
RESOURCE RECOVERY, CHEMICAL PROCESS SYSTEMS

Sampling Program

Three (3) one-hour compliance tests will be conducted for particulates using New Jersey Air Test method 1. Temperatures of the stack, probe, filter inlet, filter box and filter outlet will be recorded. Flow rates, O₂, CO₂, N₂ (by difference) will also be recorded. Impinger Numbers 1 and 2 will have 100 mls each H₂O. Impinger Number 3 empty, Impinger Number 4 will contain 200 gms of silica gel. Non-cyclonic flow will be field verified. Calibration data will be made available to the onsite observer.

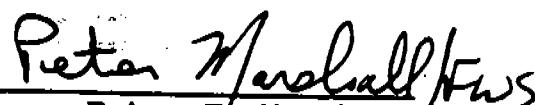
Carbon monoxide and oxygen concentrations will be determined by extracting a gas sample from the stack at one liter per minute for sixty minutes in triplicate. Samples will be analyzed within a 48-hour period.

Source Operation Record Keeping

Responsibility of A Owner Frank W. Marcelli

- Production rate
- Fuel usage
- A Incineration feed rate
- Steam production
- A Operating parameters (temperatures, pressures, flows, etc.)
- Other

The following are attached if available:


1. Test procedures proposed
2. Stack diagram
3. Permits or applications
4. Process description

This protocol submitted by:

Frank W. Marcelli

Manager, Field Testing

FWS/PFM:cac
(PRO-3)

Peter F. Marshall
Senior Environmental Specialist

STACK TESTING PROCEDURES CHECKLIST

0 029

Particulate

Emissions: US EPA 5
 US EPA 17
 N.J. Method 1
 N.J. Method 5 (draft)
 Plus impinger catch
 Plus aqueous and organic impinger catch
 Other
Probe Material Glass

Velocity:

Standard pitot tube and manometer
 "S" pitot tube and manometer
Other:

Cyclonic Flow Check Yes No

Temperature:

Thermocouple
 Temperature gage
 Process indicator

Gas

Composition:

Onsite fyrite
 Grab sample and lab orsat
 Integrated sample and lab orsat
 Integrated and traversed sample and lab orsat
 Oxygen by Infrared Industries 2200 Electrochemical Analyzer

Particle
Sizing:

Instack cascade impactor
 Nested out of stack cascade impactor
 Plus impinger catch
 Plus aqueous and organic impinger catch

Sulfur Oxide

Emissions:

US EPA 6
 US EPA 8
 Sulfite Corrections Made
 Controlled condensation for SO₃
 US EPA 6 or 8 combined with
 US EPA 5 or 17 or particle sizing

Nitrogen Oxide

Emissions:

US EPA 7 A, B, C, D, E
 Chemiluminescent monitor
 US EPA 20 (Chemiluminescent Monitor)

Hydrogen Chloride (HCl)

Emissions:

API 767-54
 Cl⁻ analysis of particulate test wet catch
 Other

Hydrocarbon

Emissions:

N.J. Method 3
 RECOM Method 2
 Integrated gas bag direct and lab GC
 Grab sample gas bag direct and lab GC
 Onsite GC direct detector
 Onsite Continuous Monitor (FID)

Metal Emissions

AA determination on filter and probe wash
 AA determination on impinger catch

Carbon Monoxide

Emissions:

Thermal Conductivity analysis of "Gas Composition" sample(s)
 Onsite Continuous Monitor

Opacity:

N.J. Method 2
 U.S. EPA Method 9

Calibrations: Dry gas meters and orifice, pitot tubes, thermocouples and nozzle calibrations will be supplied with the test report unless test is unofficial.

Comments:

0 000

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
CN 027, TRENTON, N.J. 08625

JORGE H. BERKOWITZ, Ph.D.
DIRECTOR

February 23, 1988

, (609) 292-5383

Mr. Walter Johnston
Maxwell House Div.,
General Foods Corp.
1125 Hudson Street
Hoboken, NJ 07030

Dear Mr. Johnston:

This letter is to advise you that a Permit to Construct, Install or Alter Control Apparatus or Equipment and Certificate to Operate Control Apparatus or Equipment has been approved by the Bureau of New Source Review as follows:

Company Name: General Foods Corp.

Plant Location: Maxwell House Div., Hoboken, NJ

Company Designation of Stack: Afterburner Stack 068

Approval Date: 1-28-86

Log Number: 86-2168 ID 10082

Certificate Status: 90 Day Conditional - see attached

You will be sent form VEM-017 at a later date. Form VEM-017 will include your New Jersey Plant ID Number, New Jersey Stack Number, and Permit/Certificate Number.

If you have any questions regarding this approval, please contact this bureau (609-292-6716) and refer to the Log Number above.

Sincerely,

Richard Craig
Richard Craig, Chief
Bureau of New Source Review

RC:lsk
cc: P. Zigrand
MRO
File

Afterburner conditions I.A.C. 186-1168

The permit and certificate will be conditioned with the following stipulations:

1. The afterburner shall have a minimum design destruction efficiency of 99 percent for particulate emissions. The particulate emissions may not exceed 0.15 lb./hr.
2. The hot channel shall be designed to operate at a minimum temperature of 1700° F. and with a minimum residence of 0.5 seconds.
3. A continuous temperature monitor and recorder shall be installed and calibrated in the afterburner. The thermocouple shall be inserted into the exit from the combustion chamber.
4. Carbon monoxide monitors and oxygen monitors and recorders shall be installed and operated in the afterburner stack. The Department reserves its right to withdraw or adjust the installation if a continuous total hydrocarbon monitor and recorder is necessary. The company may propose to the Department the approval of surrogate method for determining oxygen levels in the afterburner exhaust gases for the purposes of establishing steady state combustion conditions. Such methods may include periodic testing by Orsat analysis or with a portable instrumentation.
5. Details on the continuous monitors, recording devices, sample collection, calibration, required operating procedures, and monitor performance specification test shall be submitted for approval to the Chief - Bureau of Technical Services, Environmental Technology Element, 380 Scotch Road, Trenton, NJ 08619.
6. The equipment in this permit shall not be used in a manner which will cause this being detectable by sense of smell in any area, except for those areas over which the owner or operator has exclusive use or occupancy.
7. The company is required to:
 - a. Conduct stack tests for the afterburner within 90 days of start-up in accordance with I.A.C. 7:27-8.4(c), for the following substances: particulates, carbon monoxide and oxygen.
 - b. Thirty days prior to the conduct of the required tests, submit for approval a detailed description of the sampling port locations, sampling equipment, and sampling and analytical procedures for such tests to the Chief - Bureau of Technical Services.
 - c. Notify the Bureau of Technical Services at 609-530-4084 and the Metropolitan Regional Field Office at 201-669-3935 at least 72 hours prior to the annual testing, in order that representatives of these offices may be available to observe the conduct of the tests.
 - d. After receipt of the copy of the stack test results, the Department shall establish maximum hourly concentrations of carbon monoxide corrected to seven percent oxygen which relates to the maximum allowable emission rates.

DIVISION OF ENVIRONMENTAL QUALITY
AIR POLLUTION CONTROL PROGRAM

All Correspondence must indicate your APC PLANT ID NUMBER

Certificate Number 082002 LOG NUMBER 862165A APC PLANT ID 10082

(Mailing Address)

MAXWELL HOUSE COFFEE DIV GENERAL FOODS
1125 HUDSON STREET
HOBOKEN NJ 07030

(Plant Location)

MAXWELL HOUSE HOBOKEN
1125 HUDSON STREET
HOBOKENApplicant's Designation of Equipment AFTERBURNER STACK-*Bldg 61D*

N.J. Stack No. 068

No. of Stacks 003

No. APC 02

Approval 02/29/88

Effective 02/29/88

Expiry 05/27/88

PERMIT TO CONSTRUCT, INSTALL OR ALTER CONTROL APPARATUS OR EQUIPMENT
AND
TEMPORARY CERTIFICATE TO OPERATE CONTROL APPARATUS OR EQUIPMENT

* CONDITIONAL *

THIS PERMIT AND TEMPORARY CERTIFICATE IS BEING ISSUED UNDER THE AUTHORITY OF CHAPTER 106, P.L. 1967 (N.J.S.A.26:2C-9.2). THE TEMPORARY CERTIFICATE WILL ALLOW FOR INSPECTION AND EVALUATION TO ASSURE CONFORMANCE WITH ALL PROVISIONS OF THE NEW JERSEY ADMINISTRATIVE CODE, TITLE 7, CHAPTER 27. BASED ON THIS EVALUATION, STACK TESTS MAY BE REQUIRED IN ACCORDANCE WITH N.J.A.C. 7:27-8.4(C).

IF THE DEPARTMENT IS SOLELY RESPONSIBLE FOR BEING UNABLE TO INSPECT THIS EQUIPMENT IN OPERATION AS PERMITTED DURING THIS 90-DAY PERIOD, THIS TEMPORARY CERTIFICATE WILL BE EXTENDED AUTOMATICALLY. HOWEVER, IF YOU ARE RESPONSIBLE FOR THE DEPARTMENT'S BEING UNABLE TO INSPECT, E.G., NOT NOTIFYING THE DEPARTMENT WHEN THIS EQUIPMENT OR PROCESS IS IN OPERATION, THIS CERTIFICATE MAY NOT BE EXTENDED AND YOU WILL BE NOTIFIED BY THE DEPARTMENT THAT YOU MUST APPLY FOR AND OBTAIN AN EXTENSION AUTHORIZING YOU TO CONTINUE TO OPERATE THE EQUIPMENT. THE DEPARTMENT RESERVES THE RIGHT TO WITHHOLD ANY EXTENSION OF THIS TEMPORARY CERTIFICATE, IN WHICH EVENT YOU WILL BE NOTIFIED THAT YOU MUST APPLY FOR AND OBTAIN AN EXTENSION AUTHORIZING YOU TO CONTINUE TO OPERATE AFTER THE EXPIRATION DATE OF THIS CERTIFICATE.

IN ACCORDANCE WITH N.J.A.C. 7:27-8.3(D), THIS PERMIT AND CERTIFICATE MUST BE READILY AVAILABLE FOR INSPECTION ON THE OPERATING PREMISES.

THE FOLLOWING CONDITION(S) APPLY TO THIS PERMIT AND CERTIFICATE:

(SEE ATTACHED)

N.J. Department of Environmental Protection
Division of Environmental Quality
CN-027, 401 East State Street
Trenton, New Jersey 08625

Approved by: *Richard Craig*

0 034

CALIBRATION DATA

Test Equipment Calibration

Data Sheets Follow

ION SYSTEMS, INC.
Route 202 North, P.O. Box 460
THREE BRIDGES, NEW JERSEY 08887
(201) 782-5900

Meter Orifice Calibration Form (L-32)

Calibrated by: John Ruff

Meter No. 44

Dry Gas Meter No. 175 176 Amb. Temperature (T_{amb}) 70°F

Barometric Pressure (P_b) 30.23" Hg

Date: DEC. 15, 1988

Calibrated by: John Ruff

Orifice Setting	A H	Meter Temperature (T _m)		Meter Pressure (P _m)		Time (s.)	ΔH @	ΔH
		Inlet O.D. (°F)	A.Y. (°F)	Final (°F)	Initial Difference			
0.25	80	72	76	536	999.1 0.47	0.99. 105	0.542	120
0.50	81	71	74	536	998.9 260	0.997. 501	0.759	120
0.75	80	71	76	536	996.8 25	0.995. 904	0.921	120
1.00	80	70	75	535	995.0 0.67	0.994. 004	1.063	120
1.50	78	69	74	534	992.9 603	0.991. 305	1.298	120
2.00	78	68	73	533	990.5 596	0.989. 104	1.492	120
2.50	77	67	72	532	988.1 76	0.986. 505	1.671	120
3.00	75	64	70	530	985.2 224	0.983. 403	1.20	2.01

Calculation

A H @ 2.00

Avg. 2.00

$$\Delta H @ = \frac{0.0317(\Delta H)}{P_b \cdot (T_{amb} + 460)} \times \left[\frac{(T_m + 460)}{(\Delta H)} \right]$$

Y Factor - Dry Gas Correction Factor

Note: Difference from A H @ not to exceed ± 0.15

STATE METER SHOP

PROOF AND DIFFERENTIAL TEST RECORD

0 036

3-175-S

Meter Size 1-1/20-5 1-170-5 Date Received JULY 1, 1988 Inspector J. SopranoDate Tested 6-14-88 New Repaired Manufacturer Roskam & AmorProver No. 1264 Temperatures: Room Air 83 F.Total Meters this Page 3 Oil 83 F.Prover Air 83 F.Temp. Comp. Meters: $\frac{\text{Abs. Base Temp.}}{\text{Abs. Prover Temp.}} \times \text{Uncorr. \% Proof} = \text{Corr. \% Proof}$

Meter No.	Repair Class	Percent Proof Check	Percent Proof Open	Differential Maximum	Remarks
175176	TEST	106.7	106.9	34	Uncorr. AS % Proof FOUND Corr. % Proof
591355	TEST	106.0	105.0	50	Uncorr. AS % Proof FOUND Corr. % Proof
625432	TEST	102.0	102.8	39	Uncorr. AS % Proof FOUND Corr. % Proof
					Uncorr. % Proof
					Corr. % Proof
175176	ADJUST	100.3	100.0	34	Uncorr. AS % Proof CALIBRATED Corr. % Proof
591355	ADJUST	100.2	100.2	50	Uncorr. AS % Proof CALIBRATED Corr. % Proof
625432	ADJUST	100.0	99.8	39	Uncorr. AS % Proof CALIBRATED Corr. % Proof

WELL BOX 10-T #3 MELTON 38644 JAN. 18, 88
WELL BOX 10-T #3 MELTON 38644 JAN. 18, 88
BY: ODR

BARE PRESS. - 29.92		DIFFERENCE	
IN	OUT.	IN	OUT.
METER TEMP.	METER AL.	THE E AL.	
44	44.00	0.00	
IN	OUT.	IN	OUT.
SURFACE	SETUP		

$$\Delta H_{\text{Q}} = 2.11 \text{ J/g}$$

ପରାମାଣୁ
SN1
747

NOT TO EXCEDE
15 MILES AVG. DIA. 8

$$\Delta H_{\text{c}} = \frac{0.317(\Delta H)}{29.845(4460)} \quad \boxed{\Delta H_{\text{c}} = 0.007(\Delta H)}$$

Caucusing:

0037

LEAK CHECK = 0.000 CFM @ 28.14Hg

PROOF AND DIFFERENTIAL TEST RECORD

0 038

S-130 S-190
 Meter Size S-175 Date Received 8-27-87 Inspector J. Soprano
 Date Tested 9-2-87 New Repaired Manufacturer Rockwell & Andes
 Prover No. 1264 Temperatures: Room Air 79 F.
 Total Meters this Page 3 Oil 79 F.
 Prover Air 79 F.

Temp. Comp. Meters: $\frac{\text{Abs. Base Temp.}}{\text{Abs. Prover Temp.}} \times \text{Uncorr. \% Proof} = \text{Corr. \% Proof}$

Meter No.	Repair Class	Percent Proof Check	Percent Proof Open	Differential Maximum	Remarks
716691	IN TEST	99.8	100.7	20	Uncorr. % Proof AS FOUND Corr. % Proof
38949	IN TEST	106.2	103.8	36	Uncorr. % Proof AS FOUND Corr. % Proof
175176	IN TEST	98.8	98.8	0	Uncorr. % Proof AS FOUND Corr. % Proof
716691	ADJUST	100.0	100.2	20	Uncorr. AS % Proof CALIBRATED Corr. % Proof
38949	Value	100.0	100.1	36	Uncorr. AS % Proof CALIBRATED Corr. % Proof
175176	ADJUST	100.2	100.2	28	Uncorr. AS % Proof CALIBRATED Corr. % Proof

Date 1-2-77

Calibrated by J. M. M. 1/15/80

Nozzle identification number	Nozzle Diameter ^a			ΔD ^b mm (in.)	D _{avg} ^c mm (in.)
	D ₁ mm (in.)	D ₂ mm (in.)	D ₃ mm (in.)		
# 6	.500	.501	.502	.001	.502
# 16	.449	.444	.447	.005	.444
# 19	.508	.501	.502	.001	.502
# 23	.177	.176	.177	.001	.177
# 41	.500	.500	.498	.002	.499
# 42	.495	.496	.495	.001	.495
# 43	.430	.432	.431	.002	.431
# 44	.425	.425	.425	.000	.425
# 45	.425	.426	.425	.001	.425
# 46	.432	.431	.432	.001	.432
# 3	.252	.253	.252	.001	.252
# 47	.146	.146	.147	.001	.146
# 26	.187	.188	.188	.001	.188
# 18	.237	.237	.237	.000	.237

where:

a D_{1,2,3} = three different nozzle diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b ΔD = maximum difference between any two diameters, mm (in.),
 $\Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

c D_{avg} = average of D₁, D₂, and D₃.

N	D-1	D-2	D-3	ΔD	avg
1.243	.242	.243	.001	.243	

Date 12/24/87 Thermocouple number 40
Ambient temperature 24 °C Barometric pressure 30.46 in. Hg
Calibrator TPS Reference: mercury-in-glass ASTM,
other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %
0°	ICE WATER	0.0	0.2	0.1
100°	boiling WATER	100	99.8	0.0
—	boiling cooking oil			

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%$$

Figure 2.5 Stack temperature sensor calibration data form.

Date 12/24/87 Thermocouple number 43
Ambient temperature 24 °C Barometric pressure 30.46 in. Hg
Calibrator TPB Reference: mercury-in-glass ASTM
other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %
0°	ice water	0.0	0.3	0.2
100°	boiling water	100.0	100.5	0.0
—	boiling cooking oil			

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%$$

Figure 2.5 Stack temperature sensor calibration data form.

Date 12/24/87 Thermocouple number 46
 Ambient temperature 24 °C Barometric pressure 30.46 in. Hg
 Calibrator TPB Reference: mercury-in-glass ASTM,
 other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature _b difference, %
0°	ICE WATER	0.0	-0.2	0.1
100°	boiling WATER	100.0	100.6	0.2
—	boiling cooking oil			

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%.$$

Figure 2.5 Stack temperature sensor calibration data form.

Date 12/24/87 Thermocouple number 41
 Ambient temperature 24 °C Barometric pressure 30.46 in. Hg
 Calibrator T.P.S. Reference: mercury-in-glass ASTM
 other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %
0°	ice water	0.0	0.1	0.1
100°	boiling water	100	100.2	0.0
—	boiling cooking oil			

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%.$$

Figure 2.5 Stack temperature sensor calibration data form.

Date 12/24/87 Thermocouple number 38
Ambient temperature 24 °C Barometric pressure 30.46 in. Hg
Calibrator TPB Reference: mercury-in-glass ASTM,
other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, %
0°	ice water	0.0	0.3	0.1
100°	boiling water	99.5	99.2	0.0
—	boiling cooking oil			

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] \cdot 100 \leq 1.5\%$$

Figure 2.5 Stack temperature sensor calibration data form.

Date 12/28/87 Thermocouple number 12345
 Ambient temperature 24 °C Barometric pressure 30.25 in. Hg
 Calibrator TB Reference: mercury-in-glass ASTM
 other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature _b difference, %
0°	ICE WATER	0.0	-0.2	0.1
100°	boiling WATER	100.0	100.0	0.0
—	boiling cooking oil			

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%$$

Figure 2.5 Stack temperature sensor calibration data form.

0 046

PITOT TUBE CALIBRATION

Pitot tube calibration number 7 Date JAN. 20, 88
 Calibrated by BROWN & RUFF @ R3U
 EFFECTIVE LENGTH 3'

A Side Calibration

Run No.	ΔP_{std} cm H ₂ O (in. H ₂ O)	ΔP_s cm H ₂ O (in. H ₂ O)	$C_p(s)$	Deviation $C_p(s) - \bar{C}_{p(A)}$
1	0.47	0.45	0.842	+0.003
2	0.48	0.67	0.838	-0.001
3	0.48	0.67	0.838	-0.001
$\bar{C}_{p(side A)}$		0.839	$\delta = ?$	*

B Side Calibration

Run No.	ΔP_{std} cm H ₂ O (in. H ₂ O)	ΔP_s cm H ₂ O (in. H ₂ O)	$C_p(s)$	Deviation $C_p(s) - \bar{C}_{p(B)}$
1	0.48	0.69	0.826	+0.005
2	0.47	0.69	0.817	-0.004
3	0.48	0.70	0.820	-0.001
$\bar{C}_{p(side B)}$		0.821	$\delta = ?$	*

$$C_p(A) - C_p(B) = 0.018 *$$

Figure 4-10. Pitot tube calibration data.

* VALUE MUST BE $\leq \pm 0.01$

FORM: L-26 (REV. JUNE 10, 87)

RECON SYSTEMS, INC.
 Route 202 North P.O. Box 460
 THREE BRIDGES, NEW JERSEY 08887
 (201) 782-5900

PITOT TUBE CALIBRATION

Pitot tube calibration number 19 Date JAN. 20, 88
 Calibrated by BROWN & RUFF @ RSU

EFFECTIVE LENGTH 4'

A Side Calibration

Run No.	Δp_{std} cm H ₂ O (in. H ₂ O)	Δp_s cm H ₂ O (in. H ₂ O)	$C_p(s)$	Deviation $C_p(s) - \bar{C}_{p(A)}$
1	0.48	0.68	0.832	+0.001
2	0.48	0.67	0.838	+0.007
3	0.47	0.68	0.823	-0.008
$\bar{C}_{p(side A)}$			0.831	$\delta = ?$ *

B Side Calibration

Run No.	Δp_{std} cm H ₂ O (in. H ₂ O)	Δp_s cm H ₂ O (in. H ₂ O)	$C_p(s)$	Deviation $C_p(s) - \bar{C}_{p(B)}$
1	0.46	0.70	0.803	-0.009
2	0.47	0.69	0.817	+0.005
3	0.47	0.69	0.817	+0.005
$\bar{C}_{p(side B)}$			0.812	$\delta = ?$ *

$$C_p(A) - C_p(B) = +0.019 *$$

Figure 4-10. Pitot tube calibration data.

* VALUE MUST BE $\leq \pm 0.01$

FORM: L-26 (REV. JUNE 10, 87)

RECON SYSTEMS, INC.
 Route 202 North P.O. Box 460
 THREE BRIDGES, NEW JERSEY 08887
 (201) 782-5900

0 048

ORIGINAL DATA AND CALCULATION SHEETS

PARTICULATE FIELD

DATA BOOK

0 049

DAILY
STACK/AIR
TESTING
FIELD REPORT

F-19 (7.13.88)

cc: billing
chron

Original to Job file

Date 2/18/89

Client Bruno Padavan

RECON Job No. 0641
Project Manager PFM
Field Supervisor PFM

Jobsite Company Maxwell House
City Hoboken State NJ Zip 07030 Phone 201-500

Processes, Stocks, Vents, Air etc. Tested Today

1. Afterburner Inlet Condition
2. Afterburner Outlet Condition
3. Condition
4. Condition

* (e.g. stack opacity, raining?, odors, color, flowrate; process steady or upset; etc.)

Milestone Times (Military)

Departure from home or RECON 0700 Arrival at site 0730 Lunch to

Lost Time to Arrival at home or RECON 1530

Reason For Lost Time

Client or Job Site Rep Aware of Lost Time yes no Person

Personnel Onsite

RECON PFM TFM CDR TFB

Client

Jobsite Reps Bruno Padavan

Agency Observing (1) NJDEP (2)

Agency Personnel (1) Stafford Stewart Rob Tenbrunella Mike Gosek

(2)

Other

Out of Scope Work Requested and Performed

Stack and Process Sketches

0 0.0

7/1/66

VELENT

MS-1-010

Process 2

Step 1
Wet

Step 2
Dry

FRAM
6 JUNE 1966

10

AFTER DRYING

WET

15

K

PROBE MARKINGS - CIRCULAR STACK

0051

STACK ID @ PORT 11.5 INCHESPORT EXTENSION 1 1/8 INCHES

RIGHT MOST COLUMN IS THE DISTANCE FROM PROBE TIP TO OUTSIDE OF PORT EXTENSION.

EPA DISTANCE "A" _____ DIAMETERS EPA DISTANCE "B" _____ DIAMETERS

TRaverse Point Number	Length Factor From EPA Method 1 Table 1-2, k_L	Product of Length Factor Times Stack Inside Diameter (Inches) $k_L \times (\text{Stack ID})$	Sum of Previous Column and Port Extension (Inches) $k_L \times (\text{Stack ID}) +$ Port Extension	Convert Previous Column to Inches and Common Fractions
1	2.1	0.24 -> 0.5	1.625	1 5/8
2	6.7	0.77	1.725	1 15/16
3	11.8	1.36	3.48	3 3/8
4	17.7	2.04	3.16	3 1/16
5	25.0	2.875	4.0	4
6	35.6	4.04	5.22	5 1/4
7	64.4	7.41	8.5	8 1/2
8	75.0	8.625	9.75	9 3/4
9	83.3	9.46	10.6	10 5/8
10	88.2	10.14	11.3	11 5/16
11	93.3	10.73	11.85	11 7/8
12	97.9	11.25 - 10.0	12.38	12 1/8

CIRCULAR STACK CROSS SECTIONAL AREA = $\text{CSA} = \pi \times 0.725 \times 10^2 = \frac{\pi}{4} \times \frac{100}{144} = 2.723 \text{ FT}^2$

PROBE MARKINGS - RECTANGULAR STACK

STACK CROSS SECTION DIMENSIONS _____ INCHES PORT EXTENSIONS _____ INCHES

TO DETERMINE UPSTREAM/DOWNSTREAM DISTURBANCES, THE EQUIVALENT DIAMETER IS DETERMINED USING THE FOLLOWING
EQUATION $d_e = \frac{2LW}{(L+V)}$

EPA DISTANCE "A" _____ DIAMETERS EPA DISTANCE "B" _____ DIAMETERS

TRaverse Point Number	Centroid of Each Equal Area (Inches)	Sum of Previous Column and Port Extension
1		
2		
3		
4		
5		
6		
7		

RECTANGULAR STACK CROSS SECTIONAL AREA = $\text{CSA} = L \times V = \frac{1}{144} \times \frac{100}{144} = \frac{100}{144^2} \text{ FT}^2$

PRELIMINARY DATA

0 052

C_p = _____

ΔH_0 = _____

P_b _____

P_{static} = 4.4

$\% CO_2$ = _____ $\times 0.44$ = _____

$\% O_2$ = _____ $\times 0.32$ = _____

$\% N_2$ = _____ $\times 0.28$ = _____

Dry MW = _____

$\% H_2O$ = _____

$P_s = P_b + (\pm) P_{\text{static}} =$ _____ "Hg" (absolute)

T_s = _____ °F

T_b = _____ °F

ΔP (average) = _____ "H₂O

MW = 0.18 ($\% H_2O$) + $\frac{\text{Dry MW} (100 - \% H_2O)}{100}$

Cross Sectional Area _____ ft²

MW = _____

CALCULATIONS

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48(C_p) \sqrt{\frac{T_s + 460}{P_s(\text{MW})}} \text{ DELTA P} = 85.48 \left(\frac{99}{(1110)} \right) \sqrt{\frac{(1110)}{(29.58)(28.45)}} \sqrt{\text{DELTA P}}$$

$$V_s = (846.0) \sqrt{1.30} \sqrt{\text{DELTA P}} = (846.0)(1.14) \sqrt{\text{DELTA P}}$$

$$V_s = (96.48) \sqrt{\text{DELTA P}} = (96.48)(0.67) = 64.7^2 \text{ FT/SEC}$$

$$\text{ACFM} = (V_s)(60)(\text{CSA}) = (64.7^2)(60)(0.723) = 280.8$$

$$\text{VELOCITY @ STP } V_{s-\text{std}} = V_s \left(\frac{P_s}{T_s + 460} \right) = \frac{(64.7^2)(17.65)(29.58)}{(1110)} = 30.44 \text{ FT/SEC}$$

$$\text{SCFM} = (V_{s-\text{std}})(\text{CSA})(60) = (30.44)(0.723)(60) = 1320$$

$$\text{DSCFM} = \left(\frac{100 - \% H_2O}{100} \right) (\text{SCFM}) = (1320)(.75) = 1254$$

PRELIMINARY DATACOMPANY: MAXWELL HouseDATE: 1/31/89SAMPLE LOCATION: Inlet

0 055

TIME:

LEVEL AND ZERO MANOMETER

PITOT TUBE LINES LEAK CHECK ESTIMATED MOISTURE - (%) 12 c_p .99

DRY BULB - (°F)

WET BULB - (°F)

DIRECTION OF FLOW

to afterburner

TRaverse Point Number	Cyclonic Flow Angle That Yields A Null Delta P	Velocity Head Delta P Inches of H ₂ O	Stack Temperature (Degrees F)
A 1	0.2	0.45	161
2	2	0.47	162
3	4	0.49	163
4	4	0.51	164
5	2	0.52	165
6	2	0.51	166
7	4	0.45	166
8	4	0.44	165
9	5	0.42	155
10	7	0.41	154
11	5	0.41	151
12	2	0.59	149
B 1		0.40	161
2	can not	0.42	164
3	BC	0.45	168
4	DETERMINED	0.46	170
5		0.47	172
6	A	0.45	174
7	HORIZONTAL	0.45	174
8	DUCT	0.46	173
9		0.47	164
10		0.47	159
11		0.45	157
12		0.43	153
AVERAGE			
AVERAGE ANGLE MUST BE <20 DEGREES			0.45

) PARTICULATE.ATG (August 1988)

AirRecon
THREE BRIDGES, NJ

0 054

PARTICULATE FIELD DATA SHEET

PLANT Maxwell HouseDATE 1/31/89RUN NO. oneSAMPLE LOCATION InletRAC BOX NO. 3DRY GAS METER NO. 38949NOZZLE NO. 27 NOZZLE SIZE 0.249 INCHESPITOT NO. 5C_p .99TIME AT EACH POINT 60 MINUTESDELTA H 2.11THERMOCOUPLE NO.: T 46AMBIENT PRESSURE (P_{bar}) 29.91 "HGPROBE OUTLET 40STATIC PRESSURE (P) -4.4 "H₂O/13.6 =BOX OUTLET 43STACK PRESSURE (P_s) = P_{bar} + P_{meter} = 0 "HG OPERATING CONDITION OR REMARKS DRY BULB °F WET BULB °F XH₂O

PORT/POINT	MILITARY CLOCK TIME	METER READING	PITOT DELTA P "H ₂ O	ORIFICE DELTA H "H ₂ O	METER TEMP °F		LINE VAC "HG	PROBE OUTLET °F	BOX OUTLET TEMP °F	BOX TEMP °F	STACK TEMP °F
					IN	OUT					
A1	1000	242.95	0.45	2.0	96	94	6	154	195	235	161
2	1002:30		0.47	2.1	104	96	6	184	206	270	162
3	1005		0.49	2.2	109	96	6	208	221	270	163
4	1007:30		0.51	2.3	110	98	7	229	240	255	164
5	1010		0.52	2.3	112	98	7	201	243	235	165
6	1012:30		0.51	2.3	113	98	7	211	243	210	166
7	1015		0.43	2.0	114	98	6	224	240	200	166
8	1017:30		0.44	2.0	114	98	6	212	237	190	165
9	1020		0.42	1.9	114	98	6	227	235	180	155
10	1022:30		0.41	1.85	114	100	6	211	233	175	154
11	1025		0.41	1.85	114	100	6	208	229	165	151
12	1027:30		0.39	1.75	114	100	6	227	224	160	149
	1030	265.160	STOP TEST								
B1	1015	265.160	0.40	1.8	104	96	6	189	174	310	161
2	1117:30		0.42	1.9	108	96	6	209	206	330	168
3	1120		0.45	2.0	108	96	6	226	227	345	168
4	1122:30		0.46	2.0	111	96	6	204	250	300	170
5	1125		0.47	2.1	112	98	6	180	258	270	172
6	1127:30		0.45	2.0	112	98	6	198	250	250	174
7	1130		0.45	2.0	112	100	6	212	247	225	174
8	1132:30		0.46	2.1	114	100	6	231	245	210	173
9	1135		0.47	2.1	114	100	6	206	246	200	164
10	1137:30		0.47	2.1	114	100	6	205	240	190	159
11	1140		0.45	2.0	114	100	6	225	235	180	157
12	1142:30	256.700	0.43	1.9	114	100	6	217	234	170	153
*	1140	43.725	delta H = T _m =						T _g =	

* Sum, average or Difference

Pre-Leak Check 0.005 @ 15"Post Leak Check 0.001 @ 7"FYRITE: % OXYGEN 20.5
% CARBON DIOXIDE 0.5

0 055

CLIENT: INNOVAC, INC/DE
 SAMPLING DATE: 07/31/89
 SAMPLING TIME: 10:00-11:45
 UNIT SAMPLED: UNIT 1

Date: 02/06/89
 Time: 10:00 AM
 Run #: 1

AVERAGE VELOC/ Y PRESSURE

Delta P	Delta P
SIN RADI	Square Root
0.40	0.67
0.47	0.69
0.49	0.70
0.51	0.71
0.52	0.72
0.51	0.71
0.49	0.67
0.44	0.66
0.42	0.65
0.41	0.64
0.41	0.64
0.39	0.62
0.40	0.63
0.42	0.65
0.45	0.67
0.46	0.68
0.47	0.67
0.45	0.67
0.45	0.67
0.46	0.66
0.47	0.67
0.47	0.69
0.45	0.67
0.43	0.66

THE AVERAGE SQUARE ROOT OF DELTA P = .6745101

0 056

CLIENT: MAXWELL HOUSE
SAMPLING DATE: 1/31/89
SAMPLING TIME: 1000-1145
UNIT SAMPLED: INLET

Date: 02/26/89
Time: 10434 AM
Run # 1

Delta H (IN H2O)	Meter Temp (F)	Stack Temp (F)
2.00	96.00	161.00
2.10	106.00	162.00
2.20	109.00	163.00
2.30	110.00	164.00
2.40	112.00	165.00
2.50	113.00	166.00
2.60	114.00	166.00
2.70	114.00	165.00
1.70	114.00	165.00
1.80	114.00	164.00
1.90	114.00	161.00
1.10	114.00	149.00
1.20	104.00	161.00
1.30	108.00	164.00
2.00	108.00	168.00
2.10	111.00	170.00
2.10	112.00	172.00
2.20	112.00	174.00
2.30	112.00	174.00
2.40	114.00	173.00
2.50	114.00	164.00
2.60	114.00	159.00
2.70	114.00	157.00
1.70	114.00	153.00

AVERAGES

DELTA H = 2.02/083 IN H2O
METER TEMP. = 104.6042 F
STACK TEMP. = 162.4167 F

SAMPLE LOCATION NOSE OF INLET

MOISTURE DETERMINATION

RUN NO. 1DATE 1/31/89

0 057

CHAIN-OF-CUSTODY SAMPLE NO. _____

	GRAMS	GRAMS
IMPIINGER 1	FINAL WEIGHT <u>797.7</u> INITIAL WEIGHT <u>749.0</u> INCREASE	IMPIINGER 1 <u>48.7</u>
IMPIINGER 2	FINAL WEIGHT <u>735.5</u> INITIAL WEIGHT <u>705.0</u> INCREASE	IMPIINGER 2 <u>30.5</u>
IMPIINGER 3	FINAL WEIGHT <u>491.1</u> INITIAL WEIGHT <u>721.3</u> INCREASE	IMPIINGER 3 <u>28</u>
SILICA GEL	FINAL WEIGHT <u>741.7</u> INITIAL WEIGHT <u>726.1</u> INCREASE	SILICA GEL
	TOTAL MASS OF WATER CAUGHT	<u>94.8</u> GRAMS

CHAIN-OF-CUSTODY SAMPLE NO. _____

FILTER DIAMETER 4 INCHESFILTER TYPE Glass FiberFILTER: FINAL WEIGHT 6855 GMS
INITIAL WEIGHT 6257 GMS
INCREASE0587 GRAMS

TOTAL MASS OF PARTICULATE CAUGHT THIS FILTER

IS ICE PRESENT IN THE IMPIINGER BATH AT THE END OF THIS SAMPLE? YES NO

CALCULATIONS

$$V_{w-std} = 17.65 (V_w) \left(\frac{P_{atm} + \Delta P / 13.6}{T_w + 460} \right) = 17.65 () \left(\frac{+ 13.6}{ } \right)$$

$$= 17.65 () () = \text{FT}^3$$

$$V_{w-std} (H_2O) = \frac{\text{GRAMS COLLECTED}}{21.2 \text{ GRAMS/FT}^3} = \frac{ }{(21.2)} = \text{FT}^3$$

$$X H_2O = \frac{(V_{w-std}) 100}{((V_{w-std}) + (V_{w-std}))} = \frac{100 ()}{() + ()} = \frac{ }{()} = \text{X}$$

$$\text{MOLECULAR WEIGHT (MW)} = \frac{18 (XH_2O)}{100} + \text{BY MW} (100 - XH_2O) = 0.18 () + () () \frac{100}{100}$$

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48 (\text{Cp}) \sqrt{\frac{T_w + 460}{P_s (\text{MW})}} \sqrt{\Delta P} = 85.48 () \sqrt{\frac{ }{ } ()} \sqrt{\Delta P}$$

$$V_s = () \sqrt{\Delta P} = () () \sqrt{\Delta P}$$

$$V_s = () \Delta P = () () = \text{FT/SEC}$$

$$\text{ACFM} = (V_s)(60)(\text{CSA}) = () (60) () =$$

$$\text{VELOCITY @ STP } V_{s-std} = V_s (17.65) \left(\frac{P_s}{T_w + 460} \right) = \frac{ }{ } (17.65) () = \text{FT/SEC}$$

$$\text{SCFM} = (V_{s-std})(\text{CSA})(60) = () () (60) =$$

$$\text{DSCFM} = \left(\frac{100 - XH_2O}{100} \right) (\text{SCFM}) = () () =$$

$$\text{NOZZLE VELOCITY @ STD } V_n = \frac{V_{w-std} + V_{w-std}}{60 (8) A_n} = \frac{ }{60 () () (10^{-4})} \text{ FT/SEC}$$

$$I = \frac{100 V_{n-std}}{V_{s-std}} = \frac{100 ()}{()} = \text{ % Isokinetic}$$

0 055

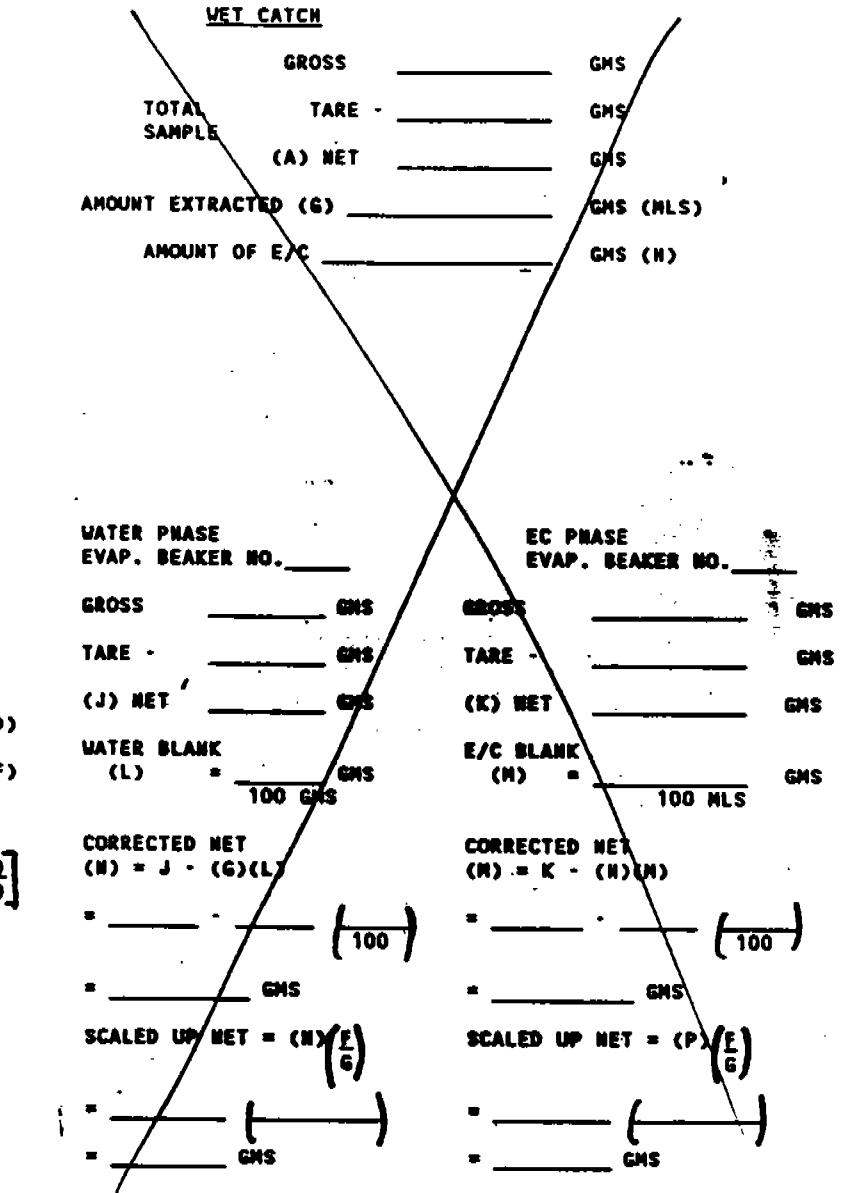
PLANT Maxwell House

LAB DATA - EVAPORATIONS

SAMPLING DATE 1/31/89SAMPLE LOCATION InletRUN NO. 1 FOR CHAIN-OF-CUSTODY SAMPLE NO. OPERATING CONDITION ACETONE WASHINGS

GROSS	<u>646.8</u>	GMS
TOTAL SAMPLE	<u>457.3</u>	GMS
(A) NET	<u>189.5</u>	GMS
AMOUNT EVAPORATED (B)	<u>189.5</u>	GMS

EVAP. BEAKER NO.


GROSS	<u>103.1418</u>	GMS
TARE	<u>103.1060</u>	GMS
(C) NET	<u>0.0358</u>	GMS

ACETONE BLANK

EVAP. BEAKER NO.	<u> </u>	
GROSS	<u>99.6314</u>	GMS
TARE	<u>99.6316</u>	GMS
NET	<u>0</u>	GMS
ACETONE BLANK = NET	<u>100</u>	GMS (D)
TOTAL AMOUNT EVAPORATED	<u>100</u>	GMS (F)

$$\begin{aligned}
 \text{CORRECTED NET (E)} &= (C) - (B) \left[\frac{(D)}{(F)} \right] \\
 &= 0.0358 - 189.5 \left[\frac{100}{100} \right] \\
 &= 0.0358 \text{ GMS} \quad (E) = (C) - B \left[\frac{(D)}{(F)} \right]
 \end{aligned}$$

$$\begin{aligned}
 \text{SCALED UP NET} &= (E) \left(\frac{A}{B} \right) \\
 &= 0.0358 \left(\frac{189.5}{189.5} \right) \\
 &= 0.0358
 \end{aligned}$$

0 058

WILSON AND GOLDBECK

$$T_{\text{min}} = \frac{1}{2} \left(T_1 + T_2 \right) \left(1 - \frac{T_2}{T_1} \right)^{-1}$$

Digitized by srujanika@gmail.com

1995-1996 学年第二学期 期中考试 七年级数学

UNIVERSITY PRESS OF TORONTO

A high-contrast, black and white image showing a dark, irregular shape on the right side, possibly a hole or a stain, with some lighter, textured areas to the left.

14283

APPENDIX D

EWINS/HURR = .4952622

THEY RETURN TO LONDON

1938-1940. The first two years were spent in the field, the last two in the laboratory.

DII 4.9

PARTICULATE FIELD DATA SHEET

PLANT Maxwell House DATE 7/1/89 RUN NO. 2 0 00
 SAMPLE LOCATION Inset RAC BOX NO. 3 DRY GAS METER NO. 38949
 NOZZLE NO. 27 NOZZLE SIZE 0.249 INCHES PITOT NO. 5 c_p 0.99
 TIME AT EACH POINT (S) 60 MINUTES DELTA H 2.11 THERMOCOUPLE NO.: T₁ 46
 AMBIENT PRESSURE (P_{BAR}) 29.78 "HG PROBE OUTLET 40
 STATIC PRESSURE (P) -4.3 "H₂O/13.6 = -0.316 "HG (P meter)
 STACK PRESSURE (P_S) = P_{bar} + P_{meter} = 29.48 "HG OPERATING CONDITION OR REMARKS
 DRY BULB 70 °F WET BULB 60 °F 100 %H₂O

PORT/ POINT	MILITARY CLOCK TIME	METER READING	PITOT DELTA P "H ₂ O	ORIFICE DELTA H "H ₂ O	METER TEMP. °F		LINE VAC "HG	PROBE OUTLET °F	BOX OUTLET TEMP °F	BOX TEMP °F	STACK TEMP °F
					IN	OUT					
1	0802	309.009	0.56	2.7	92	88	9	173	170	300	184
2	0804:30		0.56	2.7	96	88	10	202	198	250	189
3	0807		0.58	2.8	101	90	11	220	219	250	193
4	0809:30		0.60	2.9	106	90	11	236	233	250	194
5	0812		0.58	2.8	109	90	11	219	243	210	196
6	0814:30		0.56	2.7	112	92	11	214	241	200	196
7	0817		0.51	2.5	114	92	10	232	237	185	195
8	0819:30		0.48	2.4	114	94	10	219	239	175	184
9	0822		0.47	2.3	115	96	9	227	253	175	179
10	0824:30		0.47	2.3	115	96	9	217	231	165	177
11	0827		0.44	2.15	114	98	9	227	227	160	175
12	0828:30	33.565	0.42	2.05	116	100	8	203	224	160	173
B1	0851	33.677	0.50	2.55	105	98	9	143	154	210	195
2	0852:30		0.52	2.5	108	100	7	173	173	230	200
3	0856		0.54	2.65	112	100	9	210	204	250	203
4	0858:30		0.54	2.65	112	100	9	228	232	250	206
5	0901		0.54	2.65	116	102	9	240	240	250	209
6	0903:30		0.53	2.6	118	102	10	217	240	250	210
7	0906		0.51	2.5	113	102	10	204	240	260	210
8	0908:30		0.49	2.45	114	102	10	182	230	250	203
9	0911		0.50	2.45	118	102	10	194	216	250	201
10	0913:30		0.46	2.25	119	100	9	211	213	250	198
11	0916		0.29	1.3	118	102	9	217	215	250	196
12	0918:30		0.34	1.75							192
	0921	356.8									
*	0	V = 49.75	delta H = T _m =							T _s =

* Sum, average or Difference

Pre-Leak Check 0.005 P15"Post Leak Check 0.008 P12FYRITE: % OXYGEN 20.0
% CARBON DIOXIDE 0.0

0061

DRYING TIME: 00:00:00
DRYING TIME: 00:00:00
UNIT DRAFFLES: INLET

Date: 10/10/76
Time: 10:23:45 AM
Run #: 2

AVERAGE VELOCITY PRESSURE

Delta P (IN H2O)	Delta P Square Root
0.56	0.75
0.55	0.75
0.56	0.76
0.60	0.77
0.58	0.76
0.56	0.75
0.53	0.74
0.48	0.69
0.47	0.69
0.47	0.69
0.44	0.66
0.42	0.65
0.40	0.71
0.32	0.72
0.34	0.73
0.34	0.73
0.33	0.73
0.51	0.75
0.45	0.70
0.50	0.71
0.46	0.68
0.29	0.54
0.36	0.60

THE AVERAGE SQUARE ROOT OF DELTA P = .7054386

0 082

COLLECTOR: STRAWELL MUDS
 SAMPLING DATES: 27/1/89
 SAMPLING TIMES: 0802-0920
 UNIT SAMPLES: 10mL

Dates: 2/2/89-3/7
 Times: 10:34 AM
 Run #: 2

Delta H IN. H2O	Meter Temp (F)		Stack Temp (F)
	IN	001	
2.70	92.00	88.00	184.00
2.70	96.00	88.00	189.00
2.80	101.00	90.00	193.00
2.90	105.00	90.00	194.00
2.80	105.00	90.00	195.00
2.70	112.00	92.00	196.00
2.50	114.00	92.00	195.00
2.40	114.00	94.00	184.00
2.30	115.00	95.00	179.00
2.30	113.00	95.00	177.00
2.10	116.00	98.00	175.00
2.00	116.00	100.00	173.00
2.00	105.00	98.00	195.00
2.50	108.00	100.00	200.00
2.60	112.00	100.00	203.00
2.60	112.00	100.00	206.00
2.60	116.00	102.00	209.00
2.60	116.00	102.00	210.00
2.60	118.00	102.00	210.00
2.40	116.00	102.00	203.00
2.40	116.00	102.00	204.00
2.20	117.00	100.00	176.00
1.50	120.00	102.00	172.00
1.70	116.00	102.00	172.00

AVERAGES

Delta H (IN) = 2.43200, IN = 141
 Meter Temp = 104.373

MOISTURE DETERMINATION

SAMPLE LOCATION INLETRUN NO. 2DATE 2/1/81

0 063

CHAIN-OF-CUSTODY SAMPLE NO. _____

	GRAMS	GRAMS
IMPINGER 1	FINAL WEIGHT <u>781.8</u> INITIAL WEIGHT <u>735.9</u> INCREASE	IMPINGER 1 <u>45.9</u>
IMPINGER 2	FINAL WEIGHT <u>739.6</u> INITIAL WEIGHT <u>715.9</u> INCREASE	IMPINGER 2 <u>23.7</u>
IMPINGER 3	FINAL WEIGHT <u>504.7</u> INITIAL WEIGHT <u>500.5</u> INCREASE	IMPINGER 3 <u>4.2</u>
SILICA GEL	FINAL WEIGHT <u>844.8</u> INITIAL WEIGHT <u>825.0</u> INCREASE	SILICA GEL

TOTAL MASS OF WATER CAUGHT

93.6 GRAMS

CHAIN-OF-CUSTODY SAMPLE NO. _____

FILTER DIAMETER 4 INCHESFILTER TYPE Class. filterFILTER: FINAL WEIGHT .7033 GRAMS
INITIAL WEIGHT .6297 GRAMS
INCREASE.0741 GRAMS

TOTAL MASS OF PARTICULATE CAUGHT THIS FILTER

IS ICE PRESENT IN THE IMPINGER BATH AT THE END OF THIS SAMPLE? YES NO

CALCULATIONS

$$V_{n-std} = 17.65 (V_n) \left(\frac{P_{bath} + \text{DELTAP}}{T_b + 460} \right) = 17.65 () \left(\frac{ }{ } + 13.6 \right)$$

$$= 17.65 () () = \text{FT}^3$$

$$V_{n-std} (H_2O) = \frac{\text{GRAMS COLLECTED}}{21.2 \text{ GRAMS/FT}^3} = \frac{ }{(21.2)} = \text{FT}^3$$

$$\% H_2O = \frac{(V_{n-std}) 100}{((V_{n-std}) + (V_{n-std}))} = \frac{100 ()}{() + ()} = \frac{ }{()} = \%$$

$$\text{MOLECULAR WEIGHT (MW)} = \frac{18 (2H_2O) + \text{DWT MW} (100 - 2H_2O)}{100} = 0.18 () + () () \frac{ }{100}$$

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48 (\text{CP}) \sqrt{\frac{T_b + 460}{P_s (\text{MW})}} \sqrt{\text{DELTAP}} = 85.48 () \sqrt{\frac{ }{ } ()} \sqrt{\text{DELTAP}}$$

$$V_s = () \sqrt{\text{DELTAP}} = () () \sqrt{\text{DELTAP}}$$

$$V_s = () \text{DELTAP} = () () = \text{FT/SEC}$$

$$\text{ACFM} = (V_s) (60) (\text{CSA}) = () (60) () =$$

$$\text{VELOCITY @ STP} V_{s-std} = V_s (17.65) \left(\frac{P_s}{T_b + 460} \right) = () (17.65) () = \text{FT/SEC}$$

$$\text{SCFM} = (V_{s-std}) (\text{CSA}) (60) = () () (60) =$$

$$\text{DSCFM} = \left(\frac{100 - 2H_2O}{100} \right) (\text{SCFM}) = () () =$$

$$\text{NOZZLE VELOCITY @ STD } V_n = \frac{V_{s-std} + V_{n-std}}{60 () A_n} = \frac{ }{60 () () (10^{-4})} \text{ FT/SEC}$$

$$I = \frac{100 V_{n-std}}{V_{s-std}} = \frac{100 ()}{()} = \% \text{ Isokinetic}$$

LAB DATA - EVAPORATIONS

0 084

PLANT MAXWELL HouseSAMPLE LOCATION InletRUN NO. 2 FOR SAMPLING DATE 2-1-89OPERATING CONDITION CHAIN-OF-CUSTODY SAMPLE NO. ACETONE WASHINGS

GROSS	<u>661.4</u>	GMS
TOTAL SAMPLE	<u>456.8</u>	GMS
(A) NET	<u>204.6</u>	GMS
AMOUNT EVAPORATED (B)	<u>204.6</u>	GMS

EVAP. BEAKER NO.

GROSS	<u>110.5458</u>	GMS
TARE	<u>110.4860</u>	GMS
(C) NET	<u>0.0598</u>	GMS

ACETONE BLANK

EVAP. BEAKER NO.	<u> </u>	
99.6314 GROSS	<u>110.5458</u>	GMS
99.6316 TARE	<u>110.4860</u>	GMS
0 NET	<u>0.0598</u>	GMS
ACETONE BLANK = NET	<u>100</u>	GMS (D)
TOTAL AMOUNT EVAPORATED	<u>100</u>	GMS (F)

$$\text{CORRECTED NET (E)} = (C) - (B) \left[\frac{(D)}{(F)} \right] \\ = (0.0598) - (204.6) \left[\frac{100}{100} \right] \\ = 0.0598 \text{ GMS}$$

$$\text{SCALED UP NET} = (E) \left(\frac{A}{B} \right) \\ = 0.0598 \left(\frac{204.6}{204.6} \right) \\ = 0.0598$$

WET CATCH

GROSS	<u> </u>	GMS
TOTAL SAMPLE	<u> </u>	GMS
(A) NET	<u> </u>	GMS
AMOUNT EXTRACTED (G)	<u> </u>	GMS (MLS)
AMOUNT OF E/C	<u> </u>	GMS (H)

WATER PHASE
EVAP. BEAKER NO.

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(J) NET	<u> </u>	GMS
WATER BLANK (L)	<u> </u>	GMS

$$\text{CORRECTED NET (M)} = J - (G)(L)$$

$$= \text{---} - \text{---} (100)$$

= GMS

$$\text{SCALED UP NET} = (M) \left(\frac{E}{G} \right)$$

$$= \text{---} - \text{---} (100) \\ = \text{---} \text{ GMS}$$

EC PHASE
EVAP. BEAKER NO.

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(K) NET	<u> </u>	GMS
E/C BLANK (N)	<u> </u>	100 MLS

$$\text{CORRECTED NET (P)} = K - (N)(M)$$

$$= \text{---} - \text{---} (100)$$

= GMS

$$\text{SCALED UP NET} = (P) \left(\frac{F}{G} \right)$$

$$= \text{---} - \text{---} (100) \\ = \text{---} \text{ GMS}$$

ΔH = 4.9

0 066

PARTICULATE FIELD DATA SHEET

PLANT MAYWELL HOUSE

DATE 2/1/89

RUN NO. 3

SAMPLE LOCATION Inlet

RAC BOX NO. 3

DRY GAS METER NO. 38949

NOZZLE NO. 27 NOZZLE SIZE 0.249 INCHES

PITOT NO. 5

c_p 0.99

TIME AT EACH POINT (s) 60 MINUTES

DELTA H 2.11

THERMOCOUPLE NO.: T 46

AMBIENT PRESSURE (P_{BAR}) 29.80 "Hg

PROBE OUTLET 46

STATIC PRESSURE (P) -4.2 "H₂O/13.6 =

BOX OUTLET 43

STACK PRESSURE (P_s) = P_{bar} + P_{meter} = "Hg OPERATING CONDITION OR REMARKS

DRY BULB °F WET BULB °F ZH₂O

PORT/POINT	MILITARY CLOCK TIME	METER READING	PITOT DELTA P "H ₂ O	ORIFICE DELTA H "H ₂ O	METER TEMP °F	LINE VAC "Hg	PROBE OUTLET °F	BOX OUTLET TEMP °F	BOX TEMP °F	STACK TEMP °F
			IN	OUT						
A-1	10:48	357.081	0.49	2.4	88 88	8	98	216	245	195
2	1049:30		0.47	2.3	90 88	8	139	242	240	197
3	1052		0.54	2.7	94 88	9	183	247	230	197
4	1054:30		0.59	2.9	99 90	8	202	251	220	199
5	1057		0.58	2.85	102 90	9	220	252	220	200
6	1059:30		0.58	2.85	104 92	9	227	248	210	201
7	1102		0.55	2.7	105 92	9	130	247	210	202
8	1104:30		0.49	2.4	106 92	8	220	210	210	201
9	1107		0.48	2.35	108 92	8	210	199	200	199
10	1109:30		0.36	1.75	111 94	7	204	221	190	194
11	1112		0.38	1.85	112 96	7	203	240	190	192
12	1114:30		0.31	1.5	113 96	6	209	242	190	190
31	1137		0.48	2.35	98 94	8	152	167	170	200
2	1139:30	1142	0.45	2.4	99 92	8	162	208	185	204
3	1142		0.52	2.58	98 90	7	179	210	220	204
4	1221:30		0.57	2.75	99 92	7	190	240	200	210
5	1227		0.53	2.59	99 93	8	210	260	210	211
6	1229:30		0.52	2.58	100 95	8	230	280	215	212
7	1232		0.52	2.58	108 95	9	247	290	195	212
8	1234:30		0.53	2.59	110 96	9	247	290	195	209
9	1237		0.50	2.45	112 98	9	247	290	195	200
10	1239:30		0.43	2.10	115 96	8	245	290	195	199
11	1242		0.34	1.66	115 96	5	244	290	195	197
12	1244:30		0.29	1.42	115 96	6	242	288	195	192
	1247 End									
*	0	140.368			delta H = $T_m =$					$T_s =$

* Sum, average or Difference

Pre-Leak Check 1.009 @ 15'

Post Leak Check ✓

FYRITE: % OXYGEN 20.5
% CARBON DIOXIDE 0.0

CLIENT: 100001-100002
SAMPLING DATE: 2/1/87
SAMPLING TIME: 1047-1247
UNIT SAMPLED: 10001

Date: 2/2/87
Time: 10:04 AM
Run #: 3

AVERAGE VELOCITY PRESSURE

Delta P (IN. H2O)	Delta P Barometric
0.45	0.70
0.47	0.69
0.46	0.70
0.47	0.77
0.48	0.76
0.48	0.70
0.49	0.74
0.49	0.70
0.48	0.69
0.46	0.60
0.46	0.62
0.41	0.56
0.48	0.69
0.49	0.70
0.52	0.72
0.57	0.75
0.53	0.73
0.52	0.72
0.52	0.72
0.53	0.73
0.50	0.71
0.43	0.66
0.34	0.58
0.29	0.54

THE AVERAGE BAROMETRIC ROOT OF DELTA P = 16710185

068

CLIENT: MAXWELL ~~HOUSE~~
 SAMPLING DATE: 2/1/89
 SAMPLING TIME: 1047-1247
 UNIT SAMPLED: INLET

Date: 02/25/89
 Time: 10:34 AM
 Run #: 3

Delta H (IN H2O)	Meter Temp (F)		Stack Temp (F)
	IN	001	
2.50	98.00	98.00	195.00
2.50	98.00	98.00	197.00
2.50	98.00	98.00	198.00
2.50	98.00	98.00	199.00
2.50	102.00	98.00	200.00
2.50	104.00	92.00	201.00
2.70	108.00	92.00	202.00
2.40	106.00	92.00	201.00
2.50	106.00	92.00	197.00
1.72	101.00	94.00	194.00
1.60	98.00	96.00	192.00
1.60	98.00	96.00	190.00
2.50	98.00	94.00	204.00
2.40	99.00	92.00	204.00
2.50	98.00	90.00	206.00
2.77	99.00	92.00	210.00
2.50	97.00	93.00	211.00
2.50	100.00	95.00	212.00
2.50	105.00	95.00	212.00
2.50	110.00	96.00	209.00
2.40	112.00	98.00	205.00
2.10	115.00	96.00	199.00
1.60	115.00	96.00	197.00
1.42	115.00	96.00	192.00

AVERAGES

DELTA H = 2.36 IN H2O
 METER TEMP. = 98.5625 F.
 STACK TEMP. = 199.0417 F

MOISTURE DETERMINATION

SAMPLE LOCATION INLETRUN NO. 3DATE 7/1/89CHAIN-OF-CUSTODY SAMPLE NO.

	GRAMS	GRAMS
IMPINGER 1	FINAL WEIGHT <u>763.1</u> INITIAL WEIGHT <u>720.7</u> INCREASE	IMPINGER 1 <u>42.4</u>
IMPINGER 2	FINAL WEIGHT <u>737.1</u> INITIAL WEIGHT <u>708.6</u> INCREASE	IMPINGER 2 <u>28.5</u>
IMPINGER 3	FINAL WEIGHT <u>482.0</u> INITIAL WEIGHT <u>471.7</u> INCREASE	IMPINGER 3 <u>7.3</u>
SILICA GEL	FINAL WEIGHT <u>776.0</u> INITIAL WEIGHT <u>761.2</u> INCREASE	SILICA GEL <u></u>
	TOTAL MASS OF WATER CAUGHT	<u>28.5</u> GRAMS

CHAIN-OF-CUSTODY SAMPLE NO. FILTER DIAMETER 4 INCHES FILTER TYPE Glass filterFILTER: FINAL WEIGHT 671.6 GRAMS INITIAL WEIGHT 610.3 GRAMS INCREASE 61.3 GRAMS

TOTAL MASS OF PARTICULATE CAUGHT THIS FILTER

IS ICE PRESENT IN THE IMPINGER BATH AT THE END OF THIS SAMPLE? YES NO

CALCULATIONS

$$V_{w-std} = 17.65 (V_w) \left(\frac{P_{bar} + \Delta P / 13.6}{T_w + 460} \right) = 17.65 () \left(\frac{ }{ } + \frac{13.6}{ } \right)$$

$$= 17.65 () () = \text{FT}^3$$

$$V_{w-std} (H_2O) = \frac{\text{GRAMS COLLECTED}}{21.2 \text{ GRAMS/FT}^3} = \frac{ }{ } \text{FT}^3$$

$$\% H_2O = \frac{(V_{w-std}) 100}{((V_{w-std}) + (V_{w-std}))} = \frac{100 ()}{() + ()} = \frac{ }{ } \times$$

$$\text{MOLECULAR WEIGHT (MW)} = \frac{15 (XH_2O) + \text{DRY MW} (100 - XH_2O)}{100} = 0.18 () + \frac{ }{100} ()$$

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48 (\text{Cp}) \sqrt{\frac{T_w + 460}{P_s (\text{MW})}} \sqrt{\Delta P} = 85.48 () \sqrt{\frac{ }{ } ()} \sqrt{\Delta P}$$

$$V_s = () \sqrt{\Delta P} = () () () \sqrt{\Delta P}$$

$$V_s = () \Delta P = () () = \text{FT/SEC}$$

$$\text{ACFM} = (V_s) (60) (\text{CSA}) = () (60) () =$$

$$\text{VELOCITY @ Stp} V_{s-std} = V_s (17.65) \left(\frac{P_s}{T_w + 460} \right) = \frac{ }{ } (17.65) () = \text{FT/SEC}$$

$$\text{SCFM} = (V_{s-std}) (\text{CSA}) (60) = () () (60) =$$

$$\text{DSCFM} = \left(\frac{100 - XH_2O}{100} \right) (\text{SCFM}) = () () =$$

$$\text{NOZZLE VELOCITY @ STD } V_n = \frac{V_{s-std} + V_{w-std}}{60 (\theta) A_n} = \frac{ }{60 () () (10^{-6})} = \text{FT/SEC}$$

$$I = \frac{100 V_{n-std}}{V_{s-std}} = \frac{100 ()}{()} = \text{ % Isokinetic}$$

PLANT MANWELL HOUSE
SAMPLING DATE 2-1-89

LAB DATA - EVAPORATIONS

SAMPLE LOCATION Inlet
RUN NO. 3 FOR

CHAIN-OF-CUSTODY SAMPLE NO.

ACETONE WASHINGS

GROSS	<u>655.7</u>	GMS
TOTAL SAMPLE	<u>460.2</u>	GMS
(A) NET	<u>195.5</u>	GMS
AMOUNT EVAPORATED (B)	<u>195.5</u>	GMS

EVAP. BEAKER NO.

GROSS	<u>96.7241</u>	GMS
TARE	<u>96.6887</u>	GMS
(C) NET	<u>0.0354</u>	GMS

ACETONE BLANK

EVAP. BEAKER NO.	<u>99.6314</u>	GMS
	<u>99.6316</u>	GMS
TARE	<u>96.6887</u>	GMS
D NET	<u>0.0354</u>	GMS

ACETONE BLANK = NET 100 GMS (D)
TOTAL AMOUNT
EVAPORATED 100 GMS (F)

$$\begin{aligned} \text{CORRECTED NET (E)} &= (C) - (B) \left[\frac{(D)}{(F)} \right] \\ &= (0.0354) - (195.5) \left[\frac{(100)}{(100)} \right] \\ &= 0.0354 \text{ GMS} \quad (E) = (C) - B \left[\frac{(D)}{(F)} \right] \end{aligned}$$

$$\begin{aligned} \text{SCALED UP NET} &= (E) \left(\frac{A}{B} \right) \\ &= \frac{0.0354}{0.0354} \left(\frac{195.5}{195.5} \right) \end{aligned}$$

WET CATCH

GROSS	<u> </u>	GMS
TOTAL SAMPLE	<u> </u>	GMS
(A) NET	<u> </u>	GMS
AMOUNT EXTRACTED (E)	<u> </u>	GMS (MLS)
AMOUNT OF E/C	<u> </u>	GMS (H)

WATER PHASE
EVAP. BEAKER NO.

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(J) NET	<u> </u>	GMS

WATER BLANK
(L) = GMS
100 GMS

$$\begin{aligned} \text{CORRECTED NET} &= J - (G)(L) \\ &= \text{ } \quad (100) \\ &= \text{ } \quad \text{GMS} \\ \text{SCALED UP NET} &= (N) \left(\frac{E}{F} \right) \\ &= \text{ } \quad \text{GMS} \\ &= \text{ } \quad \text{GMS} \end{aligned}$$

EC PHASE
EVAP. BEAKER NO.

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(K) NET	<u> </u>	GMS

E/C BLANK
(N) = 100 MLS

$$\begin{aligned} \text{CORRECTED NET} &= K - (N)(M) \\ &= \text{ } \quad (100) \\ &= \text{ } \quad \text{GMS} \\ \text{SCALED UP NET} &= (P) \left(\frac{F}{G} \right) \\ &= \text{ } \quad \text{GMS} \end{aligned}$$

INLET

0 073

WILHELMUS VAN DER HULST

Date: Oct. 26/97
Time: 10:30 AM

COLLECTING AND PROCESSING INPUTS FOR ISURINE IUS

Parameter	Value	Unit	Notes
CHARGE	1.0 x 10 ⁻¹ C	C	1.0 x 10 ⁻¹ C
TIME	1.0000 x 10 ⁻¹ s	s	1.0000 x 10 ⁻¹ s
DETECTION LIMIT	0.0001		1NLE1
AMBIENT TEMPERATURE			
DIA METER (MM) x 10 ⁻³	0.20	mm	0.20
FILTER PORESIZE (μm)	0.20	μm	0.20
TIME AT WHICH POINT REACHED	2.00	s	2.00
AMBIENT PRESSURE (PBAR) x 10 ⁻¹⁰	29.70	Pa	29.80
ATMOSPHERIC PRESSURE (PBAR) x 10 ⁻¹⁰	29.70	Pa	29.80
RELATIVE HUMIDITY (%) x 10 ⁻¹⁰	44.00	%	44.00
RELATIVE VOLUME CHANGE (Volume)	44.00	%	44.00
WATER COLLECTED 100 ml INTEGRAL (ml)	74.00	ml	88.00
CARBON DIOXIDE (CO ₂) x 10 ⁻¹⁰	0.00	Pa	0.00
OXYGEN (O ₂) x 10 ⁻¹⁰	20.00	Pa	21.00
STRAINS (DEGREE) x 10 ⁻¹⁰	1.100	Pa	1.100
STRAIN (DEGREE) x 10 ⁻¹⁰	0.00	Pa	0.00

CALIBRATION: 1000-1440

Date: 10-10-07
Time: 10:14 AM

ISOKINETIC CALCULATIONS

	1	2	3
DATE	10-10-07	10-10-07	10-10-07
TIME	10:14 AM	10:14 AM	10:14 AM
WEIGHT (GROSS)	1000-1440	0602-0921	1000-1440
WEIGHT (NET)	1000-1440	0602-0921	1000-1440
METER VOLUME (VM-STP), SCFH	41.08	44.59 **	41.95
WATER COLLECTED (WW-STP), SCFH	4.49	4.43	4.17
MOISTURE (VOL %)	7.80	9.04	9.03
ACTUAL MOLECULAR WEIGHT (AM), LBS/MOLE	27.85	27.86	27.86
ACTUAL VELOCITY IN STACK (VS), FT/SEC	45.42	35.20	32.43
ACTUAL FLOW RATE IN STACK (AFRH)	2187.98	2303.00	2267.38
VELOCITY @ STP (VS-STP), FT/SEC	41.58	42.47	41.41
STACK FLOW RATE @ STP (SFH)	1796.84	1837.71	1771.54
DRY FLOW RATE (DSRH)	1621.45	1671.82	1629.72
NUZZLE VELOCITY @ STP (VN-STP), FT/SEC	37.13	39.95	37.58
ISOKINETIC %	89.32	94.03	90.75

0 074

PARTICULATE FIELD

DATA BOOK

DAILY
STACK/AIR
TESTING
FIELD REPORT

F-19 (7.13.88)

cc: billing _____
chron _____

Original to Job file _____

Date 1-31-89

Client _____

RECON Job No. _____
Project Manager _____
Field Supervisor _____

Jobsite Company _____ Street _____

City _____ State _____ Zip _____ Phone _____

Processes, Stacks, Vents, Air etc. Tested Today

1. Afterburner Outlet Condition* _____
2. _____ Condition* _____
3. _____ Condition* _____
4. _____ Condition* _____

* (e.g. stack opacity, raining?, odors, color, flowrate; process steady or upset; etc.)

Milestone Times (Military)

Departure from home or RECON _____ Arrival at site _____ Lunch _____ to _____

Lost Time _____ to _____ Arrival at home or RECON _____

Reason For Lost Time _____

Client or Job Site Rep Aware of Lost Time _____ yes _____ no _____ Person _____

Personnel Onsite _____

RECON _____

Client _____

Jobsite Reps _____

Agency Observing (1) ATG (2) _____

Agency Personnel MIKE CIOSEK _____

Other _____

Out of Scope Work Requested and Performed

PRELIMINARY DATACOMPANY: GENERAL FOODSDATE: 7/30/89PITOT TUBE LINES LEAK CHECK

ESTIMATED MOISTURE - (%) _____

DRY BULB - (°F) _____

SAMPLE LOCATION: OUTLET

TIME: _____

LEVEL AND ZERO MANOMETER C_p _____

WET BULB - (°F) _____ DIRECTION OF FLOW _____

0 075

TRaverse Point Number	Cyclonic Flow Angle That Yields A Null Delta P	Velocity Head Delta P Inches of H ₂ O	Stack Temperature (Degrees F)
A-1	3		
2	3		
3	2		
4	2		
5	2		
6	3		
7	3		
8	7		
9	7		
10	6		
11	8		
1/2	6		
B-1	8		
2	7		
3	7		
4	7		
5	4		
6	3		
7	9		
8	6		
9	5		
10	6		
11	7		
12	7		
AVERAGE			

AVERAGE ANGLE MUST BE <20 DEGREES

K = 17.0

PARTICULATE FIELD DATA SHEET

0 070

PLANT MAYWELL HOUSE DATE 1-31-89 RUN NO. 1
 SAMPLE LOCATION AFTERBURNER OUTLET RAC BOX NO. 4 DRY GAS METER NO. 175176
 NOZZLE NO. 6 NOZZLE SIZE 1/2 INCHES PITOT NO. 19 c_p .83
 TIME AT EACH POINT (S) 3 MINUTES DELTA H 2.00 THERMOCOUPLE NO.: T 41
 AMBIENT PRESSURE (PBAR) 29.91 "HG PROBE OUTLET 38
 STATIC PRESSURE (P) -0.02 "H₂O/13.6 = 0.000 "HG (P meter) BOX OUTLET 18
 STACK PRESSURE (P_s) = P_{bar} + P_{meter} = 0.000 "HG OPERATING CONDITION OR REMARKS _____
 DRY BULB 50 °F WET BULB 45 °F 10 "H₂O

PORT/POINT	MILITARY CLOCK TIME	METER READING	PITOT DELTA P "H ₂ O	ORIFICE DELTA H "H ₂ O	METER TEMP °F		LINE VAC "HG	PROBE OUTLET °F	BOX OUTLET TEMP °F	BOX TEMP °F	STACK TEMP °F
					IN	OUT					
A-1	1000	91.724	.05	.85	77	77	44	188	195	220	1555
2	03	93.3	.05	.85	78	77	44	188	196	221	1550
3	06	95.1	.06	1.02	79	77	44	200	197	223	1520
4	09	96.3	.06	1.02	81	78	44	201	198	221	1516
5	12	98.4	.07	1.18	83	78	44	202	200	223	1485
6	15	100.0	.07	1.18	85	78	54	201	201	220	1530
7	18	101.5	.06	1.02	86	78	5	200	205	228	1535
8	21	102.8	.06	1.02	87	79	5	200	202	227	1538
9	24	104.5	.055	.93	88	79	44	201	203	228	1494
10	27	106.6	.07	1.18	89	80	54	201	204	225	1485
11	30	108.0	.07	1.18	90	80	54	202	203	226	1498
12	33	109.1	.07	1.18	91	81	54	200	204	225	1498
END		110.77									
B-1	1115	110.85	.06	1.02	82	82	54	188	200	223	1501
2	18	112.5	.06	1.02	83	81	54	189	201	225	1520
3	21	114.2	.07	1.18	84	80	54	189	202	226	1502
7	24	116.0	.07	1.18	86	81	54	198	203	225	1493
5	27	117.5	.07	1.18	89	81	54	193	204	226	1495
6	30	119.0	.075	1.25	90	81	54	203	208	228	1501
7	33	120.7	.075	1.25	92	82	54	204	210	225	1493
8	36	122.4	.075	1.25	92	82	54	206	211	227	1488
9	39	124.3	.07	1.18	93	83	54	205	212	226	1497
10	42	126.1	.07	1.18	94	83	54	208	213	226	1498
11	45	127.7	.07	1.18	94	83	54	207	214	227	1488
12	48	129.8	.075	1.25	95	83	54	207	213	225	1482
END	51	131.24	delta H = T _m =							T _s =

* Sum, average or Difference

Pre-Leak Check 0.01 at 15" Post Leak Check 0.004 at 54" FYRITE: % OXYGEN 14.0
% CARBON DIOXIDE 9.0

POLY(1,4-PHENYLENE TEREPHTHALIC ANHYDRIDE)

Date: 6/7/87
Time: 10:45 AM

AVERAGE VELOCITY PRESSURE

Delta F (in Hz)	Square Root
0.00	0.22
0.00	0.22
0.00	0.24
0.06	0.24
0.07	0.26
0.07	0.26
0.06	0.24
0.06	0.24
0.06	0.23
0.07	0.26
0.07	0.26
0.07	0.26
0.07	0.26
0.06	0.24
0.06	0.24
0.07	0.26
0.07	0.26
0.07	0.26
0.08	0.27

THE AVERAGE SQUARE KNOT OF DELTA P = .25655

0 070

CLIENT: DOW MILLS, INC.

Date: 10/27/07
Time: 10:00 AM

Delta P (IN H2O)	Meter Temp (F) IN	Meter Temp (F) OUT	Stack Temp (F)
0.00	77.00	77.00	1500.00
0.05	78.00	77.00	1500.00
0.10	79.00	77.00	1520.00
0.15	81.00	78.00	1516.00
1.10	85.00	78.00	1485.00
1.15	86.00	78.00	1530.00
1.20	86.00	78.00	1535.00
1.25	87.00	78.00	1538.00
0.95	88.00	79.00	1494.00
1.10	89.00	80.00	1485.00
1.15	90.00	80.00	1498.00
1.18	92.00	81.00	1498.00
1.02	82.00	82.00	1501.00
1.02	83.00	81.00	1520.00
1.10	84.00	80.00	1502.00
1.18	86.00	81.00	1493.00
1.18	89.00	81.00	1495.00
1.20	90.00	81.00	1501.00
1.20	92.00	82.00	1493.00
1.20	92.00	82.00	1488.00
1.15	93.00	83.00	1497.00
1.10	93.00	83.00	1498.00
1.10	94.00	83.00	1478.00
1.20	95.00	83.00	1482.00

AVERAGES

DELTA P = 0.11375 IN H2O
 METER TEMP. = 83.08334 F
 STACK TEMP. = 1506.333 F

0 073

SAMPLE LOCATION Afterburner Outlet

HYDROCARBON SAMPLING DATA

RUN NO. 1DATE 1-31-89

HYDROCARBON PUMP NO. _____

TIME	ROTOMETER SETTING	GAS METER TEMP.	VACUUM "HG	SAMPLE RATE L/M
1000	60	82	1+	1
05	60	82	1+	1
10	60	83	1+	1
15	60	83	1+	1
20	60	84	1+	1
25	60	84	1+	1
30	60	85	1+	1
1115	60	86	1+	1
20	60	86	1+	1
35	60	86	1+	1
40	60	87	1+	1
50	60	87	1+	1
		88		

PRE-LEAK CHECK POST-LEAK CHECK

PUMP CALIBRATION FLOW RATE		CALIBRATION INSTRUMENT	FYRITE
FLOW RATE LITERS/MIN	ROTAMETER SETTING 60	<input checked="" type="checkbox"/> SOAP FILM BURET <input type="checkbox"/> DRY GAS METER <input type="checkbox"/> OTHER	% OXYGEN % CARBON DIOXIDE

CORRECTING ROTOMETER VOLUME TO DRY STANDARD CONDITIONS

$$\text{EQUATION: } V_{\text{STD}} = V_m \times \frac{P_m}{P_{\text{STD}}} \times \frac{T_{\text{STD}}}{T_m}$$

WHERE:

 V_m = SAMPLE RATE OF ROTOMETER (L/M) T_{STD} = $70^{\circ}\text{F} + 460^{\circ}\text{F} = 530^{\circ}\text{F}$ P_{STD} = 29.92"HG P_m = BAROMETRIC PRESSURE DURING SAMPLING ("HG) T_m = TEMPERATURE OF GAS STREAM ($+460^{\circ}\text{F}$)

$$V_{\text{STD}} = \text{_____} \times \left(\frac{\text{_____}}{\text{_____}} \right) \times \frac{(530)}{(29.92)} = \text{_____}$$

$$CF = (V_{\text{STD}} \text{ L/MIN}) (3.53 \times 10^{-2} \text{ CF/L}) (60 \text{ MIN/1 HR}) = (\text{_____}) (3.53 \times 10^{-2}) (60)$$

$$= \text{CFH}$$

PARTICULATE.ATG (AUGUST 1988)

AirRecon
THREE BRIDGES, NJ

Compressed Air Source	PEXWELL Blower	Total Wet Sack (m³)	44.00
Water	PRETREATMENT UNIT	Sample Volume (std. Ft³)	2.12
Location	FRIBOURG, NJ	Stack Flowrate (DSCFM)	2013.00
		Stack % Moisture	7.90

Sample Number	Sample Description	Name	PIW	GC: Liquid Concentration		GC: Gas Concentration	
				(mg/l)	(ppmv)	(ppmv)	(ppmv)
(1)	Initial air Methylene		16.03	1.000		19.000	
(2)	Corrected Methylene		28.61	0.000		131.000	
(3)							
(4)							
(5)							
(6)							
(7)							
(8)							
(9)							
(10)							

CONCENTRATIONS		AND EMISSIONS		
Constituent	Name	LB/HR	PPMV (WET)	PPMV (DRY)
CH4	ETHANE AS METHANE	0.101	18.315	20.103
CO2	CARBON DIOXIDE	1.149	120.651	131.000
CO		0.000	ERR	ERR
NO		0.000	ERR	ERR
NO2		0.000	ERR	ERR
SO2		0.000	ERR	ERR
NOX		0.000	ERR	ERR
PM2.5		0.000	ERR	ERR
PM10		0.000	ERR	ERR
SO3		0.000	ERR	ERR
CO		0.000	ERR	ERR
NO		0.000	ERR	ERR
NO2		0.000	ERR	ERR
SO2		0.000	ERR	ERR
PM2.5		0.000	ERR	ERR
PM10		0.000	ERR	ERR

This Formulation Uses the Following Equations for Each Contaminant Where:

- A - Total wet catch (m³)
- B - Reservoir volume (m³) FT3)
- C - Slave moisture (m³)
- D - Catch below slave (m³) DSCFM)

$E = GC$: Liquid Concentration (mg/l)
 $r = GC$: Gas Concentration (dry ppmv)
 $w = \text{mole weight of solute's Molecular Weight}$

at the [Contents](#):

$$V_{\text{eff}} = 0.66515 \times (A) \times (B) \times ((6) \times (B))$$

Actual average density = survey density $\times (100 - (\mathcal{L})) / 100$

11. **What is the primary purpose of the *Journal of Neuroscience Methods*?**

1747 1748 1749 1750 1751 1752 1753

$$- \pi \delta_{2,2} \beta_2 = - \pi \delta_{2,2} \beta_2 \ln \left(\frac{1}{\beta_2} \right) \ln \left(\frac{1}{\beta_2} \right) = - \pi \delta_{2,2} \beta_2 \ln \left(\frac{1}{\beta_2} \right)^2$$

WEC supply = (dry supply) x (100-(L)) / 100

Следует отметить, что в 1992 году в России было введено в эксплуатацию 1000 км газопроводов.

Actions and Emotions

$$x \cdot \text{length} = \text{left} + \text{right}$$

$$E_{\text{HOMO}} = (n \frac{1}{2} \pi - r) \times 0.25$$

时间是1998年1月15日，地点是美国的

NUMBERS

MOISTURE DETERMINATION

SAMPLE LOCATION Afterburner OutletRUN NO. 1DATE 1-31-89

CHAIN-OF-CUSTODY SAMPLE NO. _____

	GRAMS	GRAMS
IMPIINGER 1	FINAL WEIGHT <u>757.3</u>	IMPIINGER 1 <u>32.7</u>
	INITIAL WEIGHT <u>724.6</u>	
	INCREASE <u>32.7</u>	
IMPIINGER 2	FINAL WEIGHT <u>728.4</u>	IMPIINGER 2 <u>15.5</u>
	INITIAL WEIGHT <u>712.9</u>	
	INCREASE <u>15.5</u>	
IMPIINGER 3	FINAL WEIGHT <u>480.5</u>	IMPIINGER 3 <u>11.9</u>
	INITIAL WEIGHT <u>975.6</u>	
	INCREASE <u>11.9</u>	
SILICA GEL	FINAL WEIGHT <u>855.1</u>	SILICA GEL <u>0</u>
	INITIAL WEIGHT <u>835.9</u>	
	INCREASE <u>0</u>	
	TOTAL MASS OF WATER CAUGHT <u>69.3</u>	GRAMS

CHAIN-OF-CUSTODY SAMPLE NO. _____

FILTER DIAMETER 4 INCHES FILTER TYPE Glass fiberFILTER: FINAL WEIGHT 6475 GMS INITIAL WEIGHT 5278 GMS INCREASE 1197 GMS

TOTAL MASS OF PARTICULATE CAUGHT THIS FILTER

IS ICE PRESENT IN THE IMPIINGER BATH AT THE END OF THIS SAMPLE? YES NO

CALCULATIONS

$$V_{m-std} = 17.65 \left(\frac{P_{bar} + \Delta P}{T_{m-std} + 460} \right) = 17.65 \left(\frac{P_{bar} + 13.6}{T_{m-std} + 460} \right)$$

$$= 17.65 \left(\frac{P_{bar} + 13.6}{T_{m-std} + 460} \right) = \text{FT}^3$$

$$V_{w-std} (H_2O) = \frac{\text{GRAMS COLLECTED}}{21.2 \text{ GRAMS/FT}^3} = \frac{11.9}{21.2} \text{ FT}^3$$

$$\% H_2O = \frac{(V_{w-std}) 100}{(V_{m-std}) + (V_{w-std})} = \frac{100}{(V_{m-std}) + (V_{w-std})} = \frac{100}{(V_{m-std}) + (V_{w-std})} \times$$

$$\text{MOLECULAR WEIGHT (MW)} = \frac{18 (\% H_2O)}{100} + \frac{\text{DRY MW} (100 - \% H_2O)}{100} = 0.18 \left(\frac{11.9}{100} \right) + \left(\frac{100 - 11.9}{100} \right)$$

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48 (\text{CP}) \sqrt{\frac{T_{m-std} + 460}{P_{s(MW)}}} \sqrt{\Delta P} = 85.48 \left(\sqrt{\frac{(T_{m-std} + 460)}{P_{s(MW)}}} \right) \sqrt{\Delta P}$$

$$V_s = \left(\frac{P_{bar}}{P_s} \right) \sqrt{\Delta P} = \left(\frac{P_{bar}}{P_s} \right) \sqrt{\Delta P}$$

$$V_s = \left(\frac{P_{bar}}{P_s} \right) \Delta P = \left(\frac{P_{bar}}{P_s} \right) \left(\frac{11.9}{100} \right) = \text{FT/SEC}$$

$$\text{ACFM} = (V_s)(\text{CSA}) = \left(\frac{P_{bar}}{P_s} \right) (60) \left(\frac{11.9}{100} \right) =$$

$$\text{VELOCITY @ STP} V_{s-std} = V_s (17.65) \left(\frac{P_{bar}}{T_{m-std} + 460} \right) = \left(\frac{P_{bar}}{P_s} \right) (17.65) \left(\frac{11.9}{100} \right) = \text{FT/SEC}$$

$$\text{SCFM} = (V_{s-std})(\text{CSA})(60) = \left(\frac{P_{bar}}{P_s} \right) (60) \left(\frac{11.9}{100} \right) (60) =$$

$$\text{DSCFM} = \left(\frac{100 - \% H_2O}{100} \right) (\text{SCFM}) = \left(\frac{100 - 11.9}{100} \right) (\text{SCFM}) =$$

$$\text{NOZZLE VELOCITY @ STD } V_n = \frac{V_{m-std} + V_{w-std}}{60 (\text{ft}) A_n} = \frac{(V_{m-std} + V_{w-std})}{60 (\text{ft}) A_n} \times 10^{-4} = \text{FT/SEC}$$

$$I = \frac{100 V_{m-std}}{V_{s-std}} = \frac{100 (V_{m-std})}{(V_{s-std})} = \frac{100 (V_{m-std})}{(V_{s-std})} \times \% \text{ Isokinetic}$$

LAB DATA - EVAPORATIONS

PLANT MAXWELL HOUSESAMPLING DATE 1/31/89SAMPLE LOCATION outletRUN NO. 1 FOR 003CHAIN-OF-CUSTODY SAMPLE NO.

ACETONE WASHINGS

GROSS	<u>653.6</u>	GMS
TOTAL SAMPLE	<u>455.9</u>	GMS
(A) NET	<u>197.7</u>	GMS
AMOUNT EVAPORATED (B)	<u>197.7</u>	GMS

EVAP. BEAKER NO.

GROSS	<u>99.8895</u>	GMS
TARE	<u>99.8811</u>	GMS
(C) NET	<u>0.0084</u>	GMS

ACETONE BLANK

EVAP. BEAKER NO.	<u>99.6314</u>	GROSS	<u>99.8845</u>	GMS
	<u>99.6316</u>	TARE	<u>99.8844</u>	GMS
0 NET	<u>0</u>		<u>0</u>	GMS
ACETONE BLANK =	NET <u>100</u>	GMS (D)		
	TOTAL AMOUNT EVAPORATED <u>100</u>	GMS (F)		

$$\begin{aligned}
 \text{CORRECTED NET (E)} &= (C) - (B) \left[\frac{(D)}{(F)} \right] \\
 &= (0.0084) - (197.7) \left[\frac{(100)}{(100)} \right] \\
 &= 0.0084 \text{ GMS (E)} = (C) - B \left[\frac{(D)}{(F)} \right]
 \end{aligned}$$

$$\begin{aligned}
 \text{SCALED UP NET} &= (E) \left(\frac{A}{B} \right) \\
 &= 0.0084 \left(\frac{197.7}{197.7} \right) \\
 &= .0084
 \end{aligned}$$

WET CATCH

GROSS	<u></u>	GMS
TOTAL SAMPLE	<u></u>	GMS
(A) NET	<u></u>	GMS
AMOUNT EXTRACTED (G)	<u></u>	GMS (MLS)
AMOUNT OF E/C	<u></u>	GMS (H)

WATER PHASE
EVAP. BEAKER NO.

GROSS	<u></u>	GMS
TARE	<u></u>	GMS
(J) NET	<u></u>	GMS
WATER BLANK (L)	<u>100</u>	GMS

$$\begin{aligned}
 \text{CORRECTED NET (N)} &= J - (G)(L) \\
 &= \text{---} - \text{---} (100) \\
 &= \text{---} \text{ GMS} \\
 \text{SCALED UP NET} &= (N) \left(\frac{E}{G} \right) \\
 &= \text{---} \text{ (---)} \\
 &= \text{---} \text{ GMS}
 \end{aligned}$$

EC PHASE
EVAP. BEAKER NO.

GROSS	<u></u>	GMS
TARE	<u></u>	GMS
(K) NET	<u></u>	GMS
E/C BLANK (H)	<u>100</u>	MLS

$$\begin{aligned}
 \text{CORRECTED NET (N)} &= K - (N)(H) \\
 &= \text{---} - \text{---} (100) \\
 &= \text{---} \text{ GMS} \\
 \text{SCALED UP NET} &= (P) \left(\frac{E}{G} \right) \\
 &= \text{---} \text{ (---)} \\
 &= \text{---} \text{ GMS}
 \end{aligned}$$

Particulates

per 1000 ml. Aqueous and Hexane/Washing = 00054 grms

per 1000 ml. Hexane = 00005 grms

Type of Particulates in Aqueous Phase

Aqueous Phase = 0 grms

Organic Phase = 0 grms

Totals

GRAINS/DSDF = 1.128415E-02

POUNDS/HOUR = .1946967

HAD RETURN TO CONTINUE

0 034

PARTICULATE FIELD DATA SHEET

PLANT Maxwell House DATE 2-1-89 RUN NO. 2
 SAMPLE LOCATION Afterburner Outlet RAC BOX NO. 4 DRY GAS METER NO. 175176
 NOZZLE NO. 1 NOZZLE SIZE 1/2 INCHES PITOT NO. 19 c_p .83
 TIME AT EACH POINT (S) 25.0 MINUTES DELTA H. 2.00 THERMOCOUPLE NO.: T₁ 41
 AMBIENT PRESSURE (P_{BAR}) 29.78 "HG PROBE OUTLET 38
 STATIC PRESSURE (P) -0.02 "H₂O/13.6 = "HG (P meter)
 BOX OUTLET 18
 STACK PRESSURE (P_S) = P_{bar} + P_{meter} = "HG OPERATING CONDITION OR REMARKS _____
 DRY BULB °F WET BULB °F XH₂O _____

PORT/ POINT	MILITARY CLOCK TIME	METER READING	PITOT DELTA P "H ₂ O	ORIFICE DELTA H "H ₂ O	METER TEMP. °F		LINE VAC "HG	PROBE OUTLET °F	BOX OUTLET TEMP °F	BOX TEMP °F	STACK TEMP °F
					IN	OUT					
A-1	0750	151.79	.08	1.48	91	91	2	188	203	223	1523
2	52 $\frac{1}{2}$	153.2	.08	1.48	92	90	2	189	201	220	1540
3	55	154.9	.085	1.70	92	90	2	191	205	226	1545
4	57 $\frac{1}{2}$	156.4	.07	1.30	94	91	2	194	204	228	1544
5	0800	157.4	.07	1.30	94	91	2	197	206	227	1528
6	02 $\frac{1}{2}$	159.5	.07	1.30	96	91	2	198	207	228	1499
7	5	161.4	.07	1.30	99	92	2	200	204	225	1530
8	07 $\frac{1}{2}$	163.1	.065	1.20	99	92	1+	201	208	222	1524
9	10	164.3	.065	1.20	100	92	1+	201	208	226	1535
10	12 $\frac{1}{2}$	165.3	.065	1.20	100	92	1+	202	209	228	1534
11	15	167.0	.06	1.10	100	92	1+	203	210	227	1503
12	17 $\frac{1}{2}$	168.2	.055	1.02	100	92	1+	204	212	224	1488
END	0820	169.72									
B-1	0850	169.82	.05	.93	89	89	1+	195	198	219	1484
2	02 $\frac{1}{2}$	171.5	.08	1.50	88	89	2	198	199	220	1520
3	55	172.3	.08	1.50	88	87	2	198	200	223	1530
4	57 $\frac{1}{2}$	174.5	.07	1.30	90	87	2	199	201	228	1530
5	0900	175.5	.07	1.30	91	87	2	200	203	229	1500
6	02 $\frac{1}{2}$	176.5	.075	1.40	94	87	2	201	204	227	1495
7	05	177.5	.075	1.40	95	88	2	201	203	225	1493
8	07 $\frac{1}{2}$	180.0	.07	1.30	96	88	2	202	203	226	1496
9	10	181.9	.06	1.10	97	88	2	203	203	225	1493
10	12 $\frac{1}{2}$	183.0	.06	1.10	97	88	2	204	203	226	1495
11	15	184.0	.05	.93	98	88	2	204	204	224	1490
12	17 $\frac{1}{2}$	184.9	.05	.93	99	88	2	204	204	225	1498
END	0920	187.04	...	delta H = $T_a =$							

* Sum, average or Difference

Pre-Leak Check 0.00 at 15" Post Leak Check 0.00 at 3" FYRITE: % OXYGEN 15.0
% CARBON DIOXIDE 6.0

CLIENT: CANADIAN FISHING

Date: 02/25/87
Time: 10:38 AM

AVERAGE VELOCITY PROFILE

Delta r	Delta F	Square Root
0.00	0.00	0.00
0.01	0.18	0.42
0.02	0.22	0.47
0.03	0.26	0.51
0.04	0.26	0.51
0.05	0.26	0.51
0.06	0.26	0.51
0.07	0.26	0.51
0.08	0.26	0.51
0.09	0.26	0.51
0.10	0.26	0.51
0.11	0.26	0.51
0.12	0.26	0.51
0.13	0.26	0.51
0.14	0.26	0.51
0.15	0.26	0.51
0.16	0.26	0.51
0.17	0.26	0.51
0.18	0.26	0.51
0.19	0.26	0.51
0.20	0.26	0.51
0.21	0.26	0.51
0.22	0.26	0.51
0.23	0.26	0.51
0.24	0.26	0.51
0.25	0.26	0.51
0.26	0.26	0.51
0.27	0.26	0.51
0.28	0.26	0.51
0.29	0.26	0.51
0.30	0.26	0.51
0.31	0.26	0.51
0.32	0.26	0.51
0.33	0.26	0.51
0.34	0.26	0.51
0.35	0.26	0.51
0.36	0.26	0.51
0.37	0.26	0.51
0.38	0.26	0.51
0.39	0.26	0.51
0.40	0.26	0.51
0.41	0.26	0.51
0.42	0.26	0.51
0.43	0.26	0.51
0.44	0.26	0.51
0.45	0.26	0.51
0.46	0.26	0.51
0.47	0.26	0.51
0.48	0.26	0.51
0.49	0.26	0.51
0.50	0.26	0.51
0.51	0.26	0.51
0.52	0.26	0.51
0.53	0.26	0.51
0.54	0.26	0.51
0.55	0.26	0.51
0.56	0.26	0.51
0.57	0.26	0.51
0.58	0.26	0.51
0.59	0.26	0.51
0.60	0.26	0.51
0.61	0.26	0.51
0.62	0.26	0.51
0.63	0.26	0.51
0.64	0.26	0.51
0.65	0.26	0.51
0.66	0.26	0.51
0.67	0.26	0.51
0.68	0.26	0.51
0.69	0.26	0.51
0.70	0.26	0.51
0.71	0.26	0.51
0.72	0.26	0.51
0.73	0.26	0.51
0.74	0.26	0.51
0.75	0.26	0.51
0.76	0.26	0.51
0.77	0.26	0.51
0.78	0.26	0.51
0.79	0.26	0.51
0.80	0.26	0.51
0.81	0.26	0.51
0.82	0.26	0.51
0.83	0.26	0.51
0.84	0.26	0.51
0.85	0.26	0.51
0.86	0.26	0.51
0.87	0.26	0.51
0.88	0.26	0.51
0.89	0.26	0.51
0.90	0.26	0.51
0.91	0.26	0.51
0.92	0.26	0.51
0.93	0.26	0.51
0.94	0.26	0.51
0.95	0.26	0.51
0.96	0.26	0.51
0.97	0.26	0.51
0.98	0.26	0.51
0.99	0.26	0.51
1.00	0.26	0.51

THE AVERAGE SQUARE ROOT OF DELTA F = .2594878

0 080

CLIENT: MAXWELL HOUSE

Date: 02/26/89
Time: 104:38 AM

Delta H (IN H2O)	Meter Temp (F)		Stack Temp (F)
	IN	OUT	
1.45	91.00	91.00	1525.00
1.45	92.00	92.00	1540.00
1.70	92.00	92.00	1545.00
1.80	94.00	91.00	1544.00
1.80	94.00	91.00	1528.00
1.80	96.00	91.00	1499.00
1.80	97.00	92.00	1530.00
1.20	97.00	92.00	1524.00
1.20	100.00	92.00	1555.00
1.20	100.00	92.00	1554.00
1.10	100.00	92.00	1503.00
1.02	100.00	92.00	1488.00
0.93	89.00	89.00	1484.00
1.00	88.00	89.00	1520.00
1.00	88.00	87.00	1530.00
1.30	89.00	87.00	1530.00
1.30	91.00	87.00	1500.00
1.40	94.00	87.00	1490.00
1.40	95.00	88.00	1493.00
1.30	96.00	88.00	1496.00
1.10	97.00	88.00	1493.00
1.10	97.00	88.00	1490.00
0.93	98.00	88.00	1490.00
0.93	99.00	88.00	1498.00

AVERAGES

DELTA H = 1.26120 IN H2O

METER TEMP. = 92.27084 F

STACK TEMP. = 1513.208 F

HYDROCARBON SAMPLING DATA

0 097

SAMPLE LOCATION OutletRUN NO. 2DATE 2-1-89

HYDROCARBON PUMP NO. _____

TIME	ROTOMETER SETTING	GAS METER TEMP.	VACUUM "HG	SAMPLE RATE L/M
0750	60	74	1+	1
55	60	74	1+	1
0800	60	74	1+	1
05	60	75	1+	1
10	60	75	1+	1
15	60	76	1+	1
20	60	76	1+	1
25	60	76	1+	1
30	60	76	1+	1
35	60	76	1+	1
40	60	76	1+	1
45	60	77	1+	1
0850	60	78	1+	1

PRE-LEAK CHECK ✓POST-LEAK CHECK ✓

PUMP CALIBRATION FLOW RATE	CALIBRATION INSTRUMENT	FYRITE
FLOW RATE LITERS/MIN	ROTAMETER SETTING 60	% OXYGEN % CARBON DIOXIDE

CORRECTING ROTOMETER VOLUME TO DRY STANDARD CONDITIONS

$$\text{EQUATION: } V_{\text{STD}} = V_m \times \frac{P_m}{P_{\text{STD}}} \times \frac{T_{\text{STD}}}{T_m}$$

WHERE:

 V_m = SAMPLE RATE OF ROTOMETER (L/M) T_{STD} = $70^{\circ}\text{F} + 460^{\circ}\text{F} = 530^{\circ}\text{F}$ P_{STD} = 29.92"HG P_m = BAROMETRIC PRESSURE DURING SAMPLING ("HG) T_m = TEMPERATURE OF GAS STREAM ($+460^{\circ}\text{F}$)

$$V_{\text{STD}} = \frac{X}{()} \times \frac{(530)}{(29.92)} = \frac{X}{()}$$

$$CF = (V_{\text{STD}} \text{ L/MIN}) (3.53 \times 10^{-2} \text{ CF/L}) (60 \text{ MIN/1 HR}) = () (3.53 \times 10^{-2}) (60) \\ = \text{ CFH}$$

ANAL. METHOD #3 (gas bag and Impinger) Contaminants Data Sheet

Company Name: MAXWELL HOUSE
 Units: AFTERBURNER DUTCH
 Location: HOBOKEN, NJ
 Run #: 2
 Batch ID #: 1104
 Day ID #: 1104

Total Wet Cation (mls): 44.00
 Sample Volume (std. Ft3): 2.12
 Stack Flowrate (DSCFM): 2935.00
 Stack % Moisture: 7.60

Contaminants	Name	t	MW	GC: Liquid Concentration (mg/l)		GC: Gas Concentration (ppmv)	
				+/-	(ppmv)	+/-	(ppmv)
(1)	ETH as METHANE	1	16.00	0.000	0.000	35.000	35.000
(2)	CARBON MONOXIDE	1	28.01	0.000	0.000	416.000	416.000
(3)		1					
(4)		1					
(5)		1					
(6)		1					
(7)		1					
(8)		1					
(9)		1					
(10)		1					

Contaminants	Name	t	Concentrations and Emissions		
			LBS/HR	PPMV(WET)	PPMV(DRY)
(1)	ETH as METHANE	1	0.181	32.982	35.662
(2)	CARBON MONOXIDE	1	3.677	384.384	416.000
(3)		1	0.000	ERR	ERR
(4)		1	0.000	ERR	ERR
(5)		1	0.000	ERR	ERR
(6)		1	0.000	ERR	ERR
(7)		1	0.000	ERR	ERR
(8)		1	0.000	ERR	ERR
(9)		1	0.000	ERR	ERR
(10)		1	0.000	ERR	ERR

This Program Uses the Following Equations for Each Contaminant Where:

w = Total Wet Cation (mls)
 s = Sample Volume (std. Ft3)
 m = Stack Moisture (%)
 f = Stack Flowrate (DSCFM)

E = GC: Liquid Concentration (mg/l)
 F = GC: Gas Concentration (dry ppmv)
 b = Contaminant's Molecular Weight

FOR THE IMPINGER CONCENTRATES:

$$WATER = \text{WET ppmv} = \text{CONTAMINANT CONC} \times \text{WATER (B)} \times (B)$$

$$WATER = \text{WET ppmv} = \text{WET CONC} \times (1000 \times (B)) \times 100$$

$$WATER = \text{WATER (B)} = \text{CONTAMINANT CONC} \times \text{WATER (B)} \times (B)$$

FOR THE DRY CONCENTRATES:

$$DRY = \text{WET CONC} \times (B)$$

$$DRY = \text{WET CONC} = \text{WET CONC} \times (1000 \times (B)) \times 100$$

$$DRY = \text{WATER (B)} = \text{CONTAMINANT CONC} \times \text{WATER (B)} \times (B)$$

CONCENTRATIONS AND EMISSIONS:

$$\text{TOTAL DRY ppmv} = \text{DRY} \times (B)$$

$$\text{TOTAL WET ppmv} = \text{WATER (B)} \times (B)$$

$$\text{TOTAL CONC} = \text{WATER (B)} + \text{DRY}$$

0 089

SAMPLE LOCATION Outlet

MOISTURE DETERMINATION

RUN NO. 2DATE 7/1/89

CHAIN-OF-CUSTODY SAMPLE NO. _____

	GRAMS	GRAMS
IMPIINGER 1	FINAL WEIGHT <u>720.9</u> INITIAL WEIGHT <u>696.4</u> INCREASE	<u>24.5</u>
IMPIINGER 2	FINAL WEIGHT <u>693.0</u> INITIAL WEIGHT <u>678.2</u> INCREASE	<u>14.8</u>
IMPIINGER 3	FINAL WEIGHT <u>499.4</u> INITIAL WEIGHT <u>493.5</u> INCREASE	<u>2.9</u>
SILICA GEL	FINAL WEIGHT <u>720.0</u> INITIAL WEIGHT <u>704.5</u> INCREASE	<u>15.5</u>
	TOTAL MASS OF WATER CAUGHT	<u>58.7</u> GRAMS

CHAIN-OF-CUSTODY SAMPLE NO. _____

FILTER DIAMETER 4 INCHES FILTER TYPE Glass filterFILTER: FINAL WEIGHT 6514 GMS INITIAL WEIGHT 6280 GMS INCREASE0.0234 GRAMS

TOTAL MASS OF PARTICULATE CAUGHT THIS FILTER

IS ICE PRESENT IN THE IMPIINGER BATH AT THE END OF THIS SAMPLE? YES NO

CALCULATIONS

$$V_{m-std} = 17.65 (V_m) \left(\frac{P_{bar} + \Delta P / 13.6}{T_m + 460} \right) = 17.65 () () + 13.6 =$$

$$= 17.65 () () = \text{FT}^3$$

$$V_{m-std} (H_2O) = \frac{\text{GRAMS COLLECTED}}{21.2 \text{ GRAMS/FT}^3} = \frac{58.7}{(21.2)} = \text{FT}^3$$

$$\% H_2O = \frac{(V_{m-std}) 100}{((V_{m-std}) + (V_{m-std} H_2O))} = \frac{100 ()}{() ()} = \frac{()}{()} = \%$$

$$\text{MOLECULAR WEIGHT (MW)} = \frac{18 (V_{m-std} H_2O)}{100} + \frac{\text{DRY MW} (100 - \% H_2O)}{100} = 0.18 () + \frac{()}{100}$$

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48 (\text{cp}) \sqrt{\frac{T_m + 460}{P_s (\text{MW})}} \sqrt{\Delta P} = 85.48 () \sqrt{\frac{()}{() ()}} \sqrt{\Delta P} \text{ DELTA P}$$

$$V_s = () \sqrt{\Delta P} = () () \sqrt{\Delta P}$$

$$V_s = () \text{ DELTA P} = () () = \text{FT/SEC}$$

$$\text{ACFM} = (V_s)(60)(\text{CSA}) = () (60) () =$$

$$\text{VELOCITY a stp} V_{s-std} = V_s (17.65) \left(\frac{P_s}{T_m + 460} \right) = \frac{() (17.65) ()}{()} = \text{FT/SEC}$$

$$\text{SCFM} = (V_{s-std})(\text{CSA})(60) = () () (60) =$$

$$\text{DSCFM} = \left(\frac{100 - \% H_2O}{100} \right) (\text{SCFM}) = () () =$$

$$\text{NOZZLE VELOCITY a STD } V_n = \frac{V_{m-std} + V_{m-std} H_2O}{60 (\theta) A_n} = \frac{()}{60 () () (10^{-4})} = \text{FT/SEC}$$

$$I = \frac{100 V_{m-std}}{V_{s-std}} = \frac{100 ()}{()} = \% \text{ Isokinetic}$$

LAB DATA - EVAPORATIONS

PLANT MAXWELL HOUSE

SAMPLING DATE 2/1/89

CHAIN-OF-CUSTODY SAMPLE NO. _____

ACETONE WASHINGS

	GROSS	659.4	GMS
TOTAL	TARE	457.1	GMS
SAMPLE	(A) NET	202.3	GMS
AMOUNT EVAPORATED (B)		202.3	GMS

EVAP. BEAKER NO.

GROSS	<u>106.9284</u>	GMS
TARE -	<u>106.9169</u>	GMS
(C) NET	<u>0.0117</u>	GMS

ACETONE BLANK

$$\begin{aligned} \text{CORRECTED NET (E)} &= (C) - (B) \left[\frac{(D)}{(F)} \right] \\ &= \underline{0.0117} - \underline{(202.3)} \left[\frac{0}{(200)} \right] \\ &= \underline{0.0117} \quad \text{GMS (E)} = (C) - B \left[\frac{(D)}{(F)} \right] \end{aligned}$$

$$\text{SCALED UP NET} = (E) \left(\frac{A}{B} \right)$$

$$= \frac{0.0117}{0.0117} \left(\frac{202.3}{202.3} \right)$$

SAMPLE LOCATION OUTLET

RUN NO. FOR

OPERATING CONDITION _____

WET CATCH

	GROSS	_____	GMS
TOTAL SAMPLE	TARE	_____	GMS
	(A) NET	_____	GMS
AMOUNT EXTRACTED (G)		_____	GMS (MLS)
AMOUNT OF E/D		_____	GMS (H)

WATER PHASE
EVAP. BEAKER NO.

GROSS _____ GMS
TARE - _____ GMS
(J) NET _____ GMS
WATER BLANK
(L) - 100 GMS

CORRECTED NET
(N) = J • (G)(L)

$$\text{SCALED UP NET} = (N) \left(\frac{\Sigma}{G} \right)$$

EC PHASE
EVAP. BEAKER NO.

~~GROSS~~ _____ GMS
~~TARE~~ _____ GMS
 ~~NET~~ _____ GMS
E/C BLANK
 = _____ GMS
100 M/S

$$\begin{aligned} \text{CORRECTED NET} \\ (\text{N}) &= \text{E} - (\text{H})(\text{M}) \\ &= \text{---} - \text{---} (100) \\ &= \text{---} \quad \text{GMS} \end{aligned}$$

$$\text{SCALED UP NET} = (P) \left(\frac{F}{G} \right)$$

Other Contributors

1993-1994 PROGRESSIVE STUDY MATERIALS WORKSHOP 2014-2015

0 031

ANSWER TO THE QUESTION OF THE PRESENCE OF THE SOUL IN THE BODY

W. G. BROWN, DIRECTOR, AND G. R. WILSON, ASSISTANT DIRECTOR.

totals

GRAINS/DSLF = 1.608752E-02

HIT RETURN TO CONTINUE

0092

PARTICULATE FIELD DATA SHEET

PLANT MAXWELL House DATE 1 RUN NO. 3
 SAMPLE LOCATION OUTLET RAC BOX NO. 4 DRY GAS METER NO. 175176
 NOZZLE NO. 1 NOZZLE SIZE 1/2 INCHES PITOT NO. 7 C_p .83
 TIME AT EACH POINT (S) 2/2 MINUTES DELTA H 2.00 THERMOCOUPLE NO.: T 41
 AMBIENT PRESSURE (P_{bar}) 29.80 "HG PROBE OUTLET 38
 STATIC PRESSURE (P) 0.02 "H₂O/13.6 = "HG (P meter)
 STACK PRESSURE (P_s) = P_{bar} + P_{meter} = "HG OPERATING CONDITION OR REMARKS
 DRY BULB °F WET BULB °F XH₂O

PORT/POINT	MILITARY CLOCK TIME	METER READING	PITOT DELTA P "H ₂ O	ORIFICE DELTA H "H ₂ O	METER TEMP °F IN	LINE VAC "HG	PROBE OUTLET °F	BOX OUTLET TEMP °F	BOX TEMP °F	STACK TEMP °F
A-1	1045	189.263	.07	1.3	86 86	6+	189	192	209	1548
2	47 ¹ ₂	90.6	.065	1.2	86 85	6+	191	198	221	1543
3	50	92.1	.065	1.2	87 85	6+	193	200	225	1520
4	52 ¹ ₂	93.7	.07	1.3	89 85	6+	195	201	226	1530
5	55	95.7	.07	1.3	90 85	6+	198	203	225	1548
6	57 ¹ ₂	96.8	.07	1.3	90 85	6+	199	205	225	1548
7	1100	97.7	.065	1.2	91 85	6+	200	210	225	1546
8	02 ¹ ₂	99.5	.07	1.3	91 85	6+	201	211	221	1520
9	05	00.0	.065	1.2	92 86	6+	202	210	223	1492
10	07 ¹ ₂	3.2	.065	1.2	94 86	6+	202	210	225	1522
11	10	4.3	.07	1.3	95 86	6+	203	212	225	1520
12	12 ¹ ₂	5.4	.04	.75	95 87	6+	204	213	228	1500
13	1115	206.70								
B-1	1135	207.6	.05	.94	90 87	5+	200	201	225	1580
2	20	208.5	.05	.94	91 87	5+	203	200	224	1571
3	220.0	209.73	.065	1.2	88 88	6+	200	200	226	1530
4	221.2	211.2	.065	1.2	88 87	6+	207	201	225	1565
5	224.0	212.8	.05	.94	90 87	5+	200	202	228	1533
6	224.0	213.0	.06	1.12	91 87	5+	201	203	227	1530
7	229.0	213.0	.06	1.12	92 87	5+	202	204	227	1500
8	232.0	215.6	.06	1.12	93 87	5+	203	204	225	1501
9	235.0	218.0	.07	1.3	94 88	6+	203	205	226	1498
10	237.0	219.2	.07	1.3	94 88	6+	203	205	225	1498
11	240.0	220.0	.065	1.2	95 88	6+	203	205	228	1494
12	242.0	221.9	.065	1.2	95 88	6+	203	205	227	1495
13	244.0	223.470	V=	delta H = T _m =						

* Sum, average or Difference

Pre-Leak Check 0.01 at 15" Post Leak Check ✓FYRITE: % OXYGEN 15.0
% CARBON DIOXIDE 5.0

0 093

Date: 10/20/2017

SYSTEMIC VULNERABILITY PRESSURE

Delta F (in H2O)	square root
0.00	0.20
0.01	0.20
0.02	0.20
0.03	0.20
0.04	0.20
0.05	0.20
0.06	0.20
0.07	0.20
0.08	0.20
0.09	0.20
0.10	0.20
0.11	0.20
0.12	0.20
0.13	0.20
0.14	0.20
0.15	0.20
0.16	0.20
0.17	0.20
0.18	0.20
0.19	0.20
0.20	0.20

THE AVERAGE SQUARE ROOT OF DELTA F = .250/011

0 094

CLIENT: HAWKELLE HOUSE

Date: 02/25/89
Time: 10:30 AM

Delta T (IN. H2O)	Meter Temp (F)		Stack Temp (F)
	IN	OUT	
1.120	86.00	86.00	1548.00
1.120	86.00	86.00	1548.00
1.120	87.00	86.00	1540.00
1.130	87.00	86.00	1530.00
1.130	88.00	86.00	1548.00
1.130	89.00	86.00	1548.00
1.120	90.00	86.00	1548.00
1.130	90.00	86.00	1548.00
1.120	91.00	86.00	1548.00
1.130	91.00	86.00	1548.00
1.120	91.00	86.00	1548.00
1.120	92.00	86.00	1492.00
1.120	94.00	86.00	1522.00
1.130	95.00	86.00	1520.00
0.75	95.00	87.00	1500.00
0.94	96.00	87.00	1580.00
0.94	91.00	87.00	1571.00
1.20	88.00	88.00	1530.00
1.20	88.00	87.00	1565.00
0.94	90.00	87.00	1535.00
1.12	91.00	87.00	1530.00
1.12	92.00	87.00	1500.00
1.12	93.00	87.00	1501.00
1.130	94.00	88.00	1498.00
1.130	94.00	86.00	1498.00
1.120	95.00	88.00	1494.00
1.120	95.00	86.00	1495.00

AVERAGES

DELTA T = 1.172064 IN. H2O

METER TEMP. = 86.74166 F

STACK TEMP. = 1526.300 F

SAMPLE LOCATION Outlet

HYDROCARBON SAMPLING DATA

RUN NO. 1DATE 2/1/89 - 0 035

HYDROCARBON PUMP NO. _____

TIME	ROTOMETER SETTING	GAS METER TEMP.	VACUUM "HG	SAMPLE RATE L/M
1045	60	80	1+	1
50	60	81	1+	1
55	60	82	1+	1
1100	60	84	1+	1
05	60	84	1+	1
10	60	84	1+	1
15	60	84	1+	1
20	60	85	1+	1
25	60	85	1+	1
30	60	86	1+	1
35	60	87	1+	1
40	60	88	1+	1
1145	60	88	1+	1

PRE-LEAK CHECK ✓POST-LEAK CHECK ✓

PUMP CALIBRATION FLOW RATE	CALIBRATION INSTRUMENT	FYRITE
FLOW RATE LITERS/MIN	ROTAMETER SETTING	% OXYGEN % CARBON DIOXIDE

CORRECTING ROTOMETER VOLUME TO DRY STANDARD CONDITIONS

$$\text{EQUATION: } V_{\text{STD}} = V_m \times \frac{P_m}{P_{\text{STD}}} \times \frac{T_{\text{STD}}}{T_m}$$

WHERE:

 V_m = SAMPLE RATE OF ROTOMETER (L/M) T_{STD} = $70^{\circ}\text{F} + 460^{\circ}\text{F} = 530^{\circ}\text{F}$ P_{STD} = 29.92"HG P_m = BAROMETRIC PRESSURE DURING SAMPLING ("HG) T_m = TEMPERATURE OF GAS STREAM ($+460^{\circ}\text{F}$)

$$V_{\text{STD}} = \frac{X}{()} \times \frac{(530)}{(29.92)} = \frac{X}{()}$$

$$\text{CF} = (V_{\text{STD}} \text{ L/MIN}) (3.53 \times 10^{-2} \text{ CF/L}) (60 \text{ MIN/1 HR}) = () (3.53 \times 10^{-2}) (60)$$

$$= \text{CFH}$$

Method #3 Gas Bag and Impinger Contents Data Sheet

Company Name: MAXWELL HOUSE
 Address: AFTERBURNER OUTLET
 Zip Code: HOBOKEN, NJ
 Phone: 201-643-2200
 Total Wet Catch (mls): 44.00
 Sample Volume (std. Ft3): 2.12
 Stack Flowrate (DSCFM): 1930.00
 Stack % Moisture: 9.30

ANALYSIS NUMBER	NAME	PPM	GC: Liquid Concentration (mg/l)		GC: Gas Concentration (ppmv)	
			(1)	(2)	(3)	(4)
(1)	ETHANE	0.00	0.600	0.600	30.000	30.000
(2)	PROPANE	28.01	0.000	0.000	166.000	166.000
(3)						
(4)						
(5)						
(6)						
(7)						
(8)						
(9)						
(10)						

Contaminants	Name	LB/HR	Emissions	
			PPMV (WET)	PPMV (DRY)
(1)	ETHANE as METHANE	0.147	27.810	30.662
(2)	PROPANE	1.391	150.562	166.000
(3)		0.000	ERR	ERR
(4)		0.000	ERR	ERR
(5)		0.000	ERR	ERR
(6)		0.000	ERR	ERR
(7)		0.000	ERR	ERR
(8)		0.000	ERR	ERR
(9)		0.000	ERR	ERR
(10)		0.000	ERR	ERR

This Program uses the Following Equations for Each Contaminant Where:

(1) = Total Wet Catch (mls)

E = GC: Liquid Concentration (mg/l)

(2) = Sample Volume (mls + 15)

F = GC: Gas Concentration (dry ppmv)

(3) = Stack Moisture

W = Contaminant's Molecular Weight

(4) = Stack Flowrate (DSCFM)

or Use these Contests

(1) = dry ppmv = (1000mls x 0.0001) / (W x E x F)

(2) = wet ppmv = (dry ppmv x 1000mls) / 100

(3) = pounds/hour = (0.000000015000 x dry ppmv) x (4) x (5)

or Use these Equations

(1) = dry ppmv = (1)

(2) = wet ppmv = (dry ppmv x 1000mls) / 100

(3) = pounds/hour = (0.000000015000 x dry ppmv) x (4) x (5)

Concentrations and Emissions:

Total dry ppmv = (H1) + (H2)

Total wet ppmv = (J1) + (J2)

Total pounds/hour = (K1) + (K2)

Rate \$/HR

MOISTURE DETERMINATION

0097

SAMPLE LOCATION OUTLETRUN NO. 3DATE 2-1-89

CHAIN-OF-CUSTODY SAMPLE NO. _____

	GRAMS	GRAMS
IMPINGER 1	FINAL WEIGHT <u>757.6</u> INITIAL WEIGHT <u>721.3</u> INCREASE	IMPINGER 1 <u>36.3</u>
IMPINGER 2	FINAL WEIGHT <u>694.9</u> INITIAL WEIGHT <u>676.9</u> INCREASE	IMPINGER 2 <u>18.0</u>
IMPINGER 3	FINAL WEIGHT <u>492.5</u> INITIAL WEIGHT <u>483.0</u> INCREASE	IMPINGER 3 <u>3.5</u>
SILICA GEL	FINAL WEIGHT <u>799.7</u> INITIAL WEIGHT <u>737.6</u> INCREASE	SILICA GEL <u>62.1</u>
	TOTAL MASS OF WATER CAUGHT <u>69.9</u>	GRAMS

CHAIN-OF-CUSTODY SAMPLE NO. _____

FILTER DIAMETER 4 INCHES FILTER TYPE Glass FiberFILTER: FINAL WEIGHT 62.71 GMS INITIAL WEIGHT 61.71 GMS INCREASE 0.0094 GMS

TOTAL MASS OF PARTICULATE CAUGHT THIS FILTER

IS ICE PRESENT IN THE IMPINGER BATH AT THE END OF THIS SAMPLE? YES NO

CALCULATIONS

$$V_{n-std} = 17.65 (V_n) \left(\frac{P_{bar} + \Delta H/13.6}{T_n + 460} \right) = 17.65 () \left(\frac{ }{ } + \frac{13.6}{ } \right)$$

$$= 17.65 () () = \text{FT}^3$$

$$V_{n-std} (H_2O) = \frac{\text{GRAMS COLLECTED}}{21.2 \text{ GRAMS/FT}^3} = \frac{ }{ } \text{FT}^3$$

$$\% H_2O = \frac{(V_{n-std}) 100}{((V_{n-std}) + (V_{n-std}))} = \frac{100 () ()}{() ()} = \frac{ }{ } \%$$

$$\text{MOLECULAR WEIGHT (MW)} = \frac{18 (XH_2O)}{100} + \frac{\text{DRY MW} (100 - XH_2O)}{100} = 0.18 () + \frac{ }{100}$$

$$\text{VELOCITY (ACTUAL) IN STACK} = 85.48 (\text{Cp}) \sqrt{\frac{T_n + 460}{P_s (\text{MW})}} \sqrt{\Delta P} = 85.48 () \sqrt{\frac{ }{ } ()} \sqrt{\Delta P}$$

$$V_s = () \sqrt{\Delta P} = () () \sqrt{\Delta P}$$

$$V_s = () \Delta P = () () = \text{FT/SEC}$$

$$\text{ACFM} = (V_s)(60)(\text{CSA}) = () (60) () =$$

$$\text{VELOCITY @ Stp } V_{s-std} = V_s (17.65) \left(\frac{P_s}{T_n + 460} \right) = \frac{ }{ } (17.65) () = \text{FT/SEC}$$

$$\text{SCFM} = (V_{s-std})(\text{CSA})(60) = () () (60) =$$

$$\text{DSCFM} = \left(\frac{100 - XH_2O}{100} \right) (\text{SCFM}) = () () =$$

$$\text{NOZZLE VELOCITY @ STD } V_n = \frac{V_{n-std} + V_{s-std}}{60 (\theta) A_n} = \frac{ }{60 () () (10^{-4})} \text{ FT/SEC}$$

$$I = \frac{100 V_{n-std}}{V_{s-std}} = \frac{100 ()}{()} = \% \text{ Isokinetic}$$

PLANT MAXWELL HOUSE SAMPLE LOCATION outlet RUN NO. 3 FOR
 SAMPLING DATE 2/1/89 OPERATING CONDITION

CHAIN-OF-CUSTODY SAMPLE NO.

ACETONE WASHINGS

GROSS	<u>646.1</u>	GMS
TARE	<u>455.6</u>	GMS
(A) NET	<u>190.5</u>	GMS
AMOUNT EVAPORATED (B)	<u>190.5</u>	GMS
EVAP. BEAKER NO.		
GROSS	<u>96.8724</u>	GMS
TARE	<u>96.8665</u>	GMS
(C) NET	<u>0.0059</u>	GMS

ACETONE BLANK

EVAP. BEAKER NO.		
99.6314 GROSS	<u>96.8724</u>	GMS
99.6316 TARE	<u>96.8665</u>	GMS
(D) NET	<u>0.0059</u>	GMS
ACETONE BLANK = NET	<u>0</u>	GMS (D)
TOTAL AMOUNT EVAPORATED	<u>100</u>	GMS (F)
CORRECTED NET (E) = (C) - (B) $\left[\frac{(D)}{(F)} \right]$		
= <u>0.0059</u> - <u>190.5</u> $\left[\frac{0}{100} \right]$		
= <u>0.0059</u> GMS (E) = (C) - B $\left[\frac{(D)}{(F)} \right]$		

SCALED UP NET = (E) $\left(\frac{A}{B} \right)$
 $= \frac{0.0059}{0.0059} \left(\frac{190.5}{190.5} \right)$

WET CATCH

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(A) NET	<u> </u>	GMS
AMOUNT EXTRACTED (G)	<u> </u>	GMS (MLS)
AMOUNT OF E/O	<u> </u>	GMS (H)

WATER PHASE
EVAP. BEAKER NO.

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(J) NET	<u> </u>	GMS
WATER BLANK (L)	<u> </u>	GMS
100 GMS		

CORRECTED NET
(N) = J - (G)(L)
 $= \frac{0.0059}{0.0059} - \frac{0}{100}$

SCALED UP NET = (N) $\left(\frac{E}{G} \right)$
 $= \frac{0.0059}{0.0059} \left(\frac{0}{0} \right)$

EC PHASE
EVAP. BEAKER NO.

GROSS	<u> </u>	GMS
TARE	<u> </u>	GMS
(K) NET	<u> </u>	GMS
E/C BLANK (H)	<u> </u>	GMS
100 MLS		

CORRECTED NET
(M) = K - (H)(N)
 $= \frac{0.0059}{0.0059} - \frac{0}{100}$

SCALED UP NET = (P) $\left(\frac{E}{G} \right)$
 $= \frac{0.0059}{0.0059} \left(\frac{0}{0} \right)$

卷之三

0 000

THE UNIVERSITY OF TORONTO LIBRARY ACQUISITION COMMITTEE 2000-2001

Figure 1. The effect of the Na^+ concentration on the Na^+ current (I_{Na}) in the absence of K^+ (0 mM K^+).

3. THE STATE OF DENSITY OF HOMOGENEOUS PHASE

Digitized by srujanika@gmail.com

GRADING GUIDE FOR . . .

Introduc-

GRAINS/DSCH = .354968E-03
POUNDS/HOUR = .1216771

BT1: RETURN TO CONTINUE

CUSTEN: NEWWELL, ROBERT

Date: 02/28/89
Time: 10:30 AM

THE FOLLOWING WERE PROGRAMMER INPUTS FOR ISOKINETICS

SAMPLER ACT	1	2	3
DATE	02/28/89	02/28/89	02/28/89
TIME	1000-1151	0750-0920	1045-1245
UNIT SAMPLED	OUTLET	OUTLET	OUTLET
ACTUAL INDUCTION			
DIAMETER (MM) IN	0.50	0.50	0.50
PILOT FLOW (MM)	0.83	0.83	0.83
TIME TO SAMPLE			
POINT (MM)	3.00	2.00	2.50
AMBIENT TEMPERATURE (Farenheit)	27.73	27.78	27.80
WATER TEMPERATURE (Farenheit)	-0.02	-0.02	-0.02
MEAN VOLUME (ML) INLET	35.46	35.46	35.39
WATER COLLECTED INFLUXES, GM/H	67.30	56.70	69.50
CARBON DIOXIDE (CO ₂), %	6.70	6.50	6.00
OXYGEN (O ₂), %	15.20	15.10	14.00
STACK DIAMETER (MM) IN	30.00	30.00	30.00
STACK LENGTH (METER)	4.51	4.71	4.91

CLIENT: MAXWELL HULBEC

Date: 02/26/87
Time: 10:38 AM

ISOBUTANE FIC CALCULATIONS

ITEM/TEST (TEST)	1	2	3
DATE	1/31/87	2/1/87	2/20/87
TIME	0000-1101	0000-0920	10:38
UNIT SAMPLED	OUTLET	OUTLET	OUTLET
METER VOLUME (V _{STP} -STD) (ml/min)	60.43	53.00	52.10
WATER COLLECTED (V _{STP} -STD) (ml/min)	5.26	4.70	5.00
MOISTURE (VOL %)	7.00	7.04	7.04
ACTUAL MOLECULAR WEIGHT (MW), g/mole/mole	26.69	26.60	26.45
ACTUAL VELOCITY IN STACK (V _S), ft/sec	27.84	27.98	27.21
ACTUAL FLOW RATE IN STACK (ACFM)	8112.98	8243.16	8017.04
VELOCITY @ STP (V _S -STD), ft/sec	7.42	7.48	7.23
STACK FLOW RATE @ STP (ACFM)	2184.81	2202.52	2129.38
DRY FLOW RATE (ACFM)	2035.00	2034.63	1930.43
NOZZLE VELOCITY @ STP (V _N -STD), ft/sec	7.10	7.05	7.20
ISOBUTANE FIC %	95.48	97.32	99.80

RECON SYSTEMS, INC.

Route 202 North, P.O., Box 460

Three Bridges, N.J. 08887

0 102

201-782-5800

LABORATORY ORSAT OR GC GAS ANALYSIS

PLANT General Foods - Maxwell House Division STACK Afterburner Inlet/Out

SAMPLE NO. _____ OPERATING CONDITIONS _____

JOB NO. 0641

--Dry Basis--

Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)
Run #1 Inlet	1/31/89	0.0	21.0	—	81.4
Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)
Run #2 Inlet	2/1/89	0.0	21.0	—	81.1
Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)
Run #3 Inlet	2/1/89	0.0	21.0	—	80.0
Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)
Run #1 Outlet	1/31/89	5.4	13.2	—	81.4
Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)
Run #2 Outlet	2/1/89	5.8	13.1	—	81.1
Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)
Run #3 Outlet	2/1/89	6.0	14.0	—	80.0
Sample ID	Date	% CO ₂	% O ₂	% CO	% N ₂ (By Diff.)

CHEMIST: John Marshall

Date: 2/2/89

L-18 (8.17.82)

ENGINEERING, CONSULTING, LABORATORY,
PILOT PLANT, PLANT TEST SERVICES

POLLUTION CONTROL, WASTE DISPOSAL,
RESOURCE RECOVERY, CHEMICAL PROCESS SYSTEMS

Linear Regression Calculations
for Gas Chromatographic Analysis - Impingers

STANDARDS		UNKNOWNs					
Conc. (mg/L)	Area Counts	Sample ID	Sample Number	Area Counts	Dil. Factor	Dil. Samp. Conc. (mg/L)	Actual Conc. (mg/L)
0	10792	Outlet-1	14568	13447	1.00	1.0	1.0
11.69	43194	Outlet-2	14569	12368	1.00	0.6	0.6
23.38	76859	Outlet-3	14570	9836	1.00	-0.3	ND

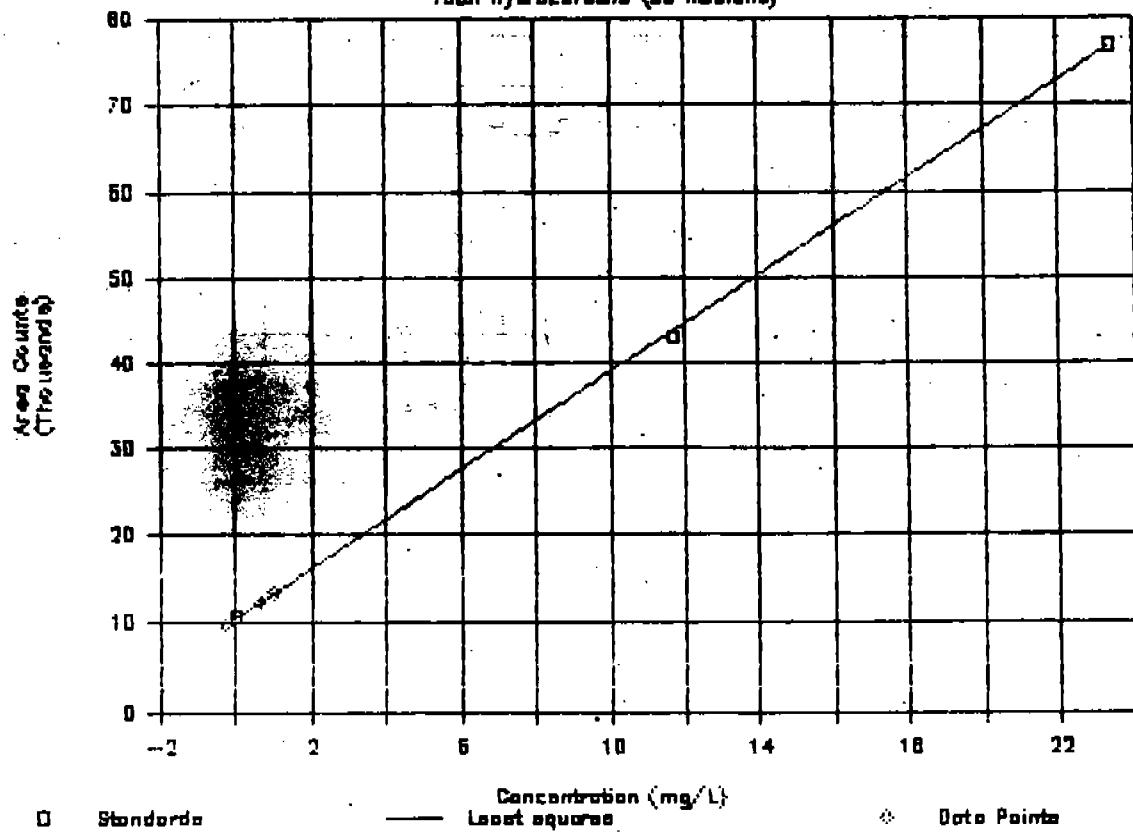
Method Detection Limit - 0.5 mg/L

RECON SYSTEMS INC
THREE BRIDGES, NJClient: General Foods/Maxwell House
Job Number: 0641Compound: Total HxCx (as Methane)
Sample Location: Afterburner Outlet
Sample Date: 1-31, 2/1, 1989

Report Date: 08-Feb-89

Samples Run: 3

Analyst: RNS


Reference: RMS83, p.32

2mL inj. of samples and standards.

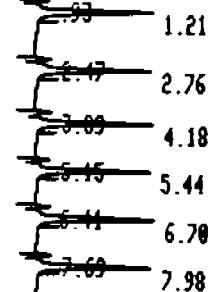
Total volume of 44 mL

Gas Chromatographic Analysis

Total Hydrocarbons (as Methane)

ID 0.00

Blank H₂O


STOP

LIST: ID 1

11.69 mg/L as Methane

START

0 100

STOP

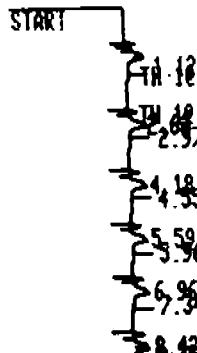
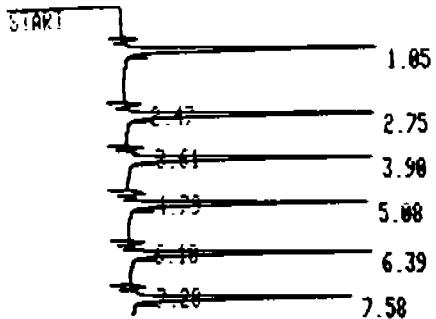
RUN # 18
ID 0.0

FEB/07/89 12:14:08

AREA%			
RT	AREA	TYPE	AR/HT
0.75	3698	D BP	0.067
0.98	2375	PV	0.083
1.12	8517	D VB	0.178
2.19	4368	D BP	0.072
2.34	1796	PV	0.089
2.56	6935	VB	0.164
3.75	3955	D BP	0.069
3.98	2833	PV	0.097
4.12	7722	VB	0.185
5.26	4139	D BP	0.077
5.64	7268	VB	0.186
6.91	4165	D BP	0.073
7.29	11120	PB	0.228
8.52	3593	D BP	0.066
8.67	7543	PV	0.129
	3950		5.224

TOTAL AREA= 75618
MUL FACTOR= 1.0000E+00RUN # 20
ID 1

FEB/07/89 12:37:06



AREA%			
RT	AREA	TYPE	AR/HT
0.93	3569	D BP	0.065
1.21	45058	D PB	0.106
2.47	3918	D BP	0.071
2.76	45839	D PB	0.110
3.89	3828	D PP	0.070
4.18	43384	D PB	0.181
5.15	4063	D BP	0.074
5.44	40224	D PB	0.098
6.41	4221	D BP	0.021
6.70	43003	D PB	0.101
7.69	3673	D BP	0.066
7.98	40178	D PB	0.098

TOTAL AREA= 281200
MUL FACTOR= 1.0000E+00

23.38 mg/l as CH₄

ID 14568-06410

ID 22

STOP

STOP

RUN # 24 FEB/07/89 13:19:07
ID 2

AREA%	RT	AREA	TYPE	AR/HT	AREA%
1.05	X79734	0.089	D	PB	16.610
2.47	4468	0.069	D	BP	0.931
2.75	84914	0.096	D	PB	17.689
3.61	4225	0.068	D	BP	0.888
3.90	X78863	0.089	D	PB	16.262
4.79	3963	0.067	D	PP	0.826
5.08	X73968	0.067	D	VB	15.489
5.10	4813	0.068	D	BP	0.836
6.39	X75670	0.088	D	VB	15.763
7.28	3441	0.067	D	BP	0.717
7.58	67585	0.086	D	PB	14.079

TOTAL AREA= 480040
MUL. FACTOR= 1.0000E+00

RUN # 4 FEB/07/89 18:49:58
ID 14568-0641

AREA%	RT	AREA	TYPE	AR/HT	AREA%
1.12	5124	0.095	VV		6.581
2.68	2747	0.071	D	BP	3.485
2.97	X13567	0.201	PB		17.212
4.18	3111	0.073	D	BP	3.947
4.55	X13179	0.223	PB		16.719
5.59	3118	0.073	D	BP	3.956
5.96	X13272	0.224	PB		16.837
6.36	2898	0.072	D	BP	3.677
7.34	X13771	0.248	PB		17.470
8.42	2754	0.070	D	BP	3.494
8.69	5284	0.110	PV		6.784

TOTAL AREA= 78825
MUL. FACTOR= 1.0000E+00

LIST ID 14570-0641

0 106

ID 1 4 5 6 9 - 0 6 4 1 8

START

7.93
2.31
2.38
3.91
4.28
5.59
7.57
 $\Sigma 32.71$

START

1.93
2.26
2.89
3.77
4.14
5.72 2.0
5.18
8.31
 $\Sigma 30.70$

STOP

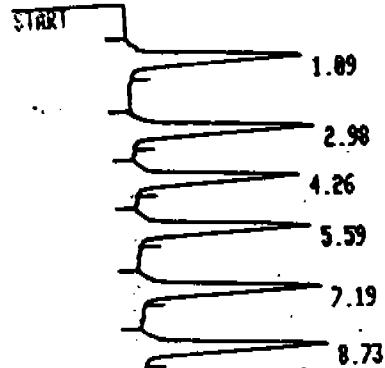
STOP

RUN # 19
ID 14569-0641

FEB/07/89 12:26:00

RT	AREA	TYPE	AR/HT	AREA%
0.76	3283	D	BP	0.066
1.13	X12289	PB		0.223
2.21	3734	D	BP	0.071
2.58	10680	PB		0.220
3.91	3545	D	BP	0.067
4.28	13274	PB		0.237
5.59	4145	D	BP	0.076
5.96	11070	PB		0.221
7.17	3931	D	BP	0.067
7.54	13825	PB		0.224
8.77	4639	D	BP	0.074
9.14	X12446	PB		0.237
				12.956
				3.418
				12.793
				3.887
				11.118
				3.690
				13.818
				4.315
				11.524
				4.092
				13.559
				4.829
				12.956

TOTAL AREA= 96861
MUL FACTOR= 1.00000E+00RUN # 17
ID 14570-0641


FEB/07/89 12:01:00

RT	AREA	TYPE	AR/HT	AREA%
0.77	3722	D	BP	0.070
1.13	[14958	D	PB	0.414
2.50	2139	D	BP	0.055
2.87	X19460	PB		0.191
3.77	3897	D	BP	0.072
4.14	[13143	PB		0.236
5.33	3495	BB		0.039
5.59		PB		0.000
5.72	1366	D	BB	0.034
6.76	4314	D	BP	0.075
7.13	X[9855	PB		0.199
8.34	3535	D	BB	0.066
8.71	X[9422	BB		0.207
9.73	4541	D	BP	0.075
10.10	X[19605	PB		0.210

TOTAL AREA= 94457
MUL FACTOR= 1.00000E+00

Post-cal check
~~23.38 mg/L as Methane~~
~~24.21 mg/L as Hexane~~

ID 2 e

STOP

RUN # 37

FEB/07/89 15:10:14

ID 2

AREA%	RT	AREA	TYPE	AR/HT	AREA%
	1.09	X86348	D PB	0.269	16.581
	2.98	X86348	D PB	0.274	17.456
	4.26	X78936	D PB	0.264	15.158
	5.59	X83675	D PB	0.266	16.866
	7.19	X86348	D PB	0.269	16.943
	8.73	X86348	D PB	0.290	17.795

Average Area (s) = 22986

TOTAL AREA= 520770

MUL FACTOR= 1.0000E+00

RECON SYSTEMS, INC.
ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
201-782-5900

0 110

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one form for each sample) PROJECT MANAGER PFM

SAMPLE NO. 014568 ANALYTICAL RESULTS TO BE REPORTED TO: PSM

SAMPLE LOCATION afterburner outlet Run 1 RECON JOB NO. 0641

SAMPLE DESCRIPT. voc vial 40ml SAMPLING DATE/TIME 1-31-89 BY: CBG/PM

Relinquished By Person/Organ. (Signature)	Received By Person/Organ./ (Signature)	Container Description and Preservative	Analysis Requested	Analysis Performed by: Person/Lab	Date/Time Analysis Performed	Results
SJC	<i>Recd/Rec</i> 2-2-89 11:03	40ml vial	Total Hydrocarbons	ANS /R	2-2-89	

MAKE ADDITIONAL COMMENTS/NOTES

YES NO

YES NO

EMERGENCY

YES

COMPLIANCE OR TIER II

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS, PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

RECON SYSTEMS, INC.
ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
201-782-5900

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one for sample) PROJECT MANAGER PFM
 SAMPLE NO. 0 14569 ANALYTICAL RESULTS TO BE REPORTED TO: PFM
 SAMPLE LOCATION afterburner outlet Run 2 RECON JOB NO. 0641
 SAMPLE DESCRIPT. 40ml vac vial SAMPLING DATE/TIME 2-1-89 / 0002 BY: PDR/PFM

Relinquished by Person/Organ. (Signature)	Received By Person/Organ./ Date/Time (Signature)	Container Description and Preservative	Analysis Requested	Analysis Performed By Person/Lab	Date/Time Analysis Performed	Results
STC	<i>RDR/Rec</i> 2-2-89 11:06	40ml vac vial	Total hydro- carbons	RWS /P	2-7-89	

MAKE ADDITIONAL COMMENTS/NOTES _____

RUSH	<input type="checkbox"/> YES	<input checked="" type="checkbox"/> NO
EMERGENCY	<input type="checkbox"/> YES	<input checked="" type="checkbox"/> NO
YES		

COMPLIANCE DR. TIER II

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS, PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

0 113

RECON SYSTEMS, INC.
 ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
 201-782-5900

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one form sample) PROJECT MANAGER PFm

SAMPLE NO. D 14570 ANALYTICAL RESULTS TO BE REPORTED TO: PSM

SAMPLE LOCATION afterburner outlet Run 3 RECON JOB NO. 0641

SAMPLE DESCRIPT. 40ml. vol vial SAMPLING DATE/TIME 2-1-89 11:09 BY: COR/PEM

Relinquished by Person/Organ.	Received By Person/Organ./ (Signature)	Container Description and (Signature)	Analysis Requested	Analysis Performed By: Person/Lab	Date/Time Analysis Performed	Results
SJC	Dod/Rec 2-2-89 11:09	40ml vol vial	total hydrocarbons	RNS /R	2-2-89	

MAKE ADDITIONAL COMMENTS/NOTES _____ RUSH YES NO

YES NO

YES NO

EMERGENCY YES NO

YES NO

COMPLIANCE OR TIER II

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS, PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

RECON SYSTEMS, INC.
ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
201-782-5900

0 113

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one form for sample) PROJECT MANAGER PFM
SAMPLE NO. B 14574 ANALYTICAL RESULTS TO BE REPORTED TO: PFM
SAMPLE LOCATION Blg n K (Trip) RECON JOB NO. 0641
SAMPLE DESCRIPT. Water SAMPLING DATE/TIME BY: SC

Relinquished By Person/Organ. (signature)	Received By Person/Organ./ Date/Time (Signature)	Container Description and (Signature)	Analysis Requested	Analysis Performed By Person/Lab	Date/Time Analysis Performed	Results
SC	<i>Alt/Rec</i> 2-2-89 11:24	100's Trico Water Blank	Total Hydrocarbon	<i>JK</i>		<i>VOID</i>

MAKE ADDITIONAL COMMENTS/NOTES _____

YES NO

RUSH

YES NO

EMERGENCY

YES

COMPLIANCE AS TIER II

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS, PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

COPIES OF THIS FORM MUST BE ATTACHED TO EACH LABORATORY REPORT.

L-37A (CP8)(July 11, 1988)

RECON SYSTEMS INC.

ROUTE 202N, P.O. BOX 460, THREE BRIDGES, N.J. 08887-0460
201-782-0072 FAX 201-782-0072

NEW ENGLAND 508-752-4212 PENNSYLVANIA 215-433-5511 CONNECTICUT 203-293-1212

ANALYSIS
REPORT

0 114
February 14, 1989

TO: Maxwell House/General Foods Project Attn: P. F. Marshall
RECON Project No. 0641

Sample: 80 Liter Tedlar Gas Bag; sampled 1/31/89

RECON Sample No.	RUN NO.	SAMPLE DESCRIPTION	OXYGEN PPMV DRY	CO PPMV DRY	THC AS METHANE PPMV DRY
14571	1	OUTLET	13.2	131	19.
14572	2	OUTLET	13.1	416	35.
14573	3	OUTLET	14.0	166	30.
Detection Limit			0.1	0.1	1

Samples from this project will be retained for sixty days from the date of this report unless directed otherwise.

Submitted by

Patrick J. Mulrooney
Patrick J. Mulrooney, B.S.
Acting Laboratory Director

Andrew W. McNeal
per Andrew W. McNeal, B.S.
Test Engineer

AWM/lej (AR16)
0641

New Jersey State Certified Water Laboratory
Certification No. 10196

RECON SYSTEMS, INC.
ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
201-782-5900

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one form for each sample)

PROJECT MANAGER PFMSAMPLE NO. D 14571 ANALYTICAL RESULTS TO BE REPORTED TO: PJMSAMPLE LOCATION AFTERBURNER OUTLET Run 1 RECON JOB NO. 0641SAMPLE DESCRIPT. 80L Teal Bag SAMPLING DATE/TIME 7-2-89 BY: CDR/PFM

Relinquished By Person/Organ. (Signature)	Received By Person/Organ./ Date/Time (Signature)	Container Description and Preservative	Analysis Performed By Person/Lab	Analysis Performed By Person/Lab	Results
SJC	<u>Attn/Rec</u> <u>2-2-89</u> <u>11:12</u>	<u>80L Teal Bag</u>	<u>TOTAL Hydrocarbons</u> <u>as Methane</u> <u>Carbon monoxide</u> <u>Oxygen</u>	<u>1/R</u> <u>1/R</u> <u>1/R</u>	<u>2-2-89</u> <u>1300</u>

MAKE ADDITIONAL COMMENTS/NOTES

YES NO
RUSH

YES NO
EMERGENCY

YES
COMPLIANCE TIER II

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS: PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

COPIES OF THIS FORM MUST BE ATTACHED TO EACH LABORATORY REPORT.

L-37A (CPB) (July 11, 1988)

RECON SYSTEMS, INC.
 ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
 201-782-5900

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one form per sample) PROJECT MANAGER PFM
 SAMPLE NO. G 14572 ANALYTICAL RESULTS TO BE REPORTED TO: PFM
 SAMPLE LOCATION afterburner outlet Run 2 RECON JOB NO. 0641
 SAMPLE DESCRIPT. 80 L Reuter Bag SAMPLING DATE/TIME 2-8-87 BY: CAF/PCM

Relinquished By Person/Organ. (Signature)	Received By Person/Organ./ Date/Time (Signature)	Container and Preservative	Analysis Required	Analysis Performed By Person/Lab	Date/Time Analysis Performed	Results
SJC	Att'd/Rec 2-2-89 11:15	80 L Reuter Bag	Total Hydrocarbons as Methane Carbonaceous Oxygen	A W/IR	2-8-87 IR 1R 1200	

MAKE ADDITIONAL COMMENTS/NOTES _____

EMERGENCY YES NO

EMERGENCY YES NO

COMPLIANCE OR TIER II YES

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS, PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

RECON SYSTEMS, INC.
ROUTE 202N, BOX 460, THREE BRIDGES, NJ 08887
201-782-5900

0 117

CHAIN-OF-CUSTODY/REQUEST FOR ANALYSIS/DOT SHIPPING PAPER

(Use one form for each sample)

PROJECT MANAGER PFM

SAMPLE NO. 8 14573 ANALYTICAL RESULTS TO BE REPORTED TO: PJM

SAMPLE LOCATION afterburner outlet Run 3 RECON JOB NO. 06411

SAMPLE DESCRIPT. 80 l Teflon bag SAMPLING DATE/TIME 2-2-89 BY: COLA

Relinquished By Person/Organ. (Signature)	Received By Person/Organ./ Date/Time (Signature)	Container Description and Preservative	Analysis Requested	Analysis Performed By Person/Lab	Date/Time Analysis Performed	Results
SJC	Dad/Rec 2-2-89 11:18	80 l Teflon bag	Total hydrocarbons 10% Methane Carbon monoxide oxygen	IR IR IR	2-2-89 1500	

MAKE ADDITIONAL COMMENTS/NOTES

YES NO

YES NO

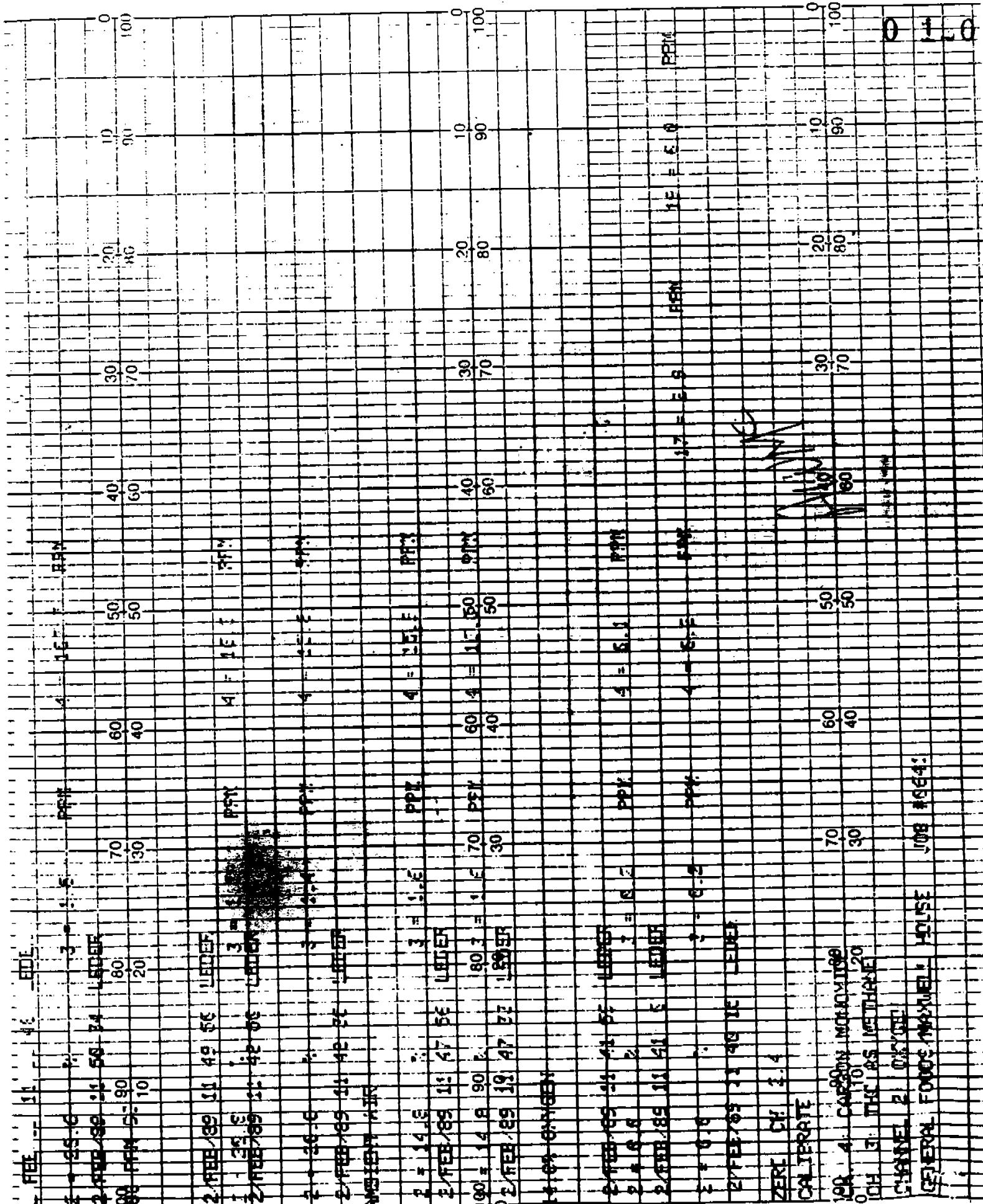
EMERGENCY YES

COMPLIANCE DR. TIER II

IF SAMPLES HAVE BEEN DETERMINED HAZARDOUS, PLEASE INCLUDE SHIPPING NAME, HAZARD CLASS, AND IDENTIFICATION NUMBER.

COPIES OF THIS FORM MUST BE ATTACHED TO EACH LABORATORY REPORT.

L-37A (CP8) (July 11, 1988)


RATFISHE MODEL RS 55 FID OPERATING CONDITIONS

Sample pressure	<4 PSIG, Instrument 200 mbar
Fuel pressure	Regulator 15 PSIG, Instrument 0.3 bar
Zero gas pressure	Regulator 3PSIG
Span gas pressure	Regulator 3PSIG
Oven temperature	150°C
Combustion air	Regulator 15 PSIG, Instrument 0.8 bar

0 119

THERMO ELECTRON MODEL 48 NON-DISPERSIVE INFRARED,
GAS FILTER CORRELATION CO ANALYZER

Sample gas flow rate 1 LPM
Zero gas flow rate 1 LPM
Span gas flow rate 1 LPM
Sample conditioning Filtration and Drying

Hours of Exercise	Hours of Sleep
0	95
25	90
50	85
75	80
100	75

2 = 49.5 3 = 702.1 4 = 111.1 5 = 15.5 6 = 1.5

$E = 200$ N/mm^2 $\sigma = 80$ N/mm^2 $\text{Area} = 150 \text{ mm}^2$ $\text{Modulus} = 150 \text{ GPa}$

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100