

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Background Report Reference

AP-42 Section Number: **10.6.1**

Background Report Section: **4**

Reference Number: **67**

Title: **Results Of A Series Of Source Emission Tests Performed on Three Huntington Energy Systems Inc. Regenerative Thermal Oxidizers At Louisiana Pacific Corp., Hayward Wisconsin, February 16-18, 1994**

Environmental Source Samplers, Inc

June **1987**

MMT Environmental Services, Inc.
4610 North Churchill Street
St. Paul, MN 55126-5892
Phone (612) 483-9595 Fax (612) 483-2699

4-67)

RESULTS OF A SERIES OF
SOURCE EMISSION TESTS
PERFORMED ON THREE
HUNTINGTON ENERGY SYSTEMS INC.
REGENERATIVE THERMAL OXIDIZERS AT
LOUISIANA-PACIFIC CORPORATION
HAYWARD, WISCONSIN
February 16-18, 1994

Submitted to:

Huntington Energy Systems Inc.
1501 E. Woodfield Road
Suite 200 West
Schaumburg, IL 60173
Attn: Mr. Gary Geisler

Prepared by:

Ted Gibbons
Ted Gibbons
Sampling Team Leader

Approved by:

Alan L. Trowbridge
Alan L. Trowbridge
Director of Technical Services

MMT Report Number: 10057
MMT Project Number: 9531
Report Issued: March 23, 1994

TABLE OF CONTENTS

1	INTRODUCTION	1
2	TEST RESULTS	1
3	TEST PROCEDURES	5
3.1	SAMPLING POINTS	5
3.2	EFFLUENT VOLUMETRIC FLOW RATE	5
3.3	EFFLUENT COMPOSITION AND MOLECULAR WEIGHT	5
3.4	EFFLUENT MOISTURE CONTENT	5
3.5	EFFLUENT PARTICULATE CONCENTRATION	12
4	QUALITY ASSURANCE.....	15
4.1	SAMPLING QUALITY ASSURANCE	15
4.2	ANALYTICAL QUALITY CONTROL.....	15
4.3	CALIBRATION GASES	15

APPENDIX A: CALCULATIONS

APPENDIX B: FIELD DATA FORMS

APPENDIX C: LABORATORY REPORTS

APPENDIX D: CALIBRATION DATA

**RESULTS OF A SERIES OF SOURCE EMISSION TESTS
PERFORMED ON THREE HUNTINGTON ENERGY SYSTEMS INC.
REGENERATIVE THERMAL OXIDIZERS AT
LOUISIANA-PACIFIC CORPORATION
HAYWARD, WISCONSIN
February 16-18, 1994**

MMT Report Number: 10057
MMT Project Number: 9531
Report Issued: March 23, 1994

1 INTRODUCTION

MMT Environmental Services, Inc. (MMT) was contracted by Huntington Energy Systems Inc. to perform a series of source emission tests on three Huntington regenerative thermal oxidizers (RTO) installed at the Louisiana-Pacific Corporation facility in Hayward, Wisconsin. This report presents the results of the test program along with all substantiating documentation.

The test program was performed at the request of Mr. Gary Geisler of Huntington Energy Systems Inc., Schaumburg, Illinois. Mr. Darr Pace represented Huntington Energy Systems Inc. at the Hayward, Wisconsin test site. Mr. Pace was responsible for determining when the tests would be performed and also for documenting the process operation during the various test periods. No process data is included in this report. The MMT sampling team consisted of Messrs. Ted Gibbons, Bill Anderson and Alan Trowbridge.

No problems were encountered during sample acquisition or analysis. Based on a review of the entire test proceedings, it is MMT's opinion that the results presented herein are accurate and can be used for engineering purposes.

2 TEST RESULTS

The RTO installed on the Line #1 Dryer was tested for particulate destruction efficiency on February 16, 1994. The results of this test are summarized Table 2.1.

On February 18, 1994, volumetric flow rate tests were performed at the inlet and outlet of the RTO's installed on the Line #2 Dryer and the Line #2 Press. Table 2.2 presents the results of the volumetric flow rate measurements.

The solid particulate matter collected during each of the three particulate emission tests performed at the Line #1 Dryer, RTO inlet was analyzed for sulfur and salt (calcium, magnesium, sodium and potassium) content. The results of the sulfur analyses are presented in Table 2.3 and the salt content results are presented in Table 2.4.

Table 2.1: Particulate Emission Test Results
Louisiana Pacific Corporation, Hayward, Wisconsin
Regenerative Thermal Oxidizer on Line #1 Dryer
February 16, 1994

Parameter	Run #1			Run #2			Run #3			Average	
	Inlet	Outlet									
Time of Test, hr											
Start	13:02	13:00	15:01	15:00	17:15	17:15	—	—	—	—	
Finish	14:15	14:07	16:10	16:07	18:24	18:22	—	—	—	—	
Effluent Temperature, °F	244	343	241	322	240	346	242	346	242	337	
Effluent Moisture Content, % v/v	20.9	21.0	22.5	21.3	23.7	24.7	22.4	24.7	22.4	22.3	
Effluent Composition, % v/v dry:											
Carbon Dioxide Content	3.2	3.2	3.5	4.3	3.4	4.3	3.4	4.3	3.4	3.9	
Oxygen Content	15.2	15.4	15.2	13.1	15.1	13.3	15.2	13.3	15.2	13.9	
Effluent Volumetric Flow Rate:											
Actual Conditions, acfm	121,509	132,135	118,612	136,349	120,180	139,805	120,180	139,805	120,180	136,096	
Standard Conditions, scfm	86,132	83,507	84,259	88,172	85,586	87,739	85,326	85,326	85,326	86,473	
Dry Standard Conditions, dscfm	68,108	66,005	65,264	69,360	65,305	66,069	66,305	66,069	66,305	67,145	
Sampling Isokinetic Variation, %	95.5	98.7	96.6	102.5	99.7	101.7	97.3	101.7	97.3	101.0	
Effluent Particulate Concentration:											
Front Catch, gr/dscf	0.0444	0.0075	0.0460	0.0078	0.0474	0.0044	0.0459	0.0044	0.0459	0.0066	
Back Catch, gr/dscf	0.0442	0.0036	0.0487	0.0056	0.0369	0.0039	0.0433	0.0039	0.0433	0.0044	
Total Catch, gr/dscf	0.0885	0.0111	0.0947	0.0133	0.0842	0.0083	0.0891	0.0083	0.0891	0.0109	
Source Mass Emission Rate:											
Classical Method, lb/hr	51.72	6.28	53.00	7.93	47.19	4.71	50.64	4.71	50.64	6.31	
Ratio of Areas Method, lb/hr	49.35	6.20	51.17	8.12	47.04	4.78	49.18	4.78	49.18	6.37	
Average of Two Methods, lb/hr	50.54	6.24	52.09	8.03	47.12	4.75	49.91	4.75	49.91	6.34	
Particulate Destruction Efficiency											
Concentration Based, %	87.45		85.96		90.14		87.85		87.85		
Mass Flow Based, %	87.65		84.58		89.92		87.38		87.38		
Standard Conditions: 68°F, 29.92 in. Hg											

8

Table 2.2
Volumetric Flow Rate Test Results
Louisiana Pacific Corporation, Hayward, Wisconsin

Parameter	Line #1 Dryer RTO		Line #2 Dryer RTO		Line #2 Press RTO	
	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
Time of Test:						
Date	2/16/94		2/18/94		2/18/94	
Start Time, hr	13:00*		08:45		11:30	
Finish Time, hr	18:24*		09:15		12:00	
Effluent Temperature, °F	242	337	204	321	102	222
Effluent Moisture Content, % v/v	22.4	22.3	25.1	33.1	2.4	5.1
Effluent Composition, % v/v dry:						
Carbon Dioxide Content	3.4	3.9	3.2	3.4	0.0	3.4
Oxygen Content	15.2	13.9	15.2	15.3	20.9	15.3
Effluent Volumetric Flow Rate*:						
Actual Conditions, acfm	120,180	136,096	107,955	132,265	76,258	100,218
Standard Conditions, scfm	85,326	86,473	80,496	84,974	67,649	73,747
Dry Standard Conditions, dscfm	66,305	67,145	60,289	56,855	66,014	69,976

Standard Conditions: 68°F, 29.92 in. Hg

* Average of three measurements during particulate tests.

Table 2.3: Sulfur Emission Test Results
Louisiana Pacific Corporation, Hayward, Wisconsin
Line #1 Dryer, RTO Inlet, February 16, 1994

Parameter	Run #1	Run #2	Run #3	Average
Effluent Flow Rate, dscfm	68,108	65,265	65,305	66,226
Dryer Effluent Sulfur Concentration:				
grains per dry std. cubic foot	0.00046	0.00034	0.00043	0.00041
micrograms per dry std. cubic meter	1046	771	1027	948
Dryer Sulfur Mass Emission Rate, lb/hr	0.27	0.19	0.25	0.24

Table 2.4: Salts Emission Test Results
Louisiana Pacific Corporation, Hayward, Wisconsin
Line #1 Dryer, RTO Inlet, February 16, 1994

Parameter	Run #1	Run #2	Run #3	Average
Effluent Flow Rate, dscfm	68,108	65,265	65,305	66,226
Dryer Effluent Salt Concentration:				
Calcium, gr/dscf	0.00081	0.00083	0.00117	0.00094
Magnesium, gr/dscf	0.00015	0.00016	0.00015	0.00015
Sodium, gr/dscf	0.00479	0.00471	0.00434	0.00461
Potassium, gr/dscf	0.00435	0.00471	0.00413	0.00440
Dryer Effluent Salt Concentration:				
Calcium, $\mu\text{g}/\text{dscm}$	1,843	1,840	2,774	2,152
Magnesium, $\mu\text{g}/\text{dscm}$	349	360	360	356
Sodium, $\mu\text{g}/\text{dscm}$	10,957	10,789	10,275	10,674
Potassium, $\mu\text{g}/\text{dscm}$	9,961	10,789	9,761	10,170
Dryer Salt Mass Emission Rate:				
Calcium, lb/hr	0.47	0.45	0.68	0.53
Magnesium, lb/hr	0.09	0.09	0.09	0.09
Sodium, lb/hr	2.80	2.64	2.51	2.65
Potassium, lb/hr	2.54	2.64	2.39	2.52

3 TEST PROCEDURES

In order to determine the pollutant emission rate from stationary sources, the Environmental Protection Agency (EPA) has established a series of reference methods which specify the manner in which tests must be performed. These reference methods are found in the Code of Federal Regulations (40 CFR 60) under Title 40 "Protection of the Environment"; Chapter 1 "Environmental Protection Agency"; Subchapter C "Air Programs"; Part 60 "Standards of Performance for New Stationary Sources"; Appendix A "Reference Methods". Unless otherwise noted, the tests presented in this report were performed according to the EPA Reference Methods as revised on July 1, 1992. A brief description of the test procedures used follows.

3.1 SAMPLING POINTS

The number of sampling points and their location within the source stack/duct was determined per EPA Method 1 which is entitled "Sample and velocity traverses for stationary sources". In this method the number of sampling points is based on the length of straight, undisturbed flow both before and after the sampling port location. Site specific data is presented in Figures 3.1 through 3.6.

3.2 EFFLUENT VOLUMETRIC FLOW RATE

The effluent volumetric flow rate was determined per EPA Method 2 which is entitled "Determination of stack gas velocity and volumetric flow rate (Type S pitot tube)". Gas velocity pressure (head) and temperature data were obtained by traversing each of the sampling points defined by EPA Method 1. This data along with gas density (EPA Method 3) and moisture content (EPA Method 4) data was used to calculate the gas velocity at each sampling point. The source volumetric flow rate was calculated by multiplying the average gas velocity by the stack/duct cross-sectional area at the point of measurement.

3.3 EFFLUENT COMPOSITION AND MOLECULAR WEIGHT

The density of the effluent was determined per EPA Method 3 which is entitled "Gas analysis for the determination of dry molecular weight". One gas sample was collected during each test run. The gas samples were analyzed for carbon dioxide and oxygen concentrations with a standard Orsat analyzer using commercially prepared solutions. For calculations of gas density the balance of the gas was assumed to be nitrogen and carbon monoxide.

3.4 EFFLUENT MOISTURE CONTENT

The effluent moisture content was determined per EPA Method 4 which is entitled "Determination of moisture content in stack gases". Data for making the gas moisture content determinations was collected simultaneously with each EPA Method 5 particulate test run. The gas moisture content was calculated from the mass and/or volume of liquid collected in the Method 5 sampling train cold box impingers and the volume of gas sampled.

The moisture content for non-particulate tests was determined from wet and dry bulb temperatures using standard psychometric techniques (EPA Method 4 alternate method).

Figure 3.1 Site Description Form
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #1 Dryer, RTO Inlet Particulate Test, February 16, 1994

SAMPLING LOCATION DATA		
Stack Cross-Sectional Dimension; Traverse diameter, inches.....	66.0	Number of particulate sampling points; Required by EPA Method 1..... 24
Length of straight, undisturbed flow; Before ports, inch.....	170	Actually used..... 24
After ports, inch	72	Number of ports
Before ports, stack diameters.....	2.6	Number of points per port..... 12
After ports, stack diameters	1.1	Particulate test sampling time; Minutes per point
		2.5
		Minutes per test run..... 60.0

SAMPLING POINT LOCATION WITHIN STACK CROSS-SECTION																																												
<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; width: 15%;">Point</th> <th style="text-align: left; width: 15%;">Percent</th> <th style="text-align: left; width: 15%;">Inches from</th> </tr> <tr> <th style="text-align: left;"><u>Number</u></th> <th style="text-align: left;"><u>of Traverse</u></th> <th style="text-align: left;"><u>Inside Wall</u></th> </tr> </thead> <tbody> <tr> <td style="text-align: left;">1.....</td> <td style="text-align: left;">2.1.....</td> <td style="text-align: left;">1.4</td> </tr> <tr> <td style="text-align: left;">2.....</td> <td style="text-align: left;">6.7.....</td> <td style="text-align: left;">4.4</td> </tr> <tr> <td style="text-align: left;">3.....</td> <td style="text-align: left;">11.8.....</td> <td style="text-align: left;">7.8</td> </tr> <tr> <td style="text-align: left;">4.....</td> <td style="text-align: left;">17.7.....</td> <td style="text-align: left;">11.7</td> </tr> <tr> <td style="text-align: left;">5.....</td> <td style="text-align: left;">25.0.....</td> <td style="text-align: left;">16.5</td> </tr> <tr> <td style="text-align: left;">6.....</td> <td style="text-align: left;">35.6.....</td> <td style="text-align: left;">23.4</td> </tr> <tr> <td style="text-align: left;">7.....</td> <td style="text-align: left;">64.4.....</td> <td style="text-align: left;">42.6</td> </tr> <tr> <td style="text-align: left;">8.....</td> <td style="text-align: left;">75.0.....</td> <td style="text-align: left;">49.5</td> </tr> <tr> <td style="text-align: left;">9.....</td> <td style="text-align: left;">82.3.....</td> <td style="text-align: left;">54.3</td> </tr> <tr> <td style="text-align: left;">10.....</td> <td style="text-align: left;">88.2.....</td> <td style="text-align: left;">58.2</td> </tr> <tr> <td style="text-align: left;">11.....</td> <td style="text-align: left;">93.3.....</td> <td style="text-align: left;">61.6</td> </tr> <tr> <td style="text-align: left;">12.....</td> <td style="text-align: left;">97.9.....</td> <td style="text-align: left;">64.6</td> </tr> </tbody> </table>	Point	Percent	Inches from	<u>Number</u>	<u>of Traverse</u>	<u>Inside Wall</u>	1.....	2.1.....	1.4	2.....	6.7.....	4.4	3.....	11.8.....	7.8	4.....	17.7.....	11.7	5.....	25.0.....	16.5	6.....	35.6.....	23.4	7.....	64.4.....	42.6	8.....	75.0.....	49.5	9.....	82.3.....	54.3	10.....	88.2.....	58.2	11.....	93.3.....	61.6	12.....	97.9.....	64.6		
Point	Percent	Inches from																																										
<u>Number</u>	<u>of Traverse</u>	<u>Inside Wall</u>																																										
1.....	2.1.....	1.4																																										
2.....	6.7.....	4.4																																										
3.....	11.8.....	7.8																																										
4.....	17.7.....	11.7																																										
5.....	25.0.....	16.5																																										
6.....	35.6.....	23.4																																										
7.....	64.4.....	42.6																																										
8.....	75.0.....	49.5																																										
9.....	82.3.....	54.3																																										
10.....	88.2.....	58.2																																										
11.....	93.3.....	61.6																																										
12.....	97.9.....	64.6																																										
SAMPLING SITE SCHEMATIC																																												

Figure 3.2 Site Description Form
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #1 Dryer, RTO Outlet Particulate Test, February 16, 1994

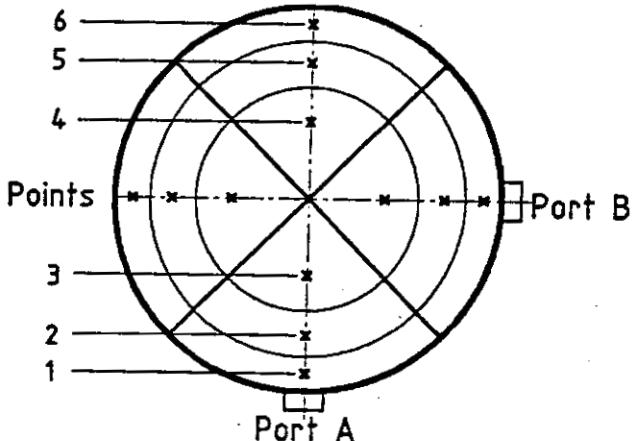
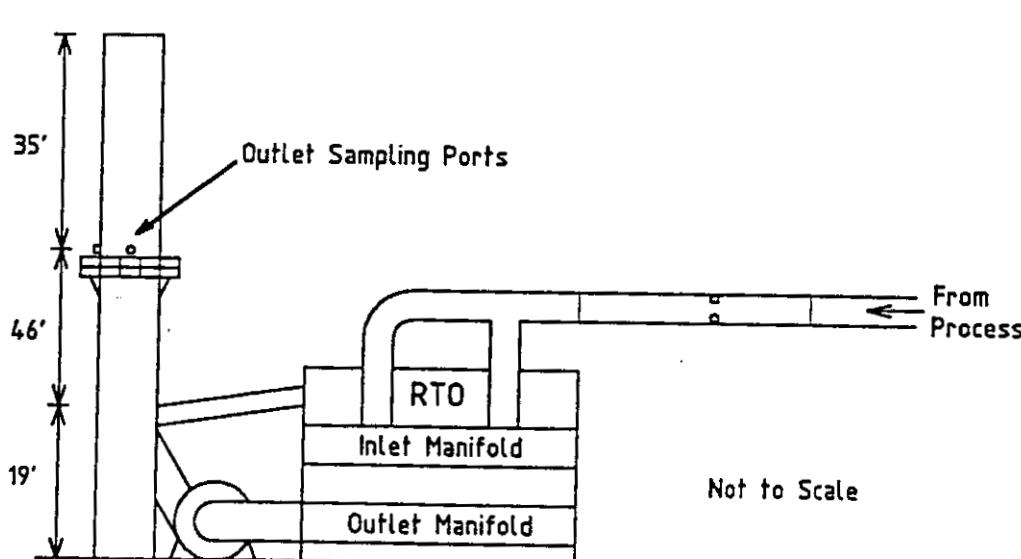


SAMPLING LOCATION DATA		
Stack Cross-Sectional Dimension; Traverse diameter, inches.....	81.5	Number of particulate sampling points; Required by EPA Method 1..... 16
Length of straight, undisturbed flow; Before ports, feet.....	46	Actually used..... 12
After ports, feet	35	Number of ports 2
Before ports, stack diameters.....	6.8	Number of points per port..... 6
After ports, stack diameters	5.1	Particulate test sampling time; Minutes per point 5.0
		Minutes per test run..... 60.0
SAMPLING POINT LOCATION WITHIN STACK CROSS-SECTION		
<u>Point Number</u>	<u>Percent of Traverse</u>	<u>Inches from Inside Walls</u>
1.....	4.4.....	3.6
2.....	14.6.....	11.9
3.....	29.6.....	24.1
4.....	70.4.....	57.4
5.....	85.4.....	69.9
6.....	95.6.....	77.9
SAMPLING SITE SCHEMATIC		

Figure 3.3 Site Description Form
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #2 Dryer, RTO Inlet Flow Rate Test, February 18, 1994

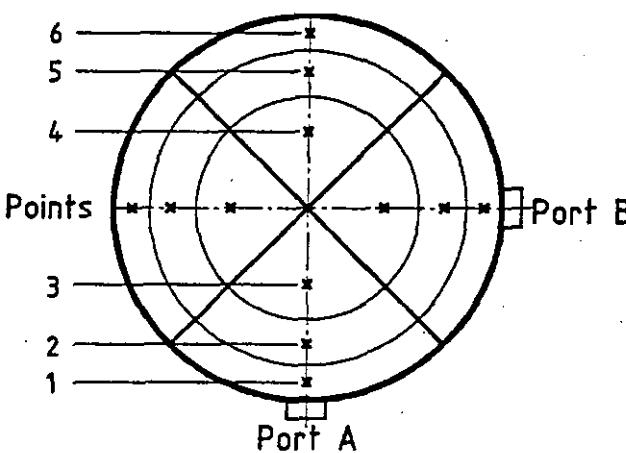
SAMPLING LOCATION DATA			
Stack Cross-Sectional Dimension; Traverse diameter, inches.....	66.0	Number of velocity sampling points; Required by EPA Method 1.....	16
Length of straight, undisturbed flow; Before ports, feet.....	25	Actually used.....	24
After ports, feet.....	76	Number of ports	2
Before ports, stack diameters.....	4.5	Number of points per port.....	12
After ports, stack diameters	13.8		
SAMPLING POINT LOCATION WITHIN STACK CROSS-SECTION			
Point Number	Percent of Traverse	Inches from Inside Wall	
1	2.1	1.4	
2	6.7	4.4	
3	11.8	7.8	
4	17.7	11.7	
5	25.0	16.5	
6	35.6	23.4	
7	64.4	42.6	
8	75.0	49.5	
9	82.3	54.3	
10	88.2	58.2	
11	93.3	61.6	
12	97.9	64.6	

SAMPLING SITE SCHEMATIC		
	Inlet Sampling Ports From Process Not to Scale	

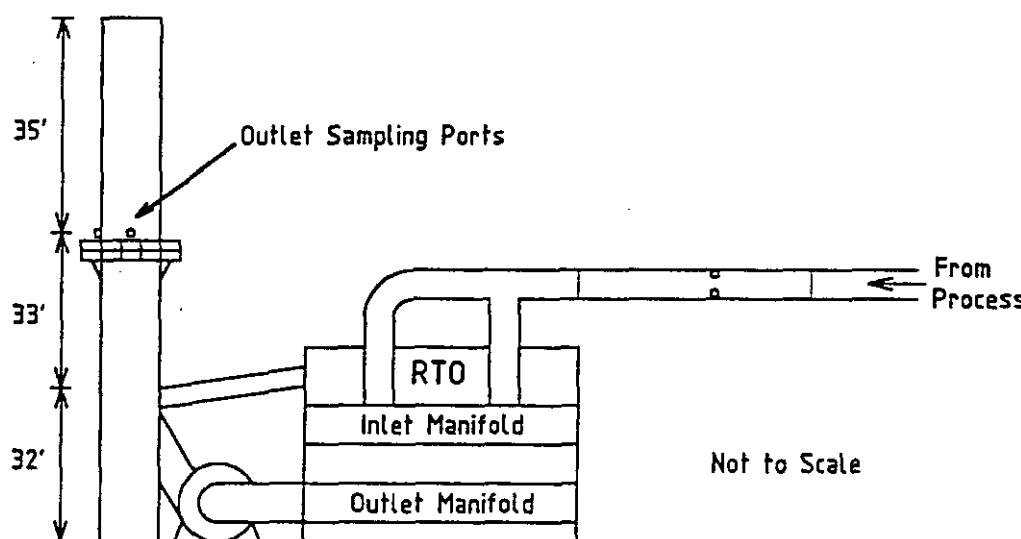
Figure 3.4 Site Description Form
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #2 Dryer, RTO Outlet Flow Rate Test, February 18, 1994

SAMPLING LOCATION DATA																						
Stack Cross-Sectional Dimension; Traverse diameter, inches..... 81.5 Length of straight, undisturbed flow; Before ports, feet..... 46 After ports, feet..... 35 Before ports, stack diameters..... 6.8 After ports, stack diameters..... 5.1	Number of velocity sampling points; Required by EPA Method 1..... 12 Actually used..... 12 Number of ports 2 Number of points per port..... 6																					
SAMPLING POINT LOCATION WITHIN STACK CROSS-SECTION																						
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Point Number</th> <th style="text-align: left; padding: 2px;">Percent of Traverse</th> <th style="text-align: left; padding: 2px;">Inches from Inside Walls</th> </tr> </thead> <tbody> <tr> <td style="text-align: left; padding: 2px;">1</td> <td style="text-align: left; padding: 2px;">4.4</td> <td style="text-align: left; padding: 2px;">3.6</td> </tr> <tr> <td style="text-align: left; padding: 2px;">2</td> <td style="text-align: left; padding: 2px;">14.6</td> <td style="text-align: left; padding: 2px;">11.9</td> </tr> <tr> <td style="text-align: left; padding: 2px;">3</td> <td style="text-align: left; padding: 2px;">29.6</td> <td style="text-align: left; padding: 2px;">24.1</td> </tr> <tr> <td style="text-align: left; padding: 2px;">4</td> <td style="text-align: left; padding: 2px;">70.4</td> <td style="text-align: left; padding: 2px;">57.4</td> </tr> <tr> <td style="text-align: left; padding: 2px;">5</td> <td style="text-align: left; padding: 2px;">85.4</td> <td style="text-align: left; padding: 2px;">69.9</td> </tr> <tr> <td style="text-align: left; padding: 2px;">6</td> <td style="text-align: left; padding: 2px;">95.6</td> <td style="text-align: left; padding: 2px;">77.9</td> </tr> </tbody> </table>	Point Number	Percent of Traverse	Inches from Inside Walls	1	4.4	3.6	2	14.6	11.9	3	29.6	24.1	4	70.4	57.4	5	85.4	69.9	6	95.6	77.9	
Point Number	Percent of Traverse	Inches from Inside Walls																				
1	4.4	3.6																				
2	14.6	11.9																				
3	29.6	24.1																				
4	70.4	57.4																				
5	85.4	69.9																				
6	95.6	77.9																				
SAMPLING SITE SCHEMATIC																						

Figure 3.5 Site Description Form
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #2 Press, RTO Inlet Flow Rate Test, February 18, 1994


SAMPLING LOCATION DATA		
Stack Cross-Sectional Dimension; Traverse diameter, inches..... 53.5	Number of velocity sampling points; Required by EPA Method 1..... 16	
Length of straight, undisturbed flow; Before ports, feet..... 25	Actually used..... 24	
After ports, feet 38	Number of ports 2	
Before ports, stack diameters..... 5.6	Number of points per port..... 12	
After ports, stack diameters 8.5		
SAMPLING POINT LOCATION WITHIN STACK CROSS-SECTION		
Point Number	Percent of Traverse	Inches from Inside Wall
1.....	2.1.....	1.1
2.....	6.7.....	3.6
3.....	11.8.....	6.3
4.....	17.7.....	9.5
5.....	25.0.....	13.4
6.....	35.6.....	19.0
7.....	64.4.....	34.5
8.....	75.0.....	40.1
9.....	82.3.....	44.0
10.....	88.2.....	47.2
11.....	93.3.....	49.9
12.....	97.9.....	52.4

SAMPLING SITE SCHEMATIC				
	Inlet Sampling Ports	From Process		
			Not to Scale	


Figure 3.6 Site Description Form
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #2 Press, RTO Outlet Flow Rate Test, February 18, 1994

SAMPLING LOCATION DATA			
Stack Cross-Sectional Dimension; Traverse diameter, inches.....	76.0	Number of velocity sampling points; Required by EPA Method 1.....	16
Length of straight, undisturbed flow; Before ports, feet.....	33	Actually used.....	12
After ports, feet	35	Number of ports	2
Before ports, stack diameters.....	5.2	Number of points per port.....	6
After ports, stack diameters	5.5		

SAMPLING POINT LOCATION WITHIN STACK CROSS-SECTION																						
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">Point Number</th> <th style="text-align: left; padding: 2px;">Percent of Traverse</th> <th style="text-align: left; padding: 2px;">Inches from Inside Walls</th> </tr> </thead> <tbody> <tr> <td style="padding: 2px;">1.....</td> <td style="padding: 2px;">4.4.....</td> <td style="padding: 2px;">3.4</td> </tr> <tr> <td style="padding: 2px;">2.....</td> <td style="padding: 2px;">14.6.....</td> <td style="padding: 2px;">11.2</td> </tr> <tr> <td style="padding: 2px;">3.....</td> <td style="padding: 2px;">29.6.....</td> <td style="padding: 2px;">22.4</td> </tr> <tr> <td style="padding: 2px;">4.....</td> <td style="padding: 2px;">70.4.....</td> <td style="padding: 2px;">53.6</td> </tr> <tr> <td style="padding: 2px;">5.....</td> <td style="padding: 2px;">85.4.....</td> <td style="padding: 2px;">64.8</td> </tr> <tr> <td style="padding: 2px;">6.....</td> <td style="padding: 2px;">95.6.....</td> <td style="padding: 2px;">72.6</td> </tr> </tbody> </table>	Point Number	Percent of Traverse	Inches from Inside Walls	1.....	4.4.....	3.4	2.....	14.6.....	11.2	3.....	29.6.....	22.4	4.....	70.4.....	53.6	5.....	85.4.....	64.8	6.....	95.6.....	72.6	
Point Number	Percent of Traverse	Inches from Inside Walls																				
1.....	4.4.....	3.4																				
2.....	14.6.....	11.2																				
3.....	29.6.....	22.4																				
4.....	70.4.....	53.6																				
5.....	85.4.....	64.8																				
6.....	95.6.....	72.6																				

SAMPLING SITE SCHEMATIC	
	<p style="margin: 0;">From Process</p> <p style="margin: 0;">Not to Scale</p>

3.5 EFFLUENT PARTICULATE CONCENTRATION

The effluent particulate concentration was determined per EPA Method 5 which is entitled "Determination of particulate emissions from stationary sources". For each test run, particulate matter was isokinetically withdrawn from the gas stream at each of the EPA Method 1 defined sampling points and collected on a glass fiber filter which was maintained at constant temperature ($248\pm25^{\circ}\text{F}$). Water vapor, organic vapors and inorganic vapors which passed through the filter were collected in an impinger trap which was ice-cooled to maintain an exit temperature of not more than 68°F .

The EPA Method 5 sampling train (Figure 3.7) includes a heated sampling probe with attached nozzle, thermocouple and S-type pitot tube. The probe attaches to the front sample case (hot box) which houses a glass cyclone (optional) and an all-glass in-line filter holder in a temperature controlled environment. The front sample case is connected to the back sample case (cold box) which houses a series of glass impingers and a desiccant column in an ice bath. The back sample case is connected to the control unit which contains the sample vacuum pump, gas meter, pressure and temperature indicators and all operating controls.

A representative particulate sample was acquired by sampling for equal periods of time at the center of a number of equal area regions within the stack/duct. At each sampling point the gas velocity head and temperature were measured and the sampling rate rapidly adjusted to isokinetic conditions with the aid of a nomograph or programmable computing device. Sample gas drawn into the nozzle flowed through the probe to the glass fiber filter where the solid particulate matter was collected. The gases then passed through the ice-cooled condenser (impingers and desiccant column) which quantitatively removed all moisture and condensable particulate matter from the gas stream. The gas then passed through the vacuum pump, the dry test gas meter and the calibrated orifice.

Leak checks to detect any dilution air being pulled into the sampling line were performed at the beginning and end of each test run and also when and if any sample line connections were broken.

After completion of each test run, the sampling train was removed to the clean-up area for sample recovery. The filter was removed from the filter holder and placed in Container #1. Particulate matter collected in the nozzle, probe and all connecting glassware in front of the filter was quantitatively transferred to Container #2 by means of a distilled water wash followed by an acetone wash. A stiff brush was used in the probe cleaning step to help dislodge deposits.

The liquid collected in each of the impingers (desiccant column excluded) was measured and transferred to Container #3. The impingers and all connecting pieces between the filter paper and the desiccant column were then rinsed twice with distilled water and these rinsings were added to Container #3. These same pieces were then rinsed twice with acetone and these rinsings were placed in Container #4. The desiccant column was then weighed and its contents transferred to a waste desiccant container. Samples of the rinse solutions (water and acetone) were retained as analytical blanks.

3.7
Figure 3.2 Particulate Sampling Train Description
Louisiana-Pacific Corporation, Hayward, Wisconsin
Line #1 Dryer, RTO Inlet & Outlet Particulate Test, February 16, 1994

PARTICULATE SAMPLING TRAIN IDENTIFICATION

Sampling Train Manufacturer: MMT Environmental Services, Inc.

Sampling Train Model: Inlet: MMT #4 Outlet: MMT #5

Hot Box Set-up and Operating Temperature;

Cyclone used: No

Filter Media: Glass Fiber Filter, Whatman GF/C, 11.0 cm diameter

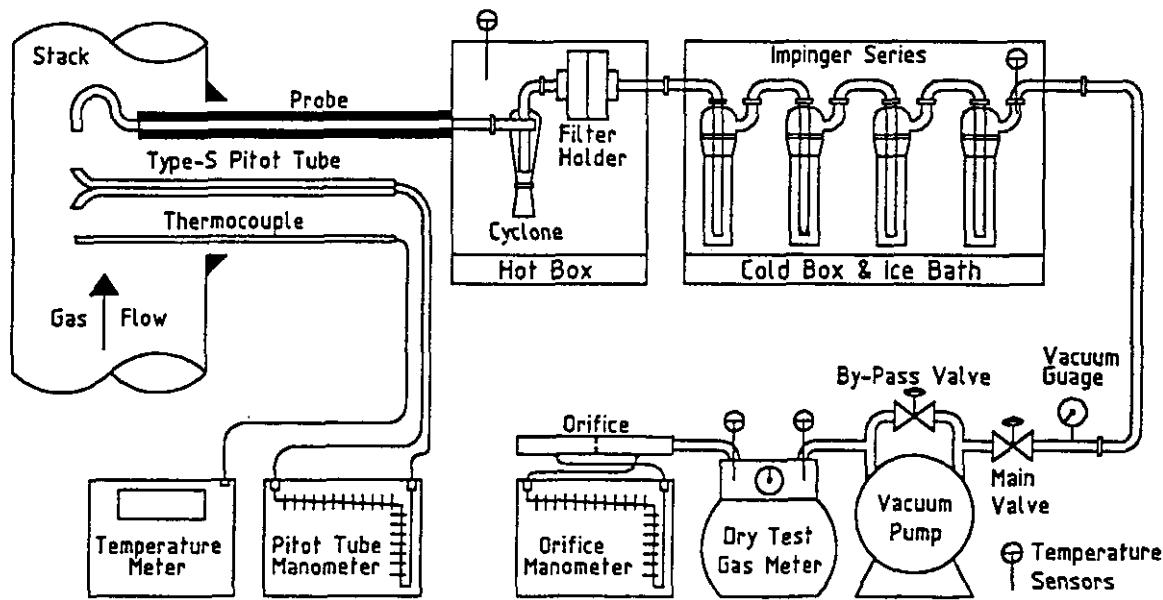
Filtration Temperature: 248 ± 25 degrees Fahrenheit

Cold Box Set-up; Impinger Type and Initial Contents

Impinger #1: Modified Greenburg-Smith design, 100 ml deionized, distilled water

Impinger #2: Standard Greenburg-Smith design, 100 ml deionized, distilled water

Impinger #3: Modified Greenburg-Smith design, empty


Impinger #4: Modified Greenburg-Smith design, ≈ 250 grams silica gel, indicating type

Nozzles Used: Inlet: L14 (0.199"), Outlet: S8 (0.245"), stainless steel

Sampling Probe Used: Inlet: #87, Outlet: #103, stainless steel liners

Pitot Tube Used: Inlet: #85B (0.838), Outlet: #96B (0.830), S-type

PARTICULATE SAMPLING TRAIN SCHEMATIC

Sample analysis was performed at MMT's laboratory. The filter was dried in a 105°C oven for three hours and then desiccated to constant weight. The contents of Container #2 were quantitatively transferred to a tared beaker, evaporated at ambient temperature and pressure to near dryness, and then desiccated to a constant weight.

The contents of Container #3 were quantitatively transferred to a separatory funnel. Container #3 was then rinsed with distilled water and the rinsings were added to the separatory funnel. Container #3 was then rinsed with acetone and the rinsings were added to Container #4. Fifty (50) ml of methylene chloride was then added to the separatory funnel and the contents were mixed by shaking the funnel for at least one minute. After separation, the lower organic phase was drained off into a beaker and set aside. The aqueous phase was extracted two more times using 50 ml of MeCl_2 for each extraction. The three organic extract fractions were combined in a tared beaker, evaporated at ambient temperature and pressure to near dryness, and then desiccated to a constant weight. The aqueous inorganic fraction was transferred to a tared beaker, evaporated in a 105°C oven to near dryness, and then desiccated to a constant weight.

The contents of Container #4 were quantitatively transferred to a tared beaker, evaporated at ambient temperature and pressure to near dryness, and then desiccated to a constant weight.

The mass of particulate matter collected and the volume of gas sampled was used to calculate the effluent particulate concentration. The source particulate mass emission rate was calculated by multiplying the effluent particulate concentration by the source volumetric flow rate. Separate calculations were performed for total catch, front catch only (Containers 1 & 2) and back catch only (Containers 3 & 4).

Note: The front catch particulate matter from each of the three tests performed at the RTO inlet was submitted to Spectrum Labs, Inc., St. Paul, Minnesota for sulfur and salts (calcium, magnesium, sodium & potassium) analyses.

4 QUALITY ASSURANCE

The project manager is responsible for implementation of the quality assurance program as applied to any specific project.

4.1 SAMPLING QUALITY ASSURANCE

Source sampling quality assurance procedures are implemented to ensure work is performed:

- ♦ by competent, trained individuals experienced on the specific methodologies being used
- ♦ using properly calibrated equipment
- ♦ using approved procedures for sample handling and documentation

All measuring devices (pitot tubes, dry gas meters, thermocouples, portable gas analyzers, etc.) are uniquely identified and calibrated with documented procedures and acceptance criteria before and after each field effort. Records of all calibration data are maintained in the files. Prior to the test program, MMT provides the following:

- ♦ filter numbers and tare weights of all filters available for the test
- ♦ results of an acetone residue analysis on the acetone to be used during the test
- ♦ calibrations of all pitot tubes, dry gas meters, orifice meters, thermocouples and probes

Specific details of MMT's QA program for stationary air pollution sources may be found in "Quality Assurance Handbook for Air Pollution Measurement Systems", Volume III (EPA-600/4-7-027b).

4.2 ANALYTICAL QUALITY CONTROL

MMT maintains a vigorous quality control program for all sample analyses. This program is based on the general guidelines given in "Handbook for Analytical Quality Control in Water and Waste water Laboratories" (EPA-600/4-79-019); March 1979. This program suggests guidelines in the areas of:

♦ Laboratory services	♦ Instrument selection
♦ Glassware	♦ Reagents
♦ Solvents	♦ Gases
♦ Analytical performance	♦ Laboratory safety

Standards and curves are determined for each analysis using the appropriate standard. Least square linear regression calculations are used in determining "best fit" to the data. Correlation coefficients are also calculated.

4.3 CALIBRATION GASES

MMT uses either EPA Protocol 1 or Acublend Certified Master gases (Scott Specialty Gases) when performing all calibrations in order to ensure tolerances on gas concentrations have been verified and are negligible. Certifications of all calibration gas bottles used during testing are presented in each report.

March 23, 1994

(This page intentionally left blank)

MMT Report #10057

March 23, 1994

MMT Report #100

APPENDIX A: CALCULATIONS

March 23, 1994

MMT Report #10

APPENDIX A1: CALCULATIONS

LINE #1 DRYER - RTO INLET PARTICULATE EMISSION TEST

March 23, 1994

(This page intentionally left blank)

0-1
MMT Repo

TABLE SUMMARY OF PARTICULATE EMISSION TEST RESULTS

PROJECT NUMBER: 9531
 TEST NUMBER: 1
 COMPANY: LOUISIANA PACIFIC CORP.
 SOURCE: LINE # 1 INLET

TEST PARAMETER	RUN 1	RUN 2	RUN
TEST DATE	2/16/94	2/16/94	2/16/94
TIME OF TEST, HR; START FINISH	1302 1415	1501 1610	1715 1824
EFFLUENT TEMPERATURE, DEGREES F	244	241	240
BAROMETRIC PRESSURE, IN HG	28.78	28.74	28.75
EFFLUENT MOISTURE CONTENT, % V/V	20.9	22.5	23.7
EFFLUENT COMPOSITION, % V/V DRY; CARBON DIOXIDE	3.2	3.5	3.4
OXYGEN	15.2	15.2	15.1
CARBON MONOXIDE	0.0	0.0	0.0
EFFLUENT VOLUMETRIC FLOW RATE; ACTUAL CONDITIONS, ACFM	121509	118612	120180
STANDARD CONDITIONS, SCFM	86132	84259	85566
DRY STANDARD CONDITIONS, DSCFM	68108	65264	65305
ISOKINETIC VARIATION, % EFFLUENT PARTICULATE CONCENTRATION;	95.5	96.6	99.7
EFFLUENT FRONT HALF PARTICULATE CONCENTRATION; ACTUAL CONDITIONS, GR/ACF	0.0249	0.0253	0.0257
STANDARD CONDITIONS, GR/SCF	0.0351	0.0356	0.0361
DRY STANDARD CONDITIONS, GR/DSCF	0.0444	0.0460	0.0474
EFFLUENT BACK HALF PARTICULATE CONCENTRATION; ACTUAL CONDITIONS, GR/ACF	0.0247	0.0268	0.0200
STANDARD CONDITIONS, GR/SCF	0.0349	0.0377	0.0281
DRY STANDARD CONDITIONS, GR/DSCF	0.0442	0.0487	0.0369
EFFLUENT TOTAL PARTICULATE CONCENTRATION; ACTUAL CONDITIONS, GR/ACF	0.0496	0.0521	0.0458
STANDARD CONDITIONS, GR/SCF	0.0700	0.0733	0.0643
DRY STANDARD CONDITIONS, GR/DSCF	0.0885	0.0947	0.0842
SOURCE PARTICULATE EMISSION RATE; CLASSICAL METHOD, LB/HR	51.72	53.00	47.19
RATIO OF AREAS METHOD, LB/HR	49.35	51.17	47.04

PARTICULATE CONCENTRATION AND EMISSION RATES BASED ON ANALYSIS OF
 THE SAMPLING TRAIN FRONT AND BACK CATCHES.

STANDARD CONDITIONS: 68 DEGREES FAHRENHEIT, 29.92 INCHES OF MERCURY.

TRAVERSE POINT DATA SUMMARY AND VELOCITY PROFILE

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 1 SOURCE: LINE # 1 INLET
 RUN NUMBER: 1 TIME: 2/16/94 1302-1415

SAMPLING LOCATION PORT POINT	TRAVERSE POINT DATA					VELOCITY PROFILE	
	VELOCITY PRESSURE IN WC	ORIFICE PRESSURE IN WC	TEMPERATURE, DEG.F STACK METER GAS	METER INLET	METER OUTLET	SORT VELOCITY PRESSURE	GAS VELOCITY FT/SEC
A 1	2.050	1.400	242	36	35	1.432	98.76
A 2	1.950	1.400	245	36	35	1.396	96.52
A 3	1.900	1.300	245	38	35	1.378	95.28
A 4	1.600	1.100	246	39	35	1.265	87.50
A 5	1.300	0.900	247	41	35	1.140	78.92
A 6	0.940	0.650	247	42	35	0.970	67.11
A 7	0.740	0.510	247	44	36	0.860	59.55
A 8	1.700	1.200	246	46	36	1.304	90.19
A 9	2.150	1.500	246	48	36	1.466	101.42
A 10	1.900	1.300	246	47	36	1.378	95.35
A 11	2.150	1.500	246	47	37	1.466	101.42
A 12	2.300	1.600	246	47	37	1.517	104.90
B 1	2.350	1.600	240	38	37	1.533	105.59
B 2	2.500	1.700	239	39	37	1.581	108.83
B 3	2.400	1.700	238	39	37	1.549	106.55
B 4	2.200	1.500	242	40	37	1.483	102.31
B 5	1.650	1.100	243	41	37	1.285	88.66
B 6	0.880	0.610	243	43	37	0.938	64.75
B 7	0.680	0.470	246	45	37	0.825	57.04
B 8	0.760	0.530	244	46	37	0.872	68.22
B 9	0.970	0.670	240	48	37	0.985	67.84
B 10	1.100	0.760	243	49	38	1.049	72.39
B 11	1.050	0.730	241	51	38	1.025	70.63
B 12	0.860	0.590	240	51	38	0.927	63.87
AVERAGE	1.587	1.097	244	43	36	1.234	85.24

PARTICULATE EMISSION TEST CALCULATIONS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 1 SOURCE: LINE # 1 INLET
 RUN NUMBER: 1 TIME: 2/16/94 1302-1415

TEST DATA			
GAS METER COEFFICIENT	1.0262 Y	VOLUME OF LIQUID COLLECTED, ML	19
PITOT TUBE COEFFICIENT	0.838 C ₂		
NOZZLE DIMENSIONS: DIAMETER, IN	0.199 D _m	GAS COMPOSITION, % V/V DRY: CARBON DIOXIDE	3
AREA, SF	0.000216 A _m	OXYGEN	15
STACK DIMENSIONS: DIAMETER/LENGTH, IN	66.00 S ₁	CARBON MONOXIDE	0
WIDTH, IN	0.00 S ₂	NITROGEN (BY DIFFERENCE)	81
AREA, SF	23.758 A _s		
BAROMETRIC PRESSURE, IN HG	28.78 P _b	AVE. TRAVERSE POINT DATA: STACK TEMP., DEG F	2
STACK PRESSURES: STATIC, IN WC	-7.00 P _s	METER TEMP., DEG F	
ABSOLUTE, IN HG	28.27 P _s	ORIFICE PRESSURE, IN WC	1.8
SAMPLING TIME, MIN	60.00 T _i	SQRT VELOCITY P., IN WC	1.21
VOLUME OF GAS SAMPLED AT METER, DCF	33.926 V _m	MASS OF PARTICULATE MATTER COLLECTED, G:	
		FRONT CATCH (50.1%)	0.101
		BACK CATCH (49.9%)	0.101
		TOTAL CATCH	0.203

CALCULATED RESULTS			
VOLUME OF GAS SAMPLED AT METER, DCF	35.448 V _m	GAS MOLECULAR WEIGHT: DRY BASIS, LB/LB-MOLE	29.12
EQUIVALENT VOLUME OF WATER VAPOR COLLECTED, SCF	9.381 V _w	WET BASIS, LB/LB-MOLE	26.75
GAS MOISTURE CONTENT: VOLUME FRACTION	0.2093 B _{ws}	AVERAGE GAS VELOCITY, FPS	85.24
PERCENT BY VOLUME	20.93 B _{wp}	GAS VOLUMETRIC FLOW RATE: ACTUAL, ACFM	121509
		STANDARD, SCFM	86132
		DRY STANDARD, DSCFM	69108
		ISOKINETIC VARIATION, %	95.47

PARTICULATE EMISSION PARAMETER	FRONT CATCH	BACK CATCH	TOTAL CAT
PARTICULATE CONCENTRATION ACTUAL, GR/ACF	0.0249 C _{af}	0.0247 C _{ab}	0.0496 C
STANDARD, GR/SCF	0.0351 C _{wf}	0.0349 C _{wb}	0.0700 C
DRY STANDARD, GR/DSCF	0.0444 C _{sf}	0.0442 C _{sb}	0.0885 C
PARTICULATE EMISSION RATE, LB/HR CLASSICAL METHOD	25.92 R _{cf}	25.80 R _{cb}	51.72 R
RATIO OF AREAS METHOD	24.73 R _{rf}	24.61 R _{rb}	49.35 R

STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG

* NON-APPLICABLE DATA

TRAVERSE POINT DATA SUMMARY AND VELOCITY PROFILE

10

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 1 SOURCE: LINE # 1 INLET
 RUN NUMBER: 2 TIME: 2/16/94 1501-1610

SAMPLING LOCATION PORT POINT	VELOCITY PRESSURE IN WC	ORIFICE PRESSURE IN WC	TRAVERSE POINT DATA			VELOCITY PROFILE	
			STACK GAS	METER INLET	METER OUTLET	SQRT VELOCITY PRESSURE	GAS VELOCITY FT/SEC
A 1	2.500	1.700	241	37	37	1.581	109.35
A 2	2.500	1.700	241	38	37	1.581	109.35
A 3	2.350	1.600	241	38	37	1.533	106.02
A 4	2.150	1.500	240	38	37	1.466	101.34
A 5	1.700	1.200	240	39	38	1.304	90.11
A 6	0.980	0.680	240	39	38	0.998	68.42
A 7	0.650	0.480	241	39	38	0.831	57.45
A 8	0.700	0.480	242	40	38	0.837	57.91
A 9	0.770	0.530	242	40	38	0.877	60.73
A 10	0.920	0.640	242	40	38	0.959	66.38
A 11	1.100	0.760	240	41	39	1.049	72.48
A 12	0.760	0.530	238	41	39	0.872	60.16
B 1	1.400	0.970	228	39	39	1.183	81.87
B 2	1.900	1.300	236	39	39	1.378	94.99
B 3	2.150	1.500	241	40	39	1.466	101.41
B 4	1.800	1.200	244	40	39	1.342	92.99
B 5	1.250	0.860	245	41	39	1.118	77.54
B 6	0.910	0.630	245	41	39	0.954	66.16
B 7	0.800	0.550	245	41	39	0.894	62.04
B 8	1.200	0.830	244	41	39	1.095	75.92
B 9	1.600	1.100	243	41	39	1.265	87.61
B 10	1.950	1.400	243	41	39	1.396	96.72
B 11	2.100	1.500	243	41	39	1.449	100.37
B 12	2.100	1.500	243	42	40	1.449	100.37
AVERAGE	1.512	1.048	241	40	38	1.203	83.21

PARTICULATE EMISSION TEST CALCULATIONS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 1 SOURCE: LINE # 1 INLET
 RUN NUMBER: 2 TIME: 2/16/94 1501-1610

TEST DATA			
GAS METER COEFFICIENT	1.0262 Y	VOLUME OF LIQUID COLLECTED, ML	212.5
PITOT TUBE COEFFICIENT	0.838 Cp		
NOZZLE DIMENSIONS:		GAS COMPOSITION, % V/V DRY:	
DIAMETER, IN	0.199 Dn	CARBON DIOXIDE	3.50
AREA, SF	0.000216 An	OXYGEN	15.15
STACK DIMENSIONS:		CARBON MONOXIDE	0.00
DIAMETER/LENGTH, IN	66.00 S1	NITROGEN (BY DIFFERENCE)	81.35
WIDTH, IN	0.00 Sw		
AREA, SF	23.758 As		
BAROMETRIC PRESSURE, IN HG	28.74 Pb	AVE. TRAVERSE POINT DATA:	
STACK PRESSURES:		STACK TEMP., DEG F	241 T
STATIC, IN WC	-7.00 Pg	METER TEMP., DEG F	39 T
ABSOLUTE, IN HG	28.23 Ps	ORIFICE PRESSURE, IN WC	1.048 F
SAMPLING TIME, MIN	60.00 Ti	SQRT VELOCITY P., IN WC	1.203 P
VOLUME OF GAS SAMPLED AT METER, DCF	32.872 Vm	MASS OF PARTICULATE MATTER COLLECTED, G:	
		FRONT CATCH (48.6%)	0.1025 Wf
		BACK CATCH (51.4%)	0.1085 Wb
		TOTAL CATCH	0.2110 Wt

CALCULATED RESULTS			
VOLUME OF GAS SAMPLED AT METER, DSCF	34.366 Vms	GAS MOLECULAR WEIGHT:	
		DRY BASIS, LB/LB-MOLE	29.17 Mg
EQUIVALENT VOLUME OF WATER VAPOR COLLECTED, SCF	10.002 Vw	WET BASIS, LB/LB-MOLE	26.65 Ms
		AVERAGE GAS VELOCITY, FPS	83.21 Vs
GAS MOISTURE CONTENT:		GAS VOLUMETRIC FLOW RATE:	
VOLUME FRACTION	0.2254 Bws	ACTUAL, ACFM	118612 Qa
PERCENT BY VOLUME	22.54 Bwd	STANDARD, SCFM	64259 Qs
		DRY STANDARD, DSCFM	65264 Qsd
		ISOKINETIC VARIATION, %	96.59 I
PARTICULATE EMISSION PARAMETER	FRONT CATCH	BACK CATCH	TOTAL CATCH
PARTICULATE CONCENTRATION			
ACTUAL, GR/ACF	0.0253 Caf	0.0268 Cab	0.0521 Cat
STANDARD, GR/SCF	0.0356 Cwf	0.0377 Cwb	0.0733 Cwt
DRY STANDARD, GR/DSCF	0.0460 Csf	0.0487 Csb	0.0947 Cst
PARTICULATE EMISSION RATE, LB/HR			
CLASSICAL METHOD	25.75 Rcf	27.25 Rcb	53.00 Rct
RATIO OF AREAS METHOD	24.86 Rrf	26.31 Rrb	51.17 Rrt
STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG	* NON-APPLICABLE DATA		

TRAVERSE POINT DATA SUMMARY AND VELOCITY PROFILE

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 1 SOURCE: LINE # 1 INLET
 RUN NUMBER: 3 TIME: 2/16/94 1715-1824

SAMPLING LOCATION PORT POINT	TRAVERSE POINT DATA					VELOCITY PROFILE	
	VELOCITY PRESSURE IN WC	ORIFICE PRESSURE IN WC	TEMPERATURE, DEG.F STACK METER METER	GAS	INLET OUTLET	SORT VELOCITY PRESSURE	GAS VELOCITY FT/SEC
A 1	2.400	1.700	241	37	37	1.549	107.41
A 2	2.800	1.900	240	39	37	1.673	115.93
A 3	2.550	1.800	240	39	37	1.597	110.63
A 4	2.250	1.600	240	39	37	1.500	103.92
A 5	1.550	1.100	239	48	37	1.245	86.19
A 6	0.840	0.500	240	40	37	0.917	63.50
A 7	0.700	0.480	242	41	37	0.837	58.05
A 8	0.820	0.570	241	42	37	0.906	62.78
A 9	0.950	0.660	240	45	37	0.975	67.53
A 10	1.050	0.730	240	46	37	1.025	70.99
A 11	0.960	0.660	238	48	37	0.980	67.78
A 12	0.780	0.540	234	48	37	0.883	60.93
B 1	1.550	1.100	228	39	37	1.245	85.51
B 2	1.600	1.100	236	41	37	1.265	87.38
B 3	1.900	1.300	241	44	37	1.378	95.57
B 4	1.700	1.200	242	44	37	1.304	90.46
B 5	1.350	0.930	242	45	37	1.162	80.61
B 6	0.890	0.610	242	46	37	0.943	65.45
B 7	0.820	0.570	242	46	37	0.906	62.83
B 8	1.150	0.790	242	46	37	1.072	74.40
B 9	1.700	1.200	241	48	36	1.304	90.40
B 10	2.100	1.500	241	48	36	1.449	100.47
B 11	2.450	1.600	240	45	36	1.585	108.44
B 12	2.350	1.600	240	44	35	1.533	106.21
AVERAGE	1.550	1.076	240	43	37	1.217	84.31

PARTICULATE EMISSION TEST CALCULATIONS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 1 SOURCE: LINE # 1 INLET
 RUN NUMBER: 3 TIME: 2/16/94 1715-1824

TEST DATA		
GAS METER COEFFICIENT	1.0262 Y	VOLUME OF LIQUID COLLECTED, ML
PITOT TUBE COEFFICIENT	0.838 Cp	
NOZZLE DIMENSIONS; DIAMETER, IN	0.199 Dn	GAS COMPOSITION, % V/V DRY; CARBON DIOXIDE
AREA, SF	0.000216 An	OXYGEN CARBON MONOXIDE NITROGEN (BY DIFFERENCE)
STACK DIMENSIONS; DIAMETER/LENGTH, IN	66.00 S1	AVE. TRAVERSE POINT DATA;
WIDTH, IN	0.00 Sw	STACK TEMP., DEG F
AREA, SF	23.758 As	METER TEMP., DEG F
BAROMETRIC PRESSURE, IN HG	28.75 Pb	ORIFICE PRESSURE, IN WC
STACK PRESSURES; STATIC, IN WC	-7.00 Pg	SORT VELOCITY P., IN WC
ABSOLUTE, IN HG	28.24 Ps	
SAMPLING TIME, MIN	60.00 Ti	MASS OF PARTICULATE MATTER COLLECTED, G;
VOLUME OF GAS SAMPLED AT METER, DSCF	34.013 Vm	FRONT CATCH (56.2%) 0. BACK CATCH (43.8%) 0. TOTAL CATCH 0.

CALCULATED RESULTS		
VOLUME OF GAS SAMPLED AT METER, DSCF	35.510 Vms	GAS MOLECULAR WEIGHT; DRY BASIS, LB/LB-MOLE 29 WET BASIS, LB/LB-MOLE 28
EQUIVALENT VOLUME OF WATER VAPOR COLLECTED, SCF	11.029 Vw	AVERAGE GAS VELOCITY, FPS 24
GAS MOISTURE CONTENT; VOLUME FRACTION	0.2370 Bws	GAS VOLUMETRIC FLOW RATE; ACTUAL, ACFM 122
PERCENT BY VOLUME	23.70 Bwp	STANDARD, SCFM 85
		DRY STANDARD, DSCFM 65
		ISOKINETIC VARIATION, % 99.

PARTICULATE EMISSION PARAMETER	FRONT CATCH	BACK CATCH	TOTAL
PARTICULATE CONCENTRATION ACTUAL, GR/ACF	0.0257 Caf	0.0200 Cab	0.04
STANDARD, GR/SCF	0.0361 Cwf	0.0281 Cwb	0.06
DRY STANDARD, GR/DSCF	0.0474 Csf	0.0369 Csb	0.06
PARTICULATE EMISSION RATE, LB/HR CLASSICAL METHOD	26.54 Rcf	26.65 Rcb	47.
RATIO OF AREAS METHOD	26.46 Rrf	26.59 Rrb	47.1

STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG * NON-APPLICABLE

DEFINITION OF UNIT ABBREVIATIONS

ACFM ACTUAL CUBIC FEET PER MINUTE
DEG F DEGREES FAHRENHEIT
DCF DRY CUBIC FEET
DSCF DRY STANDARD CUBIC FEET
DSCFM DRY STANDARD CUBIC FEET PER MINUTE
FPS FEET PER SECOND
G GRAMS
GR/ACF GRAINS PER ACTUAL CUBIC FOOT
GR/DSCF GRAINS PER DRY STANDARD CUBIC FOOT
GR/SCF GRAINS PER STANDARD CUBIC FOOT
IN INCHES
IN HG INCHES OF MERCURY
IN WC INCHES OF WATER
LB/HR POUNDS PER HOUR
LB/LB-MOLE .. POUND PER POUND-MOLE
MIN MINUTES
ML MILLILITERS
SCF STANDARD CUBIC FEET
SCFM STANDARD CUBIC FEET PER MINUTE
SF SQUARE FEET
% V/V DRY ... PERCENT BY VOLUME, DRY BASIS

DEFINITION OF STANDARD CONDITIONS

STANDARD TEMPERATURE 68 DEGREES FAHRENHEIT
STANDARD PRESSURE 29.92 INCHES OF MERCURY

DEFINITION OF VARIABLES

An	CROSS-SECTIONAL AREA OF NOZZLE, SF
As	CROSS-SECTIONAL AREA OF STACK, SF
Bwp	EFFLUENT MOISTURE CONTENT, PERCENT BY VOLUME
Bvs	EFFLUENT MOISTURE CONTENT, PROPORTION BY VOLUME
Ca*	EFFLUENT PARTICULATE CONCENTRATION AT ACTUAL CONDITIONS, GR/ACF; *=f,b,t; Caf: FRONT CATCH ONLY; Cab: BACK CATCH ONLY; Cat: TOTAL CATCH
CD	EFFLUENT CARBON DIOXIDE CONCENTRATION, % V/V DRY
CM	EFFLUENT CARBON MONOXIDE CONCENTRATION, % V/V DRY
Cp	PITOT TUBE COEFFICIENT, DIMENSIONLESS
Cs*	EFFLUENT PARTICULATE CONCENTRATION AT DRY STANDARD CONDITIONS, GR/DSCF; *=f,b,t; Csf: FRONT CATCH ONLY; Csb: BACK CATCH ONLY; Cst: TOTAL CATCH
Cw*	EFFLUENT PARTICULATE CONCENTRATION AT STANDARD CONDITIONS, GR/SCF; *=f,b,t; Cwf: FRONT CATCH ONLY; Cwb: BACK CATCH ONLY; Cwt: TOTAL CATCH
Dn	NOZZLE DIAMETER, IN
I	ISOKINETIC VARIATION, %
Md	EFFLUENT MOLECULAR WEIGHT, LB/LB-MOLE, DRY BASIS
Ms	EFFLUENT MOLECULAR WEIGHT, LB/LB-MOLE, WET BASIS
NI	EFFLUENT NITROGEN CONCENTRATION, % V/V DRY
OX	EFFLUENT OXYGEN CONCENTRATION, % V/V DRY
Pb	BAROMETRIC PRESSURE, IN HG
Pg	STACK STATIC PRESSURE, IN WC
Po	AVERAGE PRESSURE DROP ACROSS THE METERING ORIFICE, IN WC
Ps	STACK ABSOLUTE PRESSURE, IN HG
Pv	AVERAGE SQUARE-ROOT VELOCITY PRESSURE, IN WC
Qa	EFFLUENT FLOW RATE AT ACTUAL CONDITIONS, ACFM
Qs	EFFLUENT FLOW RATE AT STANDARD CONDITIONS, SCFM
Qsd	EFFLUENT FLOW RATE AT STANDARD CONDITIONS, DRY BASIS, DSCFM
Rc*	SOURCE PARTICULATE EMISSION RATE, CLASSICAL METHOD, LB/HR; *=f,b,t; Rcf: FRONT CATCH ONLY; Rcb: BACK CATCH ONLY; Rct: TOTAL CATCH
Rr*	SOURCE PARTICULATE EMISSION RATE, RATIO OF AREAS METHOD, LB/HR; *=f,b,t; Rrf: FRONT CATCH ONLY; Rrb: BACK CATCH ONLY; Rrt: TOTAL CATCH
S1	STACK DIAMETER OR LENGTH, IN
Sw	STACK WIDTH, IN
Ti	TOTAL SAMPLING TIME, MIN
Tm	AVERAGE DRY GAS METER TEMPERATURE, DEG F
Ts	AVERAGE EFFLUENT TEMPERATURE, DEG F
Vl	VOLUME OF LIQUID COLLECTED, ML
Vm	VOLUME OF GAS SAMPLED AT METER CONDITIONS, DCF
Vms	VOLUME OF GAS SAMPLED AT STANDARD CONDITIONS, DSCF
Vs	AVERAGE EFFLUENT VELOCITY, FPS
Vw	VOLUME OF WATER VAPOR COLLECTED AT STANDARD CONDITIONS, SCF
Wb	MASS OF PARTICULATE MATTER COLLECTED IN THE BACK (WET) CATCH, G
Wf	MASS OF PARTICULATE MATTER COLLECTED IN THE FRONT (DRY) CATCH, G
Wt	TOTAL MASS OF PARTICULATE MATTER COLLECTED, G
Y	DRY GAS METER COEFFICIENT, DIMENSIONLESS

EQUATIONS USED TO CALCULATE PARTICULATE EMISSIONS

$A_n = 0.005454154 * D_n * D_n$
 $A_s = 0.005454154 * S_1 * S_1$ (FOR ROUND STACKS)
 $A_s = S_1 * S_d / 144.0$ (FOR RECTANGULAR STACKS)
 $P_s = P_b + P_a/13.6$
 $N_I = 100.0 - C_D - O_X - C_M$
 $W_t = W_f + W_b$
 $V_{ms} = (528/29.92) * V_m * Y * (P_b + P_a/13.6) / (T_m + 460.0)$
 $V_w = 0.04707 * V_1$
 $B_{ws} = V_w / (V_w + V_{ms})$
 $B_{wp} = 100.0 * B_{ws}$
 $M_d = 0.440 * C_D + 0.320 * O_X + 0.280 * (N_I + C_M)$
 $M_s = M_d * (1.0 - B_{ws}) + 18.0 * B_{ws}$
 $V_s = 85.49 * C_p * P_v * \sqrt{(T_s + 460.0) / (M_s * P_s)}$
 $Q_a = 60.0 * V_s * A_s$
 $Q_s = Q_a * (528/29.92) * P_s / (T_s + 460.0)$
 $Q_{sd} = Q_s * (1.0 - B_{ws})$
 $I = 0.09450 * (T_s + 460.0) * V_{ms} / (P_s * V_s * A_n * T_i * (1.0 - B_{ws}))$
 $C_{sf} = 15.42 * W_f / V_{ws}$
 $C_{sb} = 15.42 * W_b / V_{ws}$
 $C_{st} = 15.42 * W_t / V_{ws}$
 $C_{wf} = C_{sf} / (1.0 - B_{ws})$
 $C_{wb} = C_{sb} / (1.0 - B_{ws})$
 $C_{wt} = C_{st} / (1.0 - B_{ws})$
 $C_{af} = C_{wf} * (29.92/528.0) * (T_s + 460.0) / P_s$
 $C_{ab} = C_{wb} * (29.92/528.0) * (T_s + 460.0) / P_s$
 $C_{at} = C_{wt} * (29.92/528.0) * (T_s + 460.0) / P_s$
 $R_{cf} = 0.008578 * C_{sf} * Q_{sd}$
 $R_{cb} = 0.008578 * C_{sb} * Q_{sd}$
 $R_{ct} = 0.008578 * C_{st} * Q_{sd}$
 $R_{rf} = 0.008578 * C_{sf} * (V_{ms} / T_i) * (A_s / A_n)$
 $R_{rb} = 0.008578 * C_{sb} * (V_{ms} / T_i) * (A_s / A_n)$
 $R_{rt} = 0.008578 * C_{st} * (V_{ms} / T_i) * (A_s / A_n)$

APPENDIX A2: CALCULATIONS

LINE #1 DRYER - RTO OUTLET PARTICULATE EMISSION TEST

March 23, 1994

(This page intentionally left blank)

MMT Report #10057

TABLE SUMMARY OF PARTICULATE EMISSION TEST RESULTS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET

TEST PARAMETER	RUN 1	RUN 2	RUN 3
TEST DATE	2/16/94	2/16/94	2/16/94
TIME OF TEST, HR:			
START	1300	1500	1715
FINISH	1407	1607	1822
EFFLUENT TEMPERATURE, DEGREES F	343	322	346
BAROMETRIC PRESSURE, IN HG	28.80	28.70	28.71
EFFLUENT MOISTURE CONTENT, % V/V	21.0	21.3	24.7
EFFLUENT COMPOSITION, % V/V DRY:			
CARBON DIOXIDE	3.2	4.3	4.3
OXYGEN	15.4	13.1	13.3
CARBON MONOXIDE	0.0	0.0	0.0
EFFLUENT VOLUMETRIC FLOW RATE:			
ACTUAL CONDITIONS, ACFM	132135	136349	139805
STANDARD CONDITIONS, SCFM	83507	88172	87739
DRY STANDARD CONDITIONS, DSCFM	66025	69360	66069
ISOKINETIC VARIATION, %			
EFFLUENT PARTICULATE CONCENTRATION:	98.7	102.5	101.7
EFFLUENT FRONT HALF PARTICULATE CONCENTRATION:			
ACTUAL CONDITIONS, GR/ACF	0.0037	0.0040	0.0021
STANDARD CONDITIONS, GR/SCF	0.0059	0.0061	0.0033
DRY STANDARD CONDITIONS, GR/DSCF	0.0075	0.0078	0.0044
EFFLUENT BACK HALF PARTICULATE CONCENTRATION:			
ACTUAL CONDITIONS, GR/ACF	0.0018	0.0028	0.0019
STANDARD CONDITIONS, GR/SCF	0.0029	0.0044	0.0030
DRY STANDARD CONDITIONS, GR/DSCF	0.0036	0.0056	0.0039
EFFLUENT TOTAL PARTICULATE CONCENTRATION:			
ACTUAL CONDITIONS, GR/ACF	0.0055	0.0068	0.0039
STANDARD CONDITIONS, GR/SCF	0.0088	0.0105	0.0063
DRY STANDARD CONDITIONS, GR/DSCF	0.0111	0.0133	0.0083
SOURCE PARTICULATE EMISSION RATE:			
CLASSICAL METHOD, LB/HR	6.28	7.93	4.71
RATIO OF AREAS METHOD, LB/HR	6.20	8.12	4.78

PARTICULATE CONCENTRATION AND EMISSION RATES BASED ON ANALYSIS OF THE SAMPLING TRAIN FRONT AND BACK CATCHES.

STANDARD CONDITIONS: 68 DEGREES FAHRENHEIT, 29.92 INCHES OF MERCURY.

TRAVERSE POINT DATA SUMMARY AND VELOCITY PROFILE

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET
 RUN NUMBER: 1 TIME: 2/16/94 1300-1407

SAMPLING LOCATION PORT POINT	TRAVERSE POINT DATA				VELOCITY PROFILE	
	VELOCITY PRESSURE IN WC	ORIFICE PRESSURE IN WC	TEMPERATURE, DEG.F STACK METER METER GAS INLET OUTLET	SQRT VELOCITY PRESSURE	GAS VELOCITY FT/SEC	
A 1	0.670	0.980	342 37 40	0.819	59.25	
A 2	0.700	1.030	343 39 40	0.837	60.60	
A 3	0.700	1.030	344 45 39	0.837	60.64	
A 4	0.710	1.040	344 46 39	0.843	61.07	
A 5	0.690	1.010	341 47 39	0.831	60.09	
A 6	0.700	1.030	345 47 39	0.837	60.67	
B 1	0.740	1.090	346 43 41	0.860	62.42	
B 2	0.800	1.180	348 46 41	0.894	64.98	
B 3	0.780	1.180	345 48 41	0.883	64.05	
B 4	0.680	0.990	336 50 41	0.825	59.47	
B 5	0.660	0.970	338 52 41	0.812	58.66	
B 6	0.630	0.930	346 49 43	0.794	57.60	
AVERAGE	0.705	1.038	343 46 40	0.839	60.79	

PARTICULATE EMISSION TEST CALCULATIONS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET
 RUN NUMBER: 1 TIME: 2/16/94 1300-1407

TEST DATA			
GAS METER COEFFICIENT	0.9654 Y	VOLUME OF LIQUID COLLECTED, ML	198.6
PITOT TUBE COEFFICIENT	0.830 Cp	GAS COMPOSITION, % V/V DRY:	
NOZZLE DIMENSIONS:		CARBON DIOXIDE	3.18
DIAMETER, IN	0.245 Dn	OXYGEN	15.42
AREA, SF	0.000327 An	CARBON MONOXIDE	0.00
		NITROGEN (BY DIFFERENCE)	81.40
STACK DIMENSIONS:		AVE. TRAVERSE POINT DATA:	
DIAMETER/LENGTH, IN	81.50 S1	STACK TEMP., DEG F	343
WIDTH, IN	0.00 Sw	METER TEMP., DEG F	43
AREA, SF	36.228 As	ORIFICE PRESSURE, IN WC	1.038
BAROMETRIC PRESSURE, IN HG	28.00 Pb	SQRT VELOCITY P., IN WC	0.839
STACK PRESSURES:		MASS OF PARTICULATE MATTER	
STATIC, IN WC	-0.50 Ps	COLLECTED, G:	
ABSOLUTE, IN HG	28.76 Ps	FRONT CATCH (67.3%)	0.0171
SAMPLING TIME, MIN	60.00 Ti	BACK CATCH (32.7%)	0.0083
VOLUME OF GAS SAMPLED AT METER, DCF	36.086 Vm	TOTAL CATCH	0.0254

CALCULATED RESULTS			
VOLUME OF GAS SAMPLED AT METER, DCF	35.290 Vms	GAS MOLECULAR WEIGHT:	
		DRY BASIS, LB/LB-MOLE	29.13
		WET BASIS, LB/LB-MOLE	26.79
EQUIVALENT VOLUME OF WATER VAPOR COLLECTED, SCF	9.358 Vw	AVERAGE GAS VELOCITY, FPS	60.79 V
GAS MOISTURE CONTENT:		GAS VOLUMETRIC FLOW RATE:	
VOLUME FRACTION	0.2096 Bws	ACTUAL, ACFM	132135 C
PERCENT BY VOLUME	20.96 Bwp	STANDARD, SCFM	83587 C
		DRY STANDARD, DSCFM	66005 C
		ISOKINETIC VARIATION, %	96.67 I
PARTICULATE EMISSION PARAMETER	FRONT CATCH	BACK CATCH	TOTAL CATCH
PARTICULATE CONCENTRATION			
ACTUAL, GR/ACF	0.0037 Caf	0.0018 Cab	0.0055 Ca
STANDARD, GR/SCF	0.0059 Cwf	0.0029 Cwb	0.0088 Cw
DRY STANDARD, GR/DSCF	0.0075 Csf	0.0036 Csb	0.0111 Cs
PARTICULATE EMISSION RATE, LB/HR			
CLASSICAL METHOD	4.23 Rcf	2.05 Rcb	6.28 Rc
RATIO OF AREAS METHOD	4.17 Rrf	2.02 Rrb	6.20 Rr
STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG		• NON-APPLICABLE DATA	

TRAVERSE POINT DATA SUMMARY AND VELOCITY PROFILE

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET
 RUN NUMBER: 2 TIME: 2/16/94 1500-1607

SAMPLING LOCATION PORT POINT	TRAVERSE POINT DATA					VELOCITY PROFILE	
	VELOCITY PRESSURE IN WC	ORIFICE PRESSURE IN WC	TEMPERATURE, STACK GAS	METER INLET	METER OUTLET	SQRT VELOCITY PRESSURE	GAS VELOCITY FT/SEC
A 1	0.790	1.170	341	44	44	0.889	64.39
A 2	0.870	1.280	356	48	44	0.933	68.20
A 3	0.840	1.240	357	52	45	0.917	67.05
A 4	0.750	1.110	332	53	45	0.866	62.38
A 5	0.720	1.060	346	53	45	0.849	61.66
A 6	0.640	0.940	345	55	46	0.800	58.10
B 1	0.720	1.060	350	49	46	0.849	61.81
B 2	0.770	1.140	337	51	46	0.877	63.41
B 3	0.810	1.190	358	53	46	0.908	65.88
B 4	0.760	1.120	348	54	46	0.872	63.43
B 5	0.760	1.180	345	55	46	0.872	63.31
B 6	0.800	7332.000	49	49	47	0.894	51.65
AVERAGE	0.769	28.707	322	51	46	0.876	62.73

PARTICULATE EMISSION TEST CALCULATIONS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET
 RUN NUMBER: 2 TIME: 2/16/94 1508-1607

TEST DATA			
GAS METER COEFFICIENT	0.9654 Y	VOLUME OF LIQUID COLLECTED, ML	221.9 V1
PITOT TUBE COEFFICIENT	0.838 Cp		
NOZZLE DIMENSIONS; DIAMETER, IN	0.245 Dn	GAS COMPOSITION, % V/V DRY; CARBON DIOXIDE	4.30 CD
AREA, SF	0.000327 An	OXYGEN	13.10 OX
STACK DIMENSIONS; DIAMETER/LENGTH, IN	81.50 S1	CARBON MONOXIDE	0.00 CM
WIDTH, IN	0.00 Sw	NITROGEN (BY DIFFERENCE)	82.60 NI
AREA, SF	36.228 As	AVE. TRAVERSE POINT DATA; STACK TEMP., DEG F	322 Ts
BAROMETRIC PRESSURE, IN HG	28.70 Pb	METER TEMP., DEG F	48 Tm
STACK PRESSURES; STATIC, IN HG	-0.60 Ps	ORIFICE PRESSURE, IN HG	28.707 Po
ABSOLUTE, IN HG	28.66 Ps	SQRT VELOCITY F., IN HG	0.876 Pv
SAMPLING TIME, MIN	60.00 Ti	MASS OF PARTICULATE MATTER COLLECTED, G;	
VOLUME OF GAS SAMPLED AT METER, DCF	37.301 Vm	FRONT CATCH (58.3%)	0.0194 Wf
		BACK CATCH (41.7%)	0.0139 Wb
		TOTAL CATCH	0.0333 Wt

CALCULATED RESULTS			
PARTICULATE EMISSION PARAMETER	FRONT CATCH	BACK CATCH	TOTAL CATCH
VOLUME OF GAS SAMPLED AT METER, DSCF	38.511 Vms	GAS MOLECULAR WEIGHT; DRY BASIS, LB/LB-MOLE	29.21 Md
EQUIVALENT VOLUME OF WATER VAPOR COLLECTED, SCF	10.445 Vw	WET BASIS, LB/LB-MOLE	26.82 Ms
GAS MOISTURE CONTENT; VOLUME FRACTION	0.2134 Bws	AVERAGE GAS VELOCITY, FPS	62.73 Vs
PERCENT BY VOLUME	21.34 Bwp	GAS VOLUMETRIC FLOW RATE; ACTUAL, ACFM	136349 Qa
		STANDARD, SCFM	88172 Qs
		DRY STANDARD, DSCFM	69360 Qsd
		ISOKINETIC VARIATION, %	102.46 I
PARTICULATE CONCENTRATION ACTUAL, GR/ACF	0.0040 Caf	0.0028 Cab	0.0068 Cat
STANDARD, GR/SCF	0.0061 Cwf	0.0044 Cwb	0.0105 Cwt
DRY STANDARD, GR/DSCF	0.0078 Csf	0.0056 Csb	0.0133 Cst
PARTICULATE EMISSION RATE, LB/HR CLASSICAL METHOD	4.62 Rcf	3.31 Rcb	7.93 Rct
RATIO OF AREAS METHOD	4.73 Rrf	3.39 Rrb	8.12 Rrt
STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG		• NON-APPLICABLE DATA	

TRAVERSE POINT DATA SUMMARY AND VELOCITY PROFILE

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET
 RUN NUMBER: 3 TIME: 2/16/94 1715-1822

SAMPLING LOCATION PORT POINT	TRAVERSE POINT DATA				VELOCITY PROFILE	
	VELOCITY PRESSURE IN WC	ORIFICE PRESSURE IN WC	TEMPERATURE, DEG.F STACK METER GAS INLET OUTLET	SQRT VELOCITY PRESSURE	GAS VELOCITY FT/SEC	
A 1	0.770	1.130	342 45 45	0.877	64.04	
A 2	0.810	1.210	338 47 43	0.908	65.52	
A 3	0.800	1.180	352 48 42	0.894	65.68	
A 4	0.780	1.150	347 48 43	0.883	64.65	
A 5	0.740	1.090	339 49 43	0.860	62.66	
A 6	0.700	1.030	348 49 43	0.837	61.29	
B 1	0.870	1.300	354 43 42	0.933	68.58	
B 2	0.880	1.300	347 47 43	0.938	68.67	
B 3	0.830	1.200	345 48 43	0.911	66.61	
B 4	0.730	1.100	339 48 42	0.854	62.24	
B 5	0.720	1.060	357 49 42	0.849	62.50	
B 6	0.660	0.970	345 49 42	0.812	59.40	
AVERAGE	0.774	1.143	346 48 43	0.879	64.32	

PARTICULATE EMISSION TEST CALCULATIONS

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
 TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET
 RUN NUMBER: 3 TIME: 2/16/94 1715-1822

TEST DATA

GAS METER COEFFICIENT	0.9654 Y	VOLUME OF LIQUID COLLECTED, ML	253.6 V1
PITOT TUBE COEFFICIENT	0.830 Cp		
NOZZLE DIMENSIONS; DIAMETER, IN	0.245 Dn	GAS COMPOSITION, % V/V DRY; CARBON DIOXIDE	4.30 CD
AREA, SF	0.000327 An	OXYGEN	13.30 OX
STACK DIMENSIONS; DIAMETER/LENGTH, IN	81.50 SI	CARBON MONOXIDE	0.00 CM
WIDTH, IN	0.00 Sw	NITROGEN (BY DIFFERENCE)	82.40 NI
AREA, SF	36.229 As		
BAROMETRIC PRESSURE, IN HG	28.71 Pb	AVE. TRAVERSE POINT DATA; STACK TEMP., DEG F	346 Ts
STACK PRESSURES; STATIC, IN WC	-0.59 Ps	METER TEMP., DEG F	45 Tm
ABSOLUTE, IN HG	28.67 Ps	ORIFICE PRESSURE, IN WC	1.143 Po
SAMPLING TIME, MIN	60.00 Ti	SQRT VELOCITY P., IN WC	0.879 Pv
VOLUME OF GAS SAMPLED AT METER, DCF	37.476 Vm	MASS OF PARTICULATE MATTER COLLECTED, G;	
		FRONT CATCH (52.6%)	0.0103 Wf
		BACK CATCH (47.4%)	0.0093 Wb
		TOTAL CATCH	0.0196 Wt

CALCULATED RESULTS

VOLUME OF GAS SAMPLED AT METER, DSCF	36.395 Vms	GAS MOLECULAR WEIGHT; DRY BASIS, LB/LB-MOLE	29.22 Md
EQUIVALENT VOLUME OF WATER VAPOR COLLECTED, SCF	11.937 Vw	WET BASIS, LB/LB-MOLE	26.45 Ms
GAS MOISTURE CONTENT; VOLUME FRACTION	0.2470 Bws	AVERAGE GAS VELOCITY, FPS	64.32 Vs
PERCENT BY VOLUME	24.70 Bwp	GAS VOLUMETRIC FLOW RATE; ACTUAL, ACFM	139805 Qa
		STANDARD, SCFM	87739 Qs
		DRY STANDARD, DSCFM	66069 Qsd
		ISOKINETIC VARIATION, %	101.65 I

PARTICULATE EMISSION PARAMETER	FRONT CATCH	BACK CATCH	TOTAL CATCH
PARTICULATE CONCENTRATION ACTUAL, GR/ACF	0.0021 Caf	0.0019 Cab	0.0039 Cat
STANDARD, GR/SCF	0.0033 Csf	0.0030 Cub	0.0063 Cwt
DRY STANDARD, GR/DSCF	0.0044 Csf	0.0039 Csb	0.0083 Cst
PARTICULATE EMISSION RATE, LB/HR CLASSICAL METHOD	2.47 Rcf	2.23 Rcb	4.71 Rct
RATIO OF AREAS METHOD	2.51 Rrf	2.27 Rrb	4.78 Rrt

STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG

* NON-APPLICABLE DATA

DEFINITION OF UNIT ABBREVIATIONS

ACFM ACTUAL CUBIC FEET PER MINUTE
DEG F DEGREES FAHRENHEIT
DCF DRY CUBIC FEET
DSCF DRY STANDARD CUBIC FEET
DSCFM DRY STANDARD CUBIC FEET PER MINUTE
FPS FEET PER SECOND
G GRAMS
GR/ACF GRAINS PER ACTUAL CUBIC FOOT
GR/DSCF GRAINS PER DRY STANDARD CUBIC FOOT
GR/SCF GRAINS PER STANDARD CUBIC FOOT
IN INCHES
IN HG INCHES OF MERCURY
IN WC INCHES OF WATER
LB/HR POUNDS PER HOUR
LB/LB-MOLE .. POUND PER POUND-MOLE
MIN MINUTES
ML MILLILITERS
SCF STANDARD CUBIC FEET
SCFM STANDARD CUBIC FEET PER MINUTE
SF SQUARE FEET
% V/V DRY ... PERCENT BY VOLUME, DRY BASIS

DEFINITION OF STANDARD CONDITIONS

STANDARD TEMPERATURE 68 DEGREES FAHRENHEIT
STANDARD PRESSURE 29.92 INCHES OF MERCURY

DEFINITION OF VARIABLES

An CROSS-SECTIONAL AREA OF NOZZLE, SF
As CROSS-SECTIONAL AREA OF STACK, SF
Bwp EFFLUENT MOISTURE CONTENT, PERCENT BY VOLUME
Bws EFFLUENT MOISTURE CONTENT, PROPORTION BY VOLUME
Ca* EFFLUENT PARTICULATE CONCENTRATION AT ACTUAL
CONDITIONS, GR/ACF; *=f,b,t; Caf: FRONT CATCH ONLY;
Cab: BACK CATCH ONLY; Cat: TOTAL CATCH
Cd EFFLUENT CARBON DIOXIDE CONCENTRATION, % V/V DRY
Cm EFFLUENT CARBON MONOXIDE CONCENTRATION, % V/V DRY
Cp PIOT TUBE COEFFICIENT, DIMENSIONLESS
Cs* EFFLUENT PARTICULATE CONCENTRATION AT DRY STANDARD
CONDITIONS, GR/DSCF; *=f,b,t; Csf: FRONT CATCH ONLY;
Csb: BACK CATCH ONLY; Cst: TOTAL CATCH
Cw* EFFLUENT PARTICULATE CONCENTRATION AT STANDARD
CONDITIONS, GR/SCF; *=f,b,t; Cwf: FRONT CATCH ONLY;
Cwb: BACK CATCH ONLY; Cwt: TOTAL CATCH
Dn NOZZLE DIAMETER, IN
I ISOKINETIC VARIATION, %
Md EFFLUENT MOLECULAR WEIGHT, LB/LB-MOLE, DRY BASIS
Ms EFFLUENT MOLECULAR WEIGHT, LB/LB-MOLE, NET BASIS
Ni EFFLUENT NITROGEN CONCENTRATION, % V/V DRY
Ox EFFLUENT OXYGEN CONCENTRATION, % V/V DRY
Pb BAROMETRIC PRESSURE, IN HG
Pg STACK STATIC PRESSURE, IN WC
Po AVERAGE PRESSURE DROP ACROSS THE METERING
ORIFICE, IN WC
Ps STACK ABSOLUTE PRESSURE, IN HG
Pv AVERAGE SQUARE-ROOT VELOCITY PRESSURE, IN WC
Qa EFFLUENT FLOW RATE AT ACTUAL CONDITIONS, ACFM
Qs EFFLUENT FLOW RATE AT STANDARD CONDITIONS, SCFM
Qsd EFFLUENT FLOW RATE AT STANDARD CONDITIONS,
DRY BASIS, DSCFM
Rc* SOURCE PARTICULATE EMISSION RATE, CLASSICAL
METHOD, LB/HR; *=f,b,t; Rcf: FRONT CATCH ONLY;
Rcb: BACK CATCH ONLY; Rct: TOTAL CATCH
Rr* SOURCE PARTICULATE EMISSION RATE, RATIO OF
AREAS METHOD, LB/HR; *=f,b,t; Rrf: FRONT CATCH ONLY;
Rrb: BACK CATCH ONLY; Rrt: TOTAL CATCH
S1 STACK DIAMETER OR LENGTH, IN
Sw STACK WIDTH, IN
Ti TOTAL SAMPLING TIME, MIN
Tm AVERAGE DRY GAS METER TEMPERATURE, DEG F
Ts AVERAGE EFFLUENT TEMPERATURE, DEG F
V1 VOLUME OF LIQUID COLLECTED, ML
Vm VOLUME OF GAS SAMPLED AT METER CONDITIONS, DCF
Vms VOLUME OF GAS SAMPLED AT STANDARD CONDITIONS, DSCF
Vs AVERAGE EFFLUENT VELOCITY, FPS
Vw VOLUME OF WATER VAPOR COLLECTED AT STANDARD
CONDITIONS, SCF
Wb MASS OF PARTICULATE MATTER COLLECTED IN THE
BACK (WET) CATCH, G
Wf MASS OF PARTICULATE MATTER COLLECTED IN THE
FRONT (DRY) CATCH, G
Wt TOTAL MASS OF PARTICULATE MATTER COLLECTED, G
Y DRY GAS METER COEFFICIENT, DIMENSIONLESS

EQUATIONS USED TO CALCULATE PARTICULATE EMISSIONS

$$An = 0.005454154 * Dn * Dn$$

$$As = 0.005454154 * Sl * Sl \quad (\text{FOR ROUND STACKS})$$

$$As = Sl * Sw / 144.0 \quad (\text{FOR RECTANGULAR STACKS})$$

$$Ps = Pb + Pg/13.6$$

$$NI = 100.0 - CD - OX - CM$$

$$Wt = Wf + Wb$$

$$Vms = (528/29.92) * Vm * Y * (Pb + Pg/13.6) / (Ts + 460.0)$$

$$Vw = 0.04707 * Vl$$

$$Bws = Vw / (Vw + Vms)$$

$$Bwp = 100.0 * Bws$$

$$Md = 0.440 * CD + 0.320 * OX + 0.280 * (NI + CM)$$

$$Ms = Md * (1.0 - Bws) + 18.0 * Bws$$

$$Vs = 85.49 * Cp * Pv * \text{SQRT}((Ts+460.0)/(Ms*Ps))$$

$$Qa = 60.0 * Vs * As$$

$$Qs = Qa * (528/29.92) * Ps / (Ts + 460.0)$$

$$Qsd = Qs * (1.0 - Bws)$$

$$I = 0.09450 * (Ts+460.0) * Vms / (Ps * Vs * An * Ti * (1.0-Bws))$$

$$Csf = 15.42 * Wf / Vws$$

$$Csb = 15.42 * Wb / Vws$$

$$Cst = 15.42 * Wt / Vws$$

$$Cwf = Csf / (1.0 - Bws)$$

$$Cwb = Csb / (1.0 - Bws)$$

$$Cwt = Cst / (1.0 - Bws)$$

$$Caf = Cwf * (29.92/528.0) * (Ts+460.0) / Ps$$

$$Cab = Cwb * (29.92/528.0) * (Ts+460.0) / Ps$$

$$Cat = Cwt * (29.92/528.0) * (Ts+460.0) / Ps$$

$$Rcf = 0.008578 * Csf * Qsd$$

$$Rcb = 0.008578 * Csb * Qsd$$

$$Rct = 0.008578 * Cst * Qsd$$

$$Rrf = 0.008578 * Csf * (Vms/Ti) * (As/An)$$

$$Rrb = 0.008578 * Csb * (Vms/Ti) * (As/An)$$

$$Rrt = 0.008578 * Cst * (Vms/Ti) * (As/An)$$

Salt Sulfur Emission Calculations
Louisiana-Pacific Corporation, Hayward, WI
Line #1 Dryer, RTO Inlet Test, February 16, 1994

Parameter	Sym	Run #1	Run #2	Run #3	Average
Volume of Gas Sampled:					
dry standard cubic feet, dscf	V1	35.448	34.366	35.510	
dry standard cubic meters, dscm	V2	1.0039	0.9732	1.0056	
Mass of Salt/Sulfur Collected:					
Calcium, ug	M1	1,850	1,850	2,700	
Magnesium, ug	M2	350	350	350	
Sodium, ug	M3	11,000	10,500	10,000	
Potassium, ug	M4	10,000	10,500	9,500	
Sulfur, ug	M5	1,050	750	1,000	
Effluent Salt/Sulfur Concentration:					
Calcium, gr/dscf	C1a	0.000805	0.000830	0.001172	0.000936
Magnesium, gr/dscf	C2a	0.000152	0.000157	0.000152	0.000154
Sodium, gr/dscf	C3a	0.004785	0.004711	0.004342	0.004613
Potassium, gr/dscf	C4a	0.004350	0.004711	0.004125	0.004396
Sulfur, gr/dscf	C5a	0.000457	0.000337	0.000434	0.000409
Effluent Salt/Sulfur Concentration:					
Calcium, ug/dscm	C1b	1,843	1,840	2,774	2,152
Magnesium, ug/dscm	C2b	349	360	360	356
Sodium, ug/dscm	C3b	10,957	10,789	10,275	10,674
Potassium, ug/dscm	C4b	9,961	10,789	9,761	10,170
Sulfur, ug/dscm	C5b	1,046	771	1,027	948
Effluent Flow Rate:					
dry standard cubic feet per minute, dscfm	F1	68,108	65,264	65,305	66,226
dry standard cubic meters per minute, dscmm	F2	1,929	1,848	1,849	1,876
Source Salt/Sulfur Mass Emission Rate:					
Calcium, lb/hr	R1	0.470	0.450	0.679	0.533
Magnesium, lb/hr	R2	0.089	0.088	0.088	0.088
Sodium, lb/hr	R3	2.796	2.638	2.514	2.649
Potassium, lb/hr	R4	2.541	2.638	2.388	2.522
Sulfur, lb/hr	R5	0.267	0.188	0.251	0.236
Equations:		V2 = V1 * 0.02832	F2 = F1 * 0.02832		
C1a = 15.42 * M1 / (V1 * 1,000,000)	C1b = M1 / V2	R1 = 60 * C1b * F2 / (1,000,000 * 453.6)			
C2a = 15.42 * M2 / (V1 * 1,000,000)	C2b = M2 / V2	R2 = 60 * C2b * F2 / (1,000,000 * 453.6)			
C3a = 15.42 * M3 / (V1 * 1,000,000)	C3b = M3 / V2	R3 = 60 * C3b * F2 / (1,000,000 * 453.6)			
C4a = 15.42 * M4 / (V1 * 1,000,000)	C4b = M4 / V2	R4 = 60 * C4b * F2 / (1,000,000 * 453.6)			
C5a = 15.42 * M5 / (V1 * 1,000,000)	C5b = M5 / V2	R5 = 60 * C5b * F2 / (1,000,000 * 453.6)			

March 23, 1994

MMT Report

APPENDIX A3: CALCULATIONS

LINE #2 DRYER - RTO FLOW RATE TESTS

March 23, 1994

(This page intentionally left blank)

MMT Report #1005

VOLUMETRIC FLOW RATE CALCULATION

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
TEST DATE: 2-18-94 SOURCE: LINE # 2 RTO INLET

DUCT DIMENSIONS;
DIAMETER, INCHES 66.00 DM
CROSS-SECTIONAL AREA, SQ FT 23.758 AR

EFFLUENT TEMPERATURE, DEG F 204 TS

MOISTURE CONTENT DETERMINATION:
EFFLUENT WET BULB TEMPERATURE, DEG F 150 TW
EFFLUENT DEW POINT TEMPERATURE, DEG F 148 TD
EFFLUENT RELATIVE HUMIDITY, % 28.3 RH
EFFLUENT MOISTURE CONTENT, % V/V 25.1 MC

DUCT PRESSURES;
BAROMETRIC PRESSURE, IN HG 28.50 PB
STATIC PRESSURE, IN WC -6.10 PS
ABSOLUTE PRESSURE, IN WC 28.05 PA

EFFLUENT COMPOSITION;
CARBON DIOXIDE CONTENT, % V/V DRY 3.2 CD
OXYGEN CONTENT, % V/V DRY 15.2 OX

EFFLUENT MOLECULAR WEIGHT;
DRY BASIS, LB/LB-MOLE 29.12 MD
WET BASIS, LB/LB-MOLE 26.33 MS

PITOT TUBE COEFFICIENT 0.838 CP

EFFLUENT VELOCITY PRESSURES, IN WC;

POINT	PORT A	PORT B
1	1.250	1.200
2	1.350	1.150
3	1.350	1.150
4	1.350	1.150
5	1.380	1.150
6	1.250	1.100
7	1.150	1.150
8	1.250	1.150
9	1.350	1.200
10	1.500	1.250
11	1.450	1.200

AVE. SQUARE-ROOT VELOCITY PRESSURE, IN WC .. 1.12 PV

EFFLUENT AVERAGE VELOCITY, FT/SEC 75.733 VS

EFFLUENT VOLUMETRIC FLOW RATE;
ACTUAL, ACPM 107955 FA
STANDARD, SCFM 80496 FW
DRY STANDARD, DSCFM 60289 FD

EQUATIONS USED TO CALCULATE THE VOLUMETRIC FLOW RATE

$$AR = 0.004545 * DM * DM$$

$$PA = PB + PS/13.6$$

$$MD = 0.44*CD + 0.32*OX + 0.28*(100-CD-OX)$$

$$MS = MD*(1-MC/100) + 0.18*MC$$

$$VS = 85.48 * CP * PV * SQRT((460+TS)/(MS*PA))$$

$$FA = 60 * VS * AR$$

$$FW = 17.65 * FA * PA / (TS+460)$$

$$FD = FW * (1-MC/100)$$

STANDARD CONDITIONS: 60 DEG F, 29.92 IN HG

VOLUMETRIC FLOW RATE CALCULATION

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
TEST DATE: 2-18-94 SOURCE: LINE # 2 RTO OUTLET

DUCT DIMENSIONS;
 DIAMETER, INCHES 81.50 DM
 CROSS-SECTIONAL AREA, SQ FT 36.227 AR

EFFLUENT TEMPERATURE, DEG F 321 TS

MOISTURE CONTENT DETERMINATION;
 EFFLUENT WET BULB TEMPERATURE, DEG F 165 TW
 EFFLUENT DEW POINT TEMPERATURE, DEG F 159 TD
 EFFLUENT RELATIVE HUMIDITY, % 5.1 RH
 EFFLUENT MOISTURE CONTENT, % V/V 33.1 MC

DUCT PRESSURES;
 BAROMETRIC PRESSURE, IN HG 28.47 PB
 STATIC PRESSURE, IN WC -0.57 PS
 ABSOLUTE PRESSURE, IN WC 28.43 PA

EFFLUENT COMPOSITION;
 CARBON DIOXIDE CONTENT, % V/V DRY 3.4 CD
 OXYGEN CONTENT, % V/V DRY 15.3 OX

EFFLUENT MOLECULAR WEIGHT;
 DRY BASIS, LB/LB-MOLE 29.16 MD
 WET BASIS, LB/LB-MOLE 25.46 MS

PITOT TUBE COEFFICIENT 0.830 CP

EFFLUENT VELOCITY PRESSURES, IN WC;
 POINT PORT A PORT B
 1 0.610 0.600
 2 0.720 0.650
 3 0.680 0.670
 4 0.670 0.700
 5 0.720 0.710
 6 0.730 0.730

AVE. SQUARE-ROOT VELOCITY PRESSURE, IN WC .. 0.83 PV

EFFLUENT AVERAGE VELOCITY, FT/SEC 68.850 VS

EFFLUENT VOLUMETRIC FLOW RATE;
 ACTUAL, ACFM 132265 FA
 STANDARD, SCFM 84974 FW
 DRY STANDARD, DSCFM 56855 FD

EQUATIONS USED TO CALCULATE THE VOLUMETRIC FLOW RATE

$$AR = 0.024545 \bullet DM \bullet DM$$

$$PA = PB + PS/13.6$$

$$MD = 0.44*CD + 0.32*OX + 0.28*(100-CD-OX)$$

$$MS = MD*(1-MC/100) + 0.18*MC$$

$$VS = 85.48 \bullet CP \bullet PV \bullet \text{SQRT}((460+TS)/(MS*PA))$$

$$FA = 60 \bullet VS \bullet AR$$

$$FW = 17.65 \bullet FA \bullet PA / (TS+460)$$

$$FD = FW \bullet (1-MC/100)$$

STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG

March 23, 1994

APPENDIX A4: CALCULATIONS

LINE #2 PRESS - RTO FLOW RATE TESTS

March 23, 1994

(This page intentionally left blank)

MMT Report #10057

VOLUMETRIC FLOW RATE CALCULATION

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC
TEST DATE: 2-18-94 SOURCE: PRESS # 2 INLET

DUCT DIMENSIONS;
DIAMETER, INCHES 53.50 DM
CROSS-SECTIONAL AREA, SQ FT 15.611 AR

EFFLUENT TEMPERATURE, DEG F 102 TS

MOISTURE CONTENT DETERMINATION:

EFFLUENT WET BULB TEMPERATURE, DEG F 77 TW
EFFLUENT DEW POINT TEMPERATURE, DEG F 68 TD
EFFLUENT RELATIVE HUMIDITY, % 33.6 RH
EFFLUENT MOISTURE CONTENT, % V/V 2.4 MC

DUCT PRESSURES;

BAROMETRIC PRESSURE, IN HG 28.46 PB
STATIC PRESSURE, IN WC -2.90 PS
ABSOLUTE PRESSURE, IN WC 28.25 PA

EFFLUENT COMPOSITION;

CARBON DIOXIDE CONTENT, % V/V DRY 0.0 CD
OXYGEN CONTENT, % V/V DRY 20.9 OX

EFFLUENT MOLECULAR WEIGHT;

DRY BASIS, LB/LB-MOLE 28.84 MD
WET BASIS, LB/LB-MOLE 28.57 MS

PITOT TUBE COEFFICIENT 0.838 CP

EFFLUENT VELOCITY PRESSURES, IN WC;

POINT	PORT A	PORT B
1	1.650	1.750
2	2.100	1.700
3	2.100	2.150
4	2.150	2.100
5	2.000	2.150
6	2.000	1.900
7	2.100	2.000
8	1.950	2.150
9	1.600	2.150
10	1.500	1.900
11	1.450	1.700
12	1.200	1.350

AVE. SQUARE-ROOT VELOCITY PRESSURE, IN WC .. 1.36 PV

EFFLUENT AVERAGE VELOCITY, FT/SEC 81.416 VS

EFFLUENT VOLUMETRIC FLOW RATE;

ACTUAL, ACFM	76258 FA
STANDARD, SCFM	67649 FW
DRY STANDARD, DSCFM	66814 FD

EQUATIONS USED TO CALCULATE THE VOLUMETRIC FLOW RATE

$$AR = 0.004545 * DM * DM$$

$$PA = PB + PS/13.6$$

$$MD = 0.44*CD + 0.32*OX + 0.28*(100-CD-OX)$$

$$MS = MD*(1-MC/100) + 0.18*MC$$

$$VS = 85.48 * CP * PV * SQRT((460+TS)/(MS*PA))$$

$$FA = 60 * VS * AR$$

$$FW = 17.65 * FA * PA / (TS+460)$$

$$FD = FW * (1-MC/100) 51$$

STANDARD CONDITIONS: 40 DEG F, 30 OZ IN HG

VOLUMETRIC FLOW RATE CALCULATION

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
TEST DATE: 2-18-94 SOURCE: PRESS # 2 OUTLET

DUCT DIMENSIONS:

DIAMETER, INCHES	76.00	DM
CROSS-SECTIONAL AREA, SQ FT	31.502	AR

EFFLUENT TEMPERATURE, DEG F 222 TS

MOISTURE CONTENT DETERMINATION:

EFFLUENT WET BULB TEMPERATURE, DEG F	109	TW
EFFLUENT DEW POINT TEMPERATURE, DEG F	91	TD
EFFLUENT RELATIVE HUMIDITY, %	4.8	RH
EFFLUENT MOISTURE CONTENT, % V/V	5.1	MC

DUCT PRESSURES:

BAROMETRIC PRESSURE, IN HG	28.46	PB
STATIC PRESSURE, IN WC	-0.36	PS
ABSOLUTE PRESSURE, IN WC	28.43	PA

EFFLUENT COMPOSITION:

CARBON DIOXIDE CONTENT, % V/V DRY	3.4	CD
OXYGEN CONTENT, % V/V DRY	15.3	OX

EFFLUENT MOLECULAR WEIGHT:

DRY BASIS, LB/LB-MOLE	29.16	MD
WET BASIS, LB/LB-MOLE	28.59	MS

PITOT TUBE COEFFICIENT 0.830 CP

EFFLUENT VELOCITY PRESSURES, IN WC:

POINT	PORT A	PORT B
1	0.560	0.580
2	0.640	0.630
3	0.650	0.670
4	0.680	0.700
5	0.630	0.760
6	0.700	0.610

AVE. SQUARE-ROOT VELOCITY PRESSURE, IN WC .. 0.82 PV

EFFLUENT AVERAGE VELOCITY, FT/SEC 53.822 VS

EFFLUENT VOLUMETRIC FLOW RATE:

ACTUAL, ACFM	100218	FA
STANDARD, SCFM	73747	FW
DRY STANDARD, DSCFM	69976	FD

EQUATIONS USED TO CALCULATE THE VOLUMETRIC FLOW RATE

$$AR = 0.004545 * DM * DM$$

$$PA = PB + PS/13.6$$

$$MD = 0.44*CD + 0.32*OX + 0.28*(100-CD-OX)$$

$$MS = MD*(1-MC/100) + 0.18*MC$$

$$VS = 85.48 * CP * PV * SQRT((460+TS)/(MS*PA))$$

$$FA = 60 * VS * AR$$

$$FW = 17.65 * FA * PA / (TS+460)$$

$$FD = FW * (1-MC/100)$$

STANDARD CONDITIONS: 68 DEG F, 29.92 IN HG

March 23, 1994

MM

APPENDIX B: FIELD DATA FORMS

March 23, 1994

(This page intentionally left blank)

MMT Report #1

APPENDIX B1: FIELD DATA FORMS
LINE #1 DRYER - RTO INLET PARTICULATE EMISSION TEST

SOURCE EMISSION TEST
SITE DESCRIPTION DATA SHEET

TRAVERSE POINT LOCATION		
Traverse Point Number	Port Length: Inches From Wall	Inches From Port
1	1.4	9.9
2	4.4	12.9
3	7.8	16.3
4	11.7	20.2
5	16.5	25.0
6	23.4	31.9
7	42.6	51.1
8	49.5	58.0
9	54.3	62.8
10	59.2	66.7
11	61.6	70.1
12	74.6	73.1
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

PRELIMINARY TRAVERSE DATA

Effluent Temperature, °F: _____

Ave. Velocity Pressure, IN WC: _____

SITE SKETCH AND COMMENTS

74 $\frac{1}{2}$
8 $\frac{1}{2}$ port
66"
ideal 0.202
now 0.202
State -7.0

2.15
2.10
1.75
1.55
1.20
0.87
0.88
1.20
1.80
1.95
1.75
0.88

81 → 155
Run 150 H₂O
Run 240 H₂O

db 235
wb 150

SOURCE EMISSION TEST
FIELD DATA SHEET

TEST: 1 RUN: 1
Page 1 of 1

TEST IDENTIFICATION		EQUIPMENT IDENTIFICATION				NOMOGRAPH PARAMETER	
MMT Job Number:	9531	Control Unit No.:	4			ΔHg	1
Date:	Wed 2.16.94	Gas Meter Coefficient:	1.025			TM	4
Company:	Louisiana Pacific Corporation	Sample Box No.:	4			MC	25
Source:	LINE #1 Dryer Inlet	Probe No.:	87 Length: 87"			PS/PM	1.0
Source Dimensions:	66.0" \varnothing	Pitot No.:	85 Coefficient: B = .833			C	4.5
Test Team:	AT - BA - TB	Nozzle No.:	1/4 Diameter: 0.199			TS	245
Test Procedure:	EPA AS per WRI MS	Filter No.:	8853			R	
Ambient Temp., °F:	36	Barometric Pressure, in.Hg:	28.77	Static Pressure, in.WC:	-7.0		

CLOCK TIME hours	TRAVERSE POINT NUMBER	SAMPLE TIME min.	SAMPLE VOLUME cu.ft.	VELOCITY HEAD in.WC	ORIFICE ΔH , in.WC	PUMP VAC. inHG	TEMPERATURE, DEG F						
							REO.	ACT.	STACK GAS	GAS METER IN	OVEN	PROBE	LAST IMP
1302	A-1	0	691.216	2.05	1.42	1.4	14	242	36	35	232	251	3
—	2	2.5	682.7	1.95	1.35	1.4	14	245	36	35	228	252	36
1307	3	5	684.3	1.90	1.31	1.3	14	245	38	35	233	252	37
—	4	7.5	686.0	1.60	1.11	1.1	13	246	39	35	226	252	3
1312	5	10	687.6	1.30	0.90	0.90	11	247	41	35	242	250	3
—	6	12.5	688.9	0.94	0.65	0.65	3	247	42	35	228	251	38
1313	7	15	690.0	0.74	0.51	0.51	7	247	44	36	230	253	46
—	8	17.5	691.0	1.70	1.17	1.2	13	246	46	36	232	252	46
1322	9	20	692.4	2.15	1.49	1.5	16	246	48	36	235	253	42
—	10	22.5	694.0	1.90	1.71	1.3	14	246	47	36	236	253	44
1329	11	25	695.6	2.15	1.49	1.5	16	246	47	37	245	252	4
—	12	27.5	697.3	2.30	1.57	1.6	17	246	47	37	253	252	4
1332 and A	30	699.102	2.35	1.62	1.6	17	240	38	37	259	252	1	
1345	8-1	0	699.102	2.35	1.62	1.6	17	240	38	37	259	252	1
—	2	2.5	700.7	2.50	1.73	1.7	18	239	39	37	260	253	
1350	3	5	702.6	2.40	1.66	1.7	18	238	39	37	262	250	44
—	4	7.5	704.3	2.20	1.52	1.5	17	242	40	37	264	255	45
1955	5	10	706.0	1.65	1.14	1.1	15	243	41	37	267	253	46
—	6	12.5	707.5	0.88	0.61	0.61	9	243	43	37	265	251	46
1400	7	15	708.6	0.68	0.47	0.47	7	246	45	37	265	253	46
—	8	17.5	709.6	0.76	0.53	0.53	8	244	46	37	262	252	4
1405	9	20	710.7	0.97	0.67	0.67	10	240	48	37	264	249	41
—	10	22.5	711.6	1.10	0.76	0.76	11	243	49	38	259	253	44
1410	11	25	712.9	1.05	0.73	0.73	11	241	51	38	263	251	52
—	12	27.5	714.1	0.86	0.51	0.59	7	240	51	38	261	251	54
1415 and B	30	715.122	0.86	0.51	0.59	7	240	52	38	261	251	54	

A side B top

MOISTURE DETERMINATION					
IMPIINGER	1	2	3	4	5
Final					
Initial	100	100	0	738.5	X
Difference					
Total Moisture Collected:	199.3				

SYSTEM LEAK CHECKS		
Time	Rate (cfm)	Vac. (in.Hg)
1243	0.007	18
1417	0.004	20
X	X	X
X	X	X

Impinger Catch Description:

DETERMINATION OF GAS COMPOSITION BY ORSAT ANALYSIS								
Sample Id:	Replicate 1		Replicate 2		Replicate 3		Average	
	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Compound	Percent Volume
1-1								
Initial Reading								
Carbon Dioxide							3.20	CO ₂
Oxygen							15.20	O ₂
Carbon Monoxide								CO

Total Sampling Time, min.:

Volume of Gas Sampled, DCF:

600
33,906

SOURCE EMISSION TEST
FIELD DATA SHEET

TEST: 1 RUN: 2
Page 1 of 1

TEST IDENTIFICATION		EQUIPMENT IDENTIFICATION		NOMOGRAPH PARAMETERS	
MMT Job Number:	9531	Control Unit No.:	4	$\Delta H@ 1,77$	
Date:	Wed 2/16/94	Gas Meter Coefficient:	1.025	IM 40	
Company:	Louisiana Pacific Corporation	Sample Box No.:	4	MC 25	
Source:	Line Dryer Inlet	Probe No.:	87 Length: 87"	PS/PM = 1.0	
Source Dimensions:	66.0" ϕ	Pitot No.:	85 Coefficient: B = .838	C = .625	
Test Team:	AT - BA - TG	Nozzle No.:	L/4 Diameter: 0.199	TS 245	
Test Procedure:	EPA 15 for WI MS	Filter No.:	48855	R	
Ambient Temp., °F:		Barometric Pressure, in.Hg:	28.74	Static Pressure, in.WC:	-7.0

CLOCK TIME hours	TRAVERSE POINT NUMBER	SAMPLE TIME min.	SAMPLE VOLUME cu.ft.	VELOCITY HEAD in.WC	ORIFICE ΔH , in.WC	PUMP VAC. REO. ACT. inHG	TEMPERATURE, DEG F				
							STACK GAS	GAS METER IN	OVEN	PROBE	LAST IMP.
1501	B-1	0	715.609	2.50	1.73	1.7	19	241	37	37	267 250 37
—	2	2.5	717.4	2.50	1.73	1.7	19	241	38	37	269 250 39
1505	3	5	719.2	2.35	1.62	1.6	18	241	38	37	270 249 42
—	4	7.5	720.9	2.15	1.49	1.5	17	240	38	37	267 251 43
1511	5	10	722.6	1.70	1.17	1.2	14	240	39	38	271 254 43
—	6	12.5	724.1	0.93	0.68	0.68	8	240	39	38	270 253 44
1516	7	15	725.2	0.69	0.48	0.48	8	241	39	38	273 251 44
—	8	17.5	726.2	0.70	0.48	0.48	8	242	40	38	267 251 44
1521	9	20	727.1	0.77	0.53	0.53	8	242	40	38	269 253 45
—	10	22.5	728.1	0.92	0.64	0.64	9	242	40	38	271 253 45
1526	11	25	729.2	1.10	0.76	0.76	10	240	41	39	272 257 45
—	12	27.5	730.5	0.76	0.53	0.53	9	233	41	39	268 257 46
1531	end B	30	731.581	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1540	A-1	0	731.581	1.40	0.97	0.97	12	228	37	39	266 251 42
—	2	2.5	732.9	1.70	1.31	1.3	16	236	39	39	269 251 44
1545	3	5	734.3	2.15	1.49	1.5	18	241	40	39	267 252 45
—	4	7.5	736.0	1.80	1.24	1.2	16	244	40	39	266 250 46
1550	5	10	737.5	1.25	0.86	0.86	11	245	41	39	271 252 46
—	6	12.5	738.8	0.91	0.63	0.63	10	245	41	39	274 250 47
1555	7	15	739.9	0.80	0.55	0.55	10	245	41	39	273 241 47
—	8	17.5	740.9	1.20	0.83	0.83	12	244	41	39	252 238 46
1600	9	20	742.2	1.60	1.11	1.1	16	243	41	39	258 235 46
—	10	22.5	743.6	1.95	1.35	1.4	18	243	41	39	244 249 47
1605	11	25	745.2	2.10	1.45	1.5	19	243	41	39	267 253 47
—	12	27.5	746.9	2.10	1.45	1.5	19	243	42	40	271 251 47
1610	end A	30	748.481	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(748.481) ~~0.000~~

MOISTURE DETERMINATION					
IMPIINGER	1	2	3	4	5
Final					
Initial	100	100	0	717.4	X
Difference					
Total Moisture Collected:	210.5				

SYSTEM LEAK CHECKS		
Time	Rate (cfm)	Vac. (in.Hg)
1451	0.005	18
1613	0.002	20
	X	X

Impinger Catch Description:

DETERMINATION OF GAS COMPOSITION BY ORSAT ANALYSIS								
Sample Id:	Replicate 1		Replicate 2		Replicate 3		Average	
1-2	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Compound Compound	Percent Volume
Initial Reading		X		X		X	3.50	C02
Carbon Dioxide							15.15	O2
Oxygen								CO
Carbon Monoxide								

Total Sampling Time, min.: 60
Volume of Gas Sampled, DCF: 32.872

FORM: S-FD-5

SOURCE EMISSION TEST
FIELD DATA SHEETTEST: 1 RUN: 5
Page 1 of 1

TEST IDENTIFICATION		EQUIPMENT IDENTIFICATION					NOMOGRAPH PARAMETER	
MMT Job Number:	9531	Control Unit No.:	4				ΔH@ 1.7	
Date:	Wed 2.16.94	Gas Meter Coefficient:	1.025				TM 9	
Company:	Louisiana Pacific Corporation	Sample Box No.:	4				MC 25	
Source:	Line #1 Dryer Inlet	Probe No.:	87 Length: 87"				PS/PM = 1.0	
Source Dimensions:	66.0" Ø	Pitot No.:	85 Coefficient: B = 838				C = 4.22	
Test Team:	AT - BA - TG	Nozzle No.:	114 Diameter: 0.179				TS 245	
Test Procedure:	EPA AS per WIT MS	Filter No.:	8845				R	
Ambient Temp., °F:		Barometric Pressure, in.Hg:	29.75	Static Pressure, in.WC:	-7.0			

CLOCK TIME hours	TRAVERSE POINT NUMBER	SAMPLE TIME min.	SAMPLE VOLUME cu.ft.	VELOCITY HEAD in.WC	ORIFICE ΔH.in.WC	PUMP VAC. REO. ACT. inHG	TEMPERATURE, DEG F				
							STACK GAS	METER IN	OVEN OUT	PROBE	LAST TMP.
1715	B-1	0	749.205	2.40	1.66	1.7	17	241	37	37	274 251 32
—	2	2.5	751.0	2.30	1.93	1.9	18	240	37	37	268 252 44
1720	3	5	752.9	2.55	1.76	1.8	18	240	39	37	273 253 42
—	4	7.5	755.6	2.25	1.55	1.6	17	240	39	37	274 253 4
1725	5	10	757.3	1.55	1.07	1.1	12	239	40	37	270 252 4
—	6	12.5	758.7	0.84	0.58	0.58	7	240	40	37	272 251 44
1730	7	15	759.8	0.70	0.45	0.48	7	242	41	37	277 253 46
—	8	17.5	760.7	0.82	0.57	0.57	7	241	42	37	273 254 4
1735	9	20	761.7	0.95	0.66	0.66	9	240	45	37	274 253 43
—	10	22.5	762.8	1.05	0.73	0.73	10	240	46	37	272 249 52
1740	11	25	764.0	0.96	0.66	0.66	10	238	48	37	271 252 54
—	12	27.5	765.2	0.78	0.54	0.54	9	234	48	37	276 253 53
1745 end B	30		766.049								
1750 A-1	0		766.049	1.55	1.07	1.1	13	228	39	37	266 254 47
—	2	2.5	767.5	1.60	1.11	1.1	13	236	41	37	268 252 1
1755	3	5	768.9	1.90	1.31	1.3	16	241	44	37	273 252 51
—	4	7.5	770.5	1.70	1.17	1.2	16	242	44	37	272 250 52
1804	5	10	772.0	1.35	0.93	0.93	13	242	45	37	270 249 54
—	6	12.5	773.3	0.89	0.61	0.61	10	242	46	37	271 253 54
1809	7	15	774.4	0.32	0.57	0.57	9	242	46	37	268 252 54
—	8	17.5	775.4	1.15	0.79	0.79	12	242	46	37	247 254 56
1814	9	20	776.7	1.70	1.17	1.2	16	241	48	36	271 252 54
—	10	22.5	778.1	2.10	1.45	1.5	14	241	48	36	271 254 55
1819	11	25	779.8	2.45	1.69	1.6	20	240	45	36	266 253 54
—	12	27.5	781.4	2.35	1.62	1.6	20	240	44	35	271 254 52
1824 end A	30		783.218								

MOISTURE DETERMINATION					
IMPIINGER	1	2	3	4	5
Final					
Initial	100	100	0	752.2	✓
Difference					
Total Moisture Collected:	234.3				

SYSTEM LEAK CHECKS		
Time	Rate (cfm)	Vac. (in.Hg)
1706	0.002	17
1827	0.003	24

Impinger Catch Description:

DETERMINATION OF GAS COMPOSITION BY ORSAT ANALYSIS								
Sample Id:	Replicate 1		Replicate 2		Replicate 3		Average	
	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Compound	Percent Volume
1-3								
Initial Reading								
Carbon Dioxide							3.42	CO2
Oxygen							15.10	O2
Carbon Monoxide								CO

Total Sampling Time, min.: 60
Volume of Gas Sampled, DCF: 34.017

March 23, 1994

MMI

APPENDIX B2: FIELD DATA FORMS
LINE #1 DRYER - RTO OUTLET PARTICULATE EMISSION TEST

SOURCE EMISSION TEST
SITE DESCRIPTION DATA SHEET

TRAVERSE POINT LOCATION		
Traverse Point Number	Port Length: Inches From Wall	Inches From Port
1	3.0	9.9
2	15.9	19.9
3	24.7	30.7
4	57.8	63.8
5	79.9	75.9
6	88.9	88.9
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
PRELIMINARY TRAVERSE DATA		
Effluent Temperature, °F:		
Ave. Velocity Pressure, IN WC:		

MMT Job Number: 9531 Date: Feb. 94
 Company: Louisiana Pacific Corp.
 Address: Hayward, WI
 Source: LINE #1 Dryer R.T.O. Outlet
 Source Cross-sectional Dimensions
 Round Duct; diameter: 82" & 81.5"
 Rectangular Duct;
 Length: — — —
 Width: — — —
 Equivalent diameter: — — —

$$D_e = 2LW/(L+W)$$

 Distance to Nearest Flow Disturbance;
 Before Ports: 50' = 7.32 diameters
 After Ports: 33' = 5.12 diameters
 Number of Sampling Points;
 Required by EPA Method 1: 16/12
 Actually Used: 12
 Number of ports: 2
 Points per port: 6
 Sampling Time;
 Minutes per Point: 5
 Minutes per Test Run: 60

SITE SKETCH AND COMMENTS

*Should have been 46'
6.8 diameter*

SOURCE EMISSION TEST
FIELD DATA SHEET

TEST: 2 RUN: 4
Page 1 of 1

TEST IDENTIFICATION	EQUIPMENT IDENTIFICATION	NOMOGRAPH PARAMETER
MMT Job Number: 9531	Control Unit No.: 5	$\Delta H@1$
Date: Wed 2.16.94	Gas Meter Coefficient: .967	TM 48
Company: Louisiana Pacific Corp.	Sample Box No.: 5	MC 23
Source: Line #2 Dryer Outlet	Probe No.: 103 Length: 103"	PS/PM = 1.
Source Dimensions: 30" x 8" dia. 81.5"	Pitot No.: 96 Coefficient: $B = .830$	$C = .967$
Test Team: AT- BA -TG	Nozzle No.: 38 Diameter: .215	TS 340
Test Procedure: EPA 1-5 per WIMS	Filter No.: 3851	R
Ambient Temp. °F: 75	Barometric Pressure. in.Hg: 30	Static Pressure. in.WC: -49

$$\bar{x} = .51 \quad - .52$$

$$25^2 = 25 \cdot 25$$

$$157, \text{MC} - R1 \approx 22$$

21.086 88

MOISTURE DETERMINATION					
IMPIINGER	1	2	3	4	5
Final					
Initial	100	100	0	776.7	
Difference					
Total Moisture Collected:	198.8				

SYSTEM LEAK CHECKS		
Time	Rate (cfm)	Vac. (in. Hg)
1250	.001	21
1413	.005	18

Impinger Catch Description:

Total Sampling Time, min.: 160
Volume of Gas Sampled, DCF:

SOURCE EMISSION TEST
FIELD DATA SHEET

TEST: 2 RUN: 2

TEST IDENTIFICATION	EQUIPMENT IDENTIFICATION	NOMOGRAPH PARAMETER
MMT Job Number: 9531	Control Unit No.: 5	ΔHg 1.78
Date: Wed 2.16.94	Gas Meter Coefficient: .967	TM 46
Company: Louisiana Pacific Corp.	Sample Box No.: 5	MC 93
Source: Line #2 Dyer Outlet	Probe No.: 103 Length: 103"	PS/PM < 1.0
Source Dimensions: 82" \varnothing dia.	Pitot No.: 96 Coefficient: $B = .830$	$C = .967$
Test Team: AT - BA - TL	Nozzle No.: 38 Diameter: .245	TS 341
Test Procedure: EPA 1-5 or WI MS	Filter No.: 8852	R
Ambient Temp: 58° F	Barometric Pressure: 30.28 in Hg	Specific Pressure: 101

MOISTURE DETERMINATION					
IMPINGER	1	2	3	4	5
Final					
Initial	100	100	0	758.2	
Difference					
Total Moisture Collected:			221.9		

SYSTEM LEAK CHECKS		
Time	Rate (cfm)	Vac. (in.Hg)
1449	.014	21
1614	.015	22

Impinger Catch Description:

Total Sampling Time, min.: 60
Volume of Gas Sampled, DCF: _____

SOURCE EMISSION TEST
FIELD DATA SHEET

TEST: 2 RUN: 1

TEST IDENTIFICATION	EQUIPMENT IDENTIFICATION	NOMOGRA PARAMET
MMT Job Number: 9531	Control Unit No.: 5	$\Delta H@$
Date: Wed 2.16.94	Gas Meter Coefficient: .967	TM 4
Company: Louisiana Pacific Corp.	Sample Box No.: 5	MC 23
Source: Line # Dryer Outlet	Probe No.: 103 Length: 103"	PS/PM = 1.0
Source Dimensions: 82 "Ø dia.	Pitot No.: 96 Coefficient: $B = .830$	$C = .967$
Test Team: AT- BA -TG	Nozzle No.: 55 Diameter: .245 "Ø	TS 4/15
Test Procedure: EPA 1-5 or WIMS	Filter No.: 8854	R
Ambient Temp., °F: 32	Barometric Pressure, in.Hg: 29.7	Static Pressure, in.WC: -.59

MOISTURE DETERMINATION					
IMPINGER	1	2	3	4	5
Final					
Initial	100	100	0	23.1	
Difference					
Total Moisture Collected:			253.6		

SYSTEM LEAK CHECKS		
Time	Rate (cfm)	Vac. (in. Hg)
1642	.008	22
1828	.007	.18

Impinger Catch Description:

Total Sampling Time, min.: 100
Volume of Gas Sampled, DCF: _____

March 23, 1994

APPENDIX B3: FIELD DATA FORMS
LINE #2 DRYER - RTO FLOW RATE TESTS

March 23, 1994

(This page intentionally left blank)

MM

SOURCE EMISSION TEST
SITE DESCRIPTION DATA SHEET

TRAVERSE POINT LOCATION		
Traverse Point Number	Port Length: 6"	
	Inches From Wall	Inches From Port
1	1.4	7.4
2	4.4	10.4
3	7.8	13.8
4	11.2	17.2
5	16.5	22.5
6	23.4	29.4
7	42.6	48.6
8	49.5	54.5
9	54.3	60.3
10	55.2	64.2
11	61.6	67.6
12	64.6	70.6
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

PRELIMINARY TRAVERSE DATA

Effluent Temperature, °F: _____
Ave. Velocity Pressure, IN WC: _____

MMT Job Number: 9531 Date: 2/18/94

Company: Louisiana-Pacific

Address: Hyland, WI

Source: #2 Dryer RTO Inlet

Source Cross-sectional Dimensions

Round Duct; diameter: 66.0"

Rectangular Duct;

Length: _____

Width: _____

Equivalent diameter: _____

$$D_e = 2LW/(L+W)$$

Distance to Nearest Flow Disturbance;

Before Ports: 24'8" = 4.48 diameters

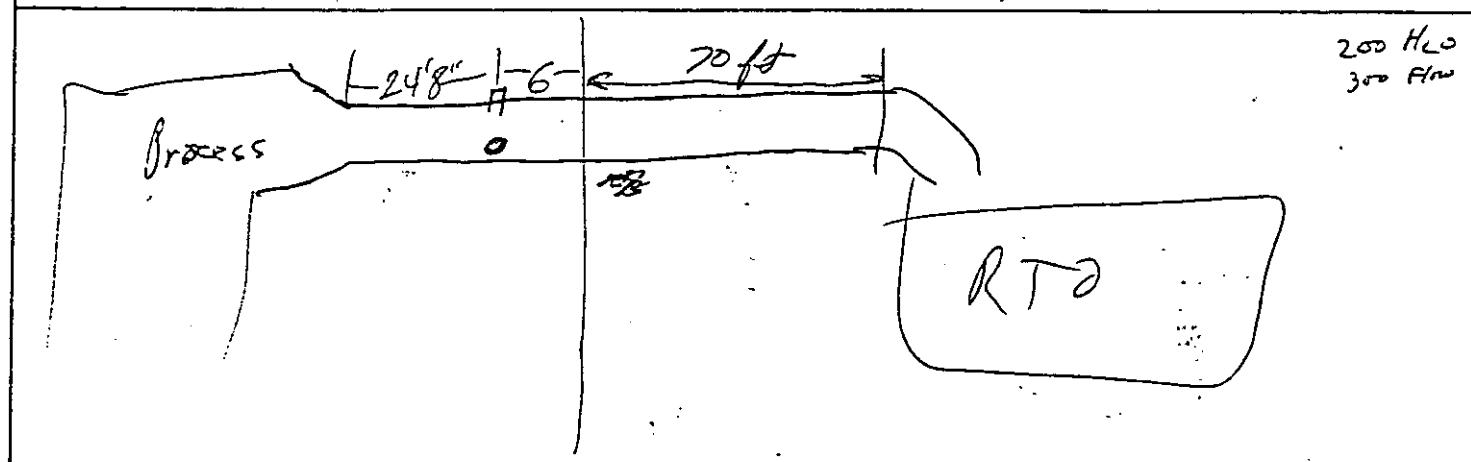
After Ports: 276' = 13.82 diameters

Number of Sampling Points;

Required by EPA Method 1: 16

Actually Used: 24

Number of ports: 2


Points per port: 12

Sampling Time;

Minutes per Point: _____

Minutes per Test Run: _____

SITE SKETCH AND COMMENTS

EPA METHOD 2: VOLUMETRIC FLOW RATE DETERMINATION

Field Data Sheet

MMT Job Number: 9531

Ambient Temperature, °F: -40

Date: 2/18/94

Barometric Pressure, in. Hg.: 34.50

Company: Louisiana Pacific

Static Pressure, in. WC: 161

Source: Dura #2 RTO Inlet

Dry Bulb Temp., °F: 200 / 202 / 202

Dimensions, inches: 66.0" Ø

Wet Bulb Temp., °F: 153 149 149

Test Team Members: AT/BA

Relative Humidity, %: 55 = 150

Test No.: 3 Run No.: 1

Moisture Content, %: 24.60

Water content, %: 5.118

VELOCITY TRAVERSE: Time: 0845 - P
9915

tot Tube No: 85 Coefficient: .838 =

VELOCITY TRAVERSE: Time: 0845 - 0915 Pitot Tube No: 85" Coefficient: .838 = 3

FORM: $S = FD = 2h$

SOURCE EMISSION TEST
SITE DESCRIPTION DATA SHEET

TRAVERSE POINT LOCATION		
Traverse Point Number	Port Length: 60	Inches From Wall Inches From Port
1	3.6	9.6
2	6.1	12.1
3	12.0	18.0
4	57.6	63.6
5	69.5	75.5
6	77.0	83.0
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

PRELIMINARY TRAVERSE DATA
Effluent Temperature, °F: _____
Ave. Velocity Pressure, IN WC: _____

MMT Job Number: 9531 Date: Feb 94

Company: Louisiana Pacific Corporation

Address: Hayward, Wisconsin

Source: Line #2 R.T.O. Outlet

Source Cross-sectional Dimensions

Round Duct; diameter: 81.5" \varnothing

Rectangular Duct;

Length: — — —

Width: — — —

Equivalent diameter: — — —

$$D_e = 2LW/(L+W)$$

Distance to Nearest Flow Disturbance;

Before Ports: 50' = 7.32 diameters

After Ports: 15' = 5.12 diameters

Number of Sampling Points;

Required by EPA Method 1: 12

Actually Used: 12

Number of ports: 2

Points per port: 6

Sampling Time;

Minutes per Point: — — —

Minutes per Test Run: — — —

SITE SKETCH AND COMMENTS

Outflow on ground at NW corner of plant - bldg property

Should have been 46 feet
6.8 diameter

EPA METHOD 2: VOLUMETRIC FLOW RATE DETERMINATION

Field Data Sheet

MMT Job Number: 9531

Ambient Temperature, °F:

Date: Friday 2-18-94

Barometric Pressure, in. Hg.

Company: Louisiana Pacific Corp

Static Pressure, in. WC: 13

Source: Lines # 3 Dixie Outlet

W₂^F Bulk Temp. °F: 1605 / 1604 $\bar{x} = 1604.5$

Dimensions, inches: 81 1/2" x 10 1/2"

Dry Bulb Temp. 85° F. = 23°

Test Team Members: AT PA - T

Relative Humidity %

Test No.: 2 Run No.: 1

Moisture Content, %: 32.70

Test No.: Run No.:

MOISTURE CONTENT, %.

VELOCITY TRAVERSE: Time: 8:45-9:15 gm

tot Tube No: 96 Coefficient: B

Traverse Inches Inches PORT A

Page 2 of 2

March 23, 1994

MMT

APPENDIX B4: FIELD DATA FORMS
LINE #2 PRESS - RTO FLOW RATE TESTS

March 23, 1994

(This page intentionally left blank)

MMT

SOURCE EMISSION TEST
SITE DESCRIPTION DATA SHEET

TRAVERSE POINT LOCATION		
Traverse Point Number	Port Length: Inches From Wall	Inches From Port
1	1.1	7.1
2	3.6	9.6
3	6.3	12.6
4	9.5	15.5
5	13.4	19.4
6	19.0	25.0
7	34.5	40.5
8	40.1	46.1
9	44.0	50.0
10	47.2	53.2
11	49.9	55.9
12	52.4	58.4
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

PRELIMINARY TRAVERSE DATA
Effluent Temperature, °F: _____
Ave. Velocity Pressure, IN WC: _____

MMT Job Number: 9531 Date: 2/18/94

Company: Louisiana-Pacific

Address: Hayward, WI

Source: #2 Press RTO Inlet

Source Cross-sectional Dimensions

Round Duct; diameter: 53 1/2"

Rectangular Duct;

Length: _____

Width: _____

Equivalent diameter: _____

$$D_e = 2LW/(L+W)$$

Distance to Nearest Flow Disturbance;

Before Ports: 25' 0" = 5.61 diameters

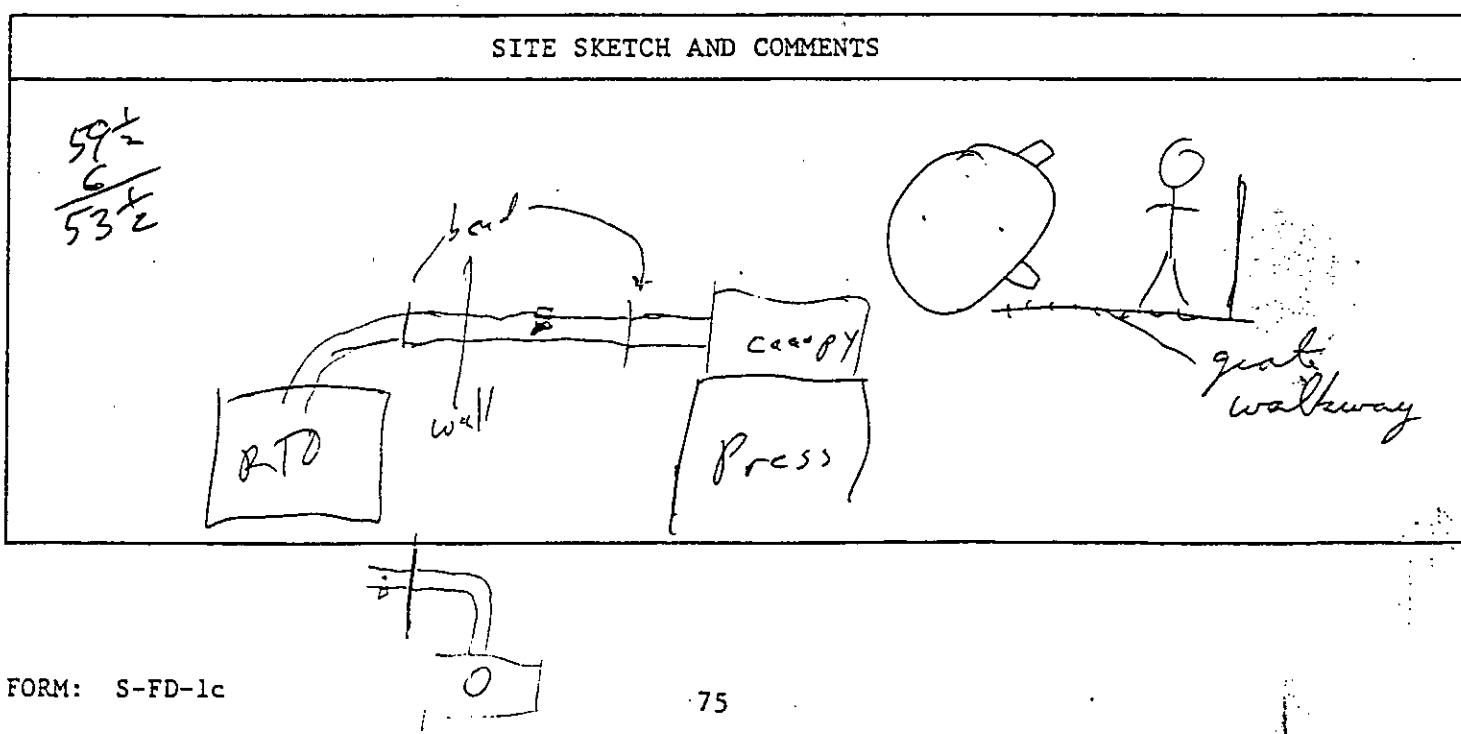
After Ports: 38' = 8.52 diameters

Number of Sampling Points;

Required by EPA Method 1: 16

Actually Used: 24

Number of ports: 2


Points per port: 12

Sampling Time;

Minutes per Point: NA

Minutes per Test Run: NA

SITE SKETCH AND COMMENTS

EPA METHOD 2: VOLUMETRIC FLOW RATE DETERMINATION

Field Data Sheet

MMT Job Number: 9531
Date: 2/18/94
Company: Louisiana Pacific
Source: Press #2 RTO Inlet
Dimensions, inches: 53.5" Ø
Test Team Members: AS/BA
Test No.: 5 Run No.: 1

Ambient Temperature, °F: 71
Barometric Pressure, in. Hg.: 28.46
Static Pressure, in. WC: -2.9
Dry Bulb Temp., °F: 107 / 107
Wet Bulb Temp., °F: 77 / 77
Relative Humidity, %: 100
Moisture Content, %: 2.24

SOURCE EMISSION TEST
SITE DESCRIPTION DATA SHEET

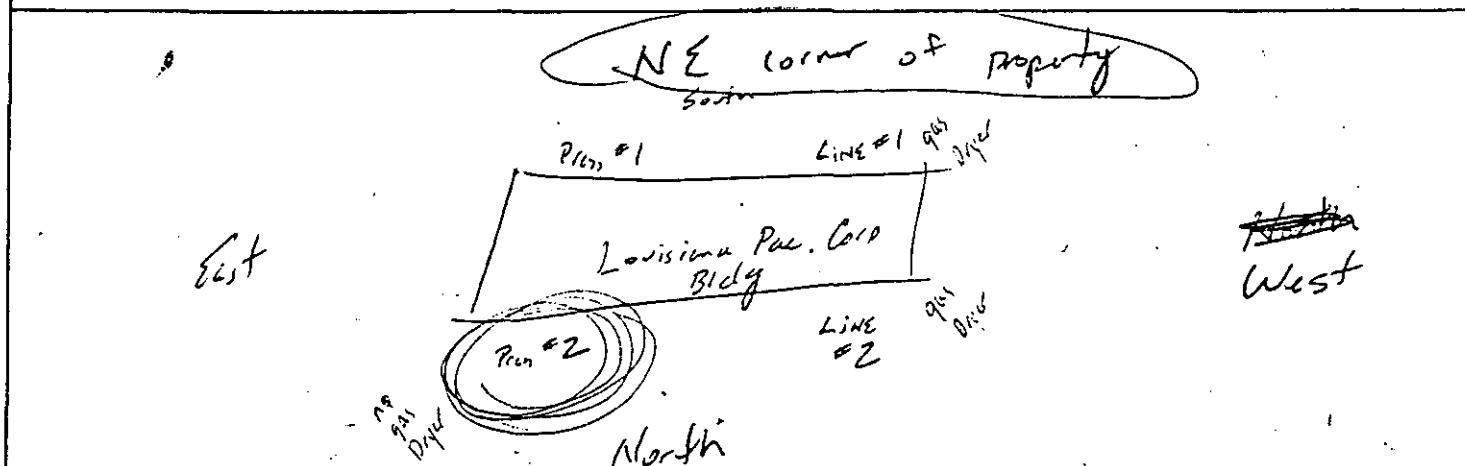
TRAVERSE POINT LOCATION		
Traverse Point Number	Port Length: 6	
	Inches From Wall	Inches From Port
1	3.4	9.4
2	11.2	17.2
3	22.4	29.4
4	53.6	59.6
5	64.8	70.8
6	72.6	80.6
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

PRELIMINARY TRAVERSE DATA

Effluent Temperature, °F: _____

Ave. Velocity Pressure, IN WC: _____

MMT Job Number: 9531 Date: Feb 94
 Company: Louisiana Pacific Corp
 Address: Hayward, WI
 Source: Press #2 RTO out
 Source Cross-sectional Dimensions
 Round Duct; diameter: 76"
 Rectangular Duct;
 Length: _____
 Width: _____
 Equivalent diameter: _____


$$D_e = 2LW/(L+W)$$

 Distance to Nearest Flow Disturbance;
 Before Ports: _____ = _____ diameters
 After Ports: _____ = _____ diameters
 Number of Sampling Points;
 Required by EPA Method 1: _____
 Actually Used: 12
 Number of ports: 2
 Points per port: 6

Sampling Time;

Minutes per Point: — —

Minutes per Test Run: — —

SITE SKETCH AND COMMENTS

EPA METHOD 2: VOLUMETRIC FLOW RATE DETERMINATION

Field Data Sheet

MMT Job Number: 9331
Date: Fri 2.18.94
Company: Louisiana Pacific
Source: Press #200th Cir
Dimensions, inches: 76" x
Test Team Members: AT BA TG
Test No.: 0 Run No.: 1

Ambient Temperature, °F: 47
Barometric Pressure, in. Hg.: 28.460
Static Pressure, in. WC: -38 -33 ~~-35~~
Dry Bulb Temp., °F: 72 = 222
Wet Bulb Temp., °F: 105 / 112 = 108.5
Relative Humidity, %: 65
Moisture Content, %: 5.16

VELOCITY TRAVERSE: Time: 1130 - Noon Pitot Tube No: 96 Coefficient: $\beta = 1.8$

APPENDIX C: LABORATORY REPORTS

March 23, 1994

(This page intentionally left blank)

MMT Repor

SUMMARY OF PARTICULATE EMISSION TEST LABORATORY DATA

PROJECT NUMBER: 9531
TEST NUMBER: 1
COMPANY: LOUISIANA PACIFIC CORP.
SOURCE: LINE # 1 INLET

RUN NUMBER	MASS OF PARTICULATE MATTER COLLECTED, GRAMS						
	FRONT CATCH			BACK CATCH			
	FRONT WASH	CYCLONE CATCH	FILTER CATCH	FRONT TOTAL	IMPIINGER CATCH **	IMPIINGER WASH	BACK TOTAL
1	0.0198	0.0000	0.0822	0.1020	0.0310	0.0705	0.1015
2	0.0105	0.0000	0.0920	0.1025	0.0276	0.0609	0.1065
3	0.0095	0.0000	0.0994	0.1091	0.0384	0.0465	0.0849

* NOT APPLICABLE

** CHLOROFORM/ETHYL ETHER

LABORATORY REPORT: EPA Method 5

(INLET)

Project Number: 91531

Cupor: Louisiana Pacific - HOWARD, WI

Frontwashes				Date
Test-Run	1-1	1-2	1-3	
Dish #	1068	1073	1076	-
1	2.3204	2.2852	2.2837	2-24-94
2	2.3207	2.2853	2.2836	2-28-94
3	2.3205	2.3852	2.3838	3-3-94
Tare	2.3003	2.7444	2.7329	8-2-93
Blank	0.0003	0.0003	0.0003	-
Net	0.0198	0.0105	0.0095	-

Backwashes

Backwashes				Date
Test-Run	1-1	1-2	1-3	
Dish #	1069	1073	1077	-
1	2.3268	2.2888	2-21-94	-
2	2.3269	2.2887	2-28-94	-
3	2.3265	2.3267	2.3449	3-2-94
Tare	2.3052	2.5202	2.2818	8-2-93
Blank	0.0003	0.0003	0.0003	-
Net	0.0069	0.0063	0.0066	-

Glass Filters

Solvent Blanks				Date
Solvents	Acetone	MeCl	Ether	
Dish #	1064	1065	1066	1067
1	2.3217	2.3157	2.3061	2-29-94
2	2.3212	2.3156	2.3062	2-29-94
3	2.3211	2.3156	2.3062	2-29-94
Tare	2.3914	2.3955	2.3057	2-3-94
Blank	0.0003	0.0001	0.0004	0.0002
Net	0.0003	0.0001	0.0004	0.0002

Glass Filters				Date
Test-Run	1-1	1-2	1-3	
Filter #	8.852	8.853	8.845	-
1	0.5810	0.6080	0.6125	2-21-94
2	0.5874	0.6078	0.6134	2-28-94
3	0.5878	0.6079	0.6136	3-2-94
Tare	0.5056	0.5158	0.5128	1-18-94
Blank	0.0822	0.0930	0.0916	-
Net	0.0822	0.0930	0.0916	-

Extractions

Impinger Liquid				Date
Test-Run	1-1	1-2	1-3	
Dish #	1071	1075	1079	-
1	2.3499	2.3165	2.3210	2-24-94
2	2.3498	2.3163	2.3211	2-28-94
3	2.3497	2.3164	2.3155	3-3-94
Tare	2.2859	2.3015	2.2814	8-2-94
Blank	0.0002	0.0002	0.0002	-
Net	0.0636	0.0706	0.0799	-

Signature: B-NO. 000 Date: 3-2-94

Page: 200 Date: 3-2-94

PROJECT # 9531 COMPANY Louisiana Pacific Corporati
 TEST DATE(s) 2.16.94 SOURCE Line #1 RTO Filter
Dryer

EPA METHOD 4 LABORATORY REPORT

Filter #

TEST-RUN # IMPINGER # INITIAL FINAL GAIN DESCRIPTION

TEST-RUN #	IMPIINGER #	INITIAL	FINAL	GAIN	DESCRIPTION
1 8853	1-1	100	203	103	
		100	172	72	
		0	10	10	
		738.5	755.8	14.3	yellow
		5			

TOTAL MOISTURE GAIN, ML = 199.3

TEST-RUN #

TEST-RUN #	1	100	231	131
1 8855	1-2	100	147	47
		0	25	25
		217.4	736.9	19.5
		5		

TOTAL MOISTURE GAIN, ML = 313.5

TEST-RUN #

TEST-RUN #	1	100	184	84
1 8845	1-3	100	203	103
		0	26	26
		752.3	773.5	21.3
		5		

TOTAL MOISTURE GAIN, ML = 234.3

SUMMARY OF PARTICULATE EMISSION TEST LABORATORY DATA

PROJECT NUMBER: 9531 COMPANY: LOUISIANA PACIFIC CORP.
TEST NUMBER: 2 SOURCE: LINE # 1 OUTLET

RUN NUMBER	MASS OF PARTICULATE MATTER COLLECTED, GRAMS								TOTAL PARTICU- LAR MATERIAL COLLECTED	
	FRONT CATCH				BACK CATCH					
	FRONT WASH	CYCLONE CATCH	FILTER CATCH	FRONT TOTAL	IMPIINGER CATCH **	IMPIINGER WASH	BACK TOTAL			
1	0.0064	0.0000	0.0107	0.0171	0.0023	0.0060	0.0083	0.025		
2	0.0090	0.0000	0.0104	0.0194	0.0029	0.0110	0.0139	0.33		
3	0.0014	0.0000	0.0089	0.0183	0.0011	0.0082	0.0093	0.019		

• NOT APPLICABLE

** CHLOROFORM/ETHYL ETHER EXTRACT

Project Number: 0541

INVESTIGATORY REPORT: EPA Method 5

Corporation: Louisiana Pacific - Hayward, WI (OUTLET)

Frontwashes				Date
Test-Run	1-1	1-2	1-3	
Dish #	1080	1084	1088	- - -
1	2.3025	2.3120	2.3740	2-2-91
2	2.3027	2.3119	2.3738	2-2-91
3	2.3025	2.3119	2.3738	3-2-91
Tare	2.2958	2.3026	2.3711	8-2-91
Blank	0.0003	0.0003	0.0003	- - -
Net	0.0061	0.0090	0.0014	- - -

Backwashes

Test-Run	1-1	1-2	1-3	Date
Dish #	1081	1085	1089	- - -
1	2.2944	2.3075	2.3971	2-2-91
2	2.2944	2.3074	2.3973	2-2-91
3	2.2944	2.3075	2.3973	3-2-91
Tare	2.2911	2.3065	2.3945	8-2-91
Blank	0.0003	0.0002	0.0002	- - -
Net	0.0018	0.0062	0.0025	- - -

Solvent Blanks

Solvents	Acetone	MeCl	ether	H ₂ O
Dish #				
1				
2				
3				
Tare				
Blank				
Net				

Glass Filters

Test-Run	1-1	1-2	1-3	Date
Filter #	8851	8852	8854	- - -
1	0.5124	0.5180	0.5197	2-2-91
2	0.5220	0.5179	0.5195	2-2-91
3	0.5222	0.5181	0.5195	3-2-91
Tare	0.5113	0.5075	0.5106	8-2-91
Net	0.0107	0.0104	0.0089	- - -

Extractions

Test-Run	1-1	1-2	1-3	Date
Dish #	1082	1086	1087	10-91
1	2.2945	2.2848	2.3025	2-2-91
2	2.2946	2.2850	2.3007	2-2-91
3	2.2946	2.2850	2.3007	3-2-91
Tare	2.2814	2.2814	2.2918	3-2-91
Blank	0.0005	0.0005	0.0002	8-2-91
Net	0.0021	0.0021	0.0057	- - -

Test-Run	1-1	1-2	1-3	Date
Dish #	1083	1083	1087	- - -
1	2.3029	2.3029	2.3025	2-2-91
2	2.3029	2.3029	2.3025	2-2-91
3	2.3029	2.3029	2.3025	3-2-91
Tare	2.1962	2.1962	2.1979	8-2-91
Blank	0.0002	0.0002	0.0002	- - -
Net	0.0042	0.0042	0.0057	- - -

Signature Bill Johnson Date 3-2-91

PROJECT # 9531 COMPANY Louisiana Pacific Corporation
 TEST DATE(s) 2.16.94 SOURCE Line # RTO ~~Intert~~
Dryer Outlet

EPA METHOD 4 LABORATORY REPORT

Filter #

TEST-RUN # IMPINGER # INITIAL FINAL GAIN DESCRIPTION

1	100	335	235	Clear
2	100	58	-42	
3	0	0	0	
4	776.7	742.5	5.8	
5				
TOTAL MOISTURE GAIN, ML = <u>198.8</u>				

TEST-RUN #

1	100	305	205	Clear
2	100	110	10	
3	0	0	0	
4	738.2	745.1	6.9	
5				
TOTAL MOISTURE GAIN, ML = <u>531.9</u>				

TEST-RUN #

1	100	337	237	Clear
2	100	109	9	
3	0	0	0	
4	723.1	730.7	7.6	
5				
TOTAL MOISTURE GAIN, ML = <u>253.6</u>				

21.0 %
moisture

22.4 %
moisture

	Range
Coal: Anthracite and Lignite	1.016-1.130
Coal: Bituminous	1.003-1.120
Oil: Distillate	1.200-1.413
Oil: Residual	1.210-1.370
Gas: Natural	1.600-1.636
Gas: Propane	1.434-1.584
Gas: Butane	1.403-1.553
Wood: Wood bark	1.003-1.120
Wood: Wood bark	1.003-1.130

ORSAT ANALYSIS

Job Number: 9531 Company: Louisiana Pacific Corporation

SAMPLE DESCRIPTION:

RTO Inlet
Line # Dyer

SAMPLE ANALYSIS

Parameter Measured	Replicate 1			Replicate 2			Replicate 3		
	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Buret Reading	Percent Volume	Buret Reading
Initial Reading	0.0		0.0		0.0		0.0		0.0
Carbon Dioxide	3.2	3.2	3.2	3.2	3.2	3.2	3.20	3.20	3.20
Oxygen	18.4	15.2	18.4	15.2	18.4	15.2	18.4	15.2	15.20
									$\bar{x} = 1.78$

Averages

Sample Id: 1-1	Initial Reading	0.0		0.0		0.0		0.0	
Collected by: BA	Initial Reading	0.0		0.0		0.0		0.0	
Date Collected: 2.16.94	Carbon Dioxide	3.2		3.2		3.2		3.2	
Analyzed by: 16	Oxygen	18.65		15.15		18.65		18.65	
Date Analyzed: 2.16.94									$\bar{x} = 1.64$

Sample Id: 1-2	Initial Reading	0.0		0.0		0.0		0.0	
Collected by: BA	Initial Reading	0.0		0.0		0.0		0.0	
Date Collected: 2.16.94	Carbon Dioxide	3.5		3.5		3.50		3.5	
Analyzed by: 16	Oxygen	18.65		15.15		18.65		18.65	
Date Analyzed: 2.16.94									$\bar{x} = 1.64$

Sample Id: 1-3	Initial Reading	0.0		0.0		0.0		0.0	
Collected by: BA	Initial Reading	0.0		0.0		0.0		0.0	
Dated Collected: 2.16.94	Carbon Dioxide	3.12		3.12		3.12		3.12	
Analyzed by: 16	Oxygen	18.52		15.10		18.55		15.15	
Date Analyzed: 2.16.94									$\bar{x} = 1.70$

F. Range	Fuel Type
Coal	Anthracite and lignite
	Brown coal
Oil	Distillate
	Residual
Gas	Natural
	Propane
	Butane
	Wood
	Wood bark

Fuel = Nat. gas

ONSAT ANALYSIS

Job Number: 9531 Company: CPC Hes

SAMPLE DESCRIPTION:

P10 Offset
Line #1

SAMPLE ANALYSIS

Parameter Measured	SAMPLE ANALYSIS		
	Replicate 1 Buret Reading	Replicate 2 Percent Volume	Replicate 3 Buret Reading

Sample Id: 2-1	Initial Reading	0.0	0.0	0.0	0.0	0.0	Average
Collected By: TG	Carbon Dioxide	3.18	3.20	3.20	3.16	3.16	3.18
Date Collected: 2/16/94	Oxygen	18.60	19.82	18.60	19.62	19.44	19.42
Analyzed By: TG	Carbon Monoxide						1.72
Date Analyzed: 2/16/94							

Sample Id: 2-2	Initial Reading	0.0	0.0	0.0	0.0	0.0	Average
Collected By: TG	Carbon Dioxide	4.3	4.3	4.3	4.3	4.3	4.30
Date Collected: 2/16/94	Oxygen	17.4	13.1	17.4	13.1	17.4	13.10
Analyzed By: TG	Carbon Monoxide						1.81
Date Analyzed: 2/16/94							

Sample Id: 2-3	Initial Reading	0.0	0.0	0.0	0.0	0.0	Average
Collected By: TG	Carbon Dioxide	4.3	4.3	4.3	4.3	4.3	4.30
Date Collected: 2/16/94	Oxygen	17.6	13.3	17.6	13.3	17.6	13.30
Analyzed By: TG	Carbon Monoxide						1.77
Date Analyzed: 2/16/94							

Job Number: 9531

ORSAT ANALYSIS

Company: Louisiana Pacific Corp

SAMPLE DESCRIPTION:

Line #2

SAMPLE ANALYSIS

Parameter Measured	SAMPLE ANALYSIS		
	Replicate 1 Buret Reading	Replicate 2 Percent Volume	Replicate 3 Buret Reading
Carbon Dioxide	0.0	0.0	0.0
Oxygen	3.4	3.4	3.4
Carbon Monoxide	15.3	15.3	15.3
Total	18.7	18.7	18.7

Sample Id: Line #2 outlet

Collected By: 2.18.94

Date Collected: 16

Analyzed By: 2.18.94

Date Analyzed: 2.18.94

Parameter Measured	SAMPLE ANALYSIS		
	Replicate 1 Buret Reading	Replicate 2 Percent Volume	Replicate 3 Buret Reading
Carbon Dioxide	0.0	0.0	0.0
Oxygen	3.4	3.4	3.4
Carbon Monoxide	15.3	15.3	15.3
Total	18.7	18.7	18.7

Sample Id: Line #2 outlet

Collected By: 2.18.94

Date Collected: 16

Analyzed By: 2.18.94

Date Analyzed: 2.18.94

Parameter Measured	SAMPLE ANALYSIS		
	Replicate 1 Buret Reading	Replicate 2 Percent Volume	Replicate 3 Buret Reading
Carbon Dioxide	0.0	0.0	0.0
Oxygen	3.2	3.2	3.2
Carbon Monoxide	15.2	15.2	15.2
Total	18.4	18.4	18.4

Sample Id: Line #2 outlet

Collected By: 2.18.94

Date Collected: 16

Analyzed By: 2.18.94

Date Analyzed: 2.18.94

Parameter Measured	SAMPLE ANALYSIS		
	Replicate 1 Buret Reading	Replicate 2 Percent Volume	Replicate 3 Buret Reading
Carbon Dioxide	0.0	0.0	0.0
Oxygen	3.2	3.2	3.2
Carbon Monoxide	15.2	15.2	15.2
Total	18.4	18.4	18.4

F ₁ range	Fuel type
1.016-1.130	Coal: Anthracite and Lignite
1.003-1.220	Bituminous
1.200-1.413	Oil: Distillate
1.210-1.370	Residual
1.600-1.838	Gas: Natural
1.424-1.546	Propane
1.405-1.553	Butane
1.000-1.120	Wood
1.003-1.130	Wood bark

ORSAT ANALYSIS

Job Number: 9531 Company: Louisiana Pacific Corp

SAMPLE DESCRIPTION

Line #2 Tilt

Parameter Measured	SAMPLE ANALYSIS		
	Replicate 1	Replicate 2	Replicate 3
Buret Reading			
Percent Volume			
Buret Reading			
Percent Volume			

Sample Id: <u>Line #2 Tilt</u>	Initial Reading	0.0	0.0	0.0
Collected by: <u>BA</u>	Carbon Dioxide	3.40	3.40	3.40
Date Collected: <u>2.18.94</u>	Oxygen	15.20	18.60	18.60
Analyzed by: <u>TS</u>	Carbon Monoxide			
Date Analyzed: <u>2.18.94</u>				

Sample Id: <u>Line #2 Off</u>	Initial Reading	0.0	0.0	0.0
Collected by: <u>BA</u>	Carbon Dioxide	3.40	3.40	3.40
Date Collected: <u>2.18.94</u>	Oxygen	20.9	20.9	20.9
Analyzed by: <u>TS</u>	Carbon Monoxide			
Date Analyzed: <u>2.18.94</u>				

Sample Id: <u>Line #2 Off</u>	Initial Reading	0.0	0.0	0.0
Collected by: <u>BA</u>	Carbon Dioxide	3.40	3.40	3.40
Date Collected: <u>2.18.94</u>	Oxygen	15.3	18.7	18.7
Analyzed by: <u>TS</u>	Carbon Monoxide			
Date Analyzed: <u>2.18.94</u>				

RECEIVED MAR 21 1994

LABORATORY ANALYSIS REPORT**DATE:** March 17, 1994**PAGE:**

1 Of 2

CLIENT: MMT Environmental
4610 N. Churchill St.
St. Paul, MN 55126**PROJECT NO.:** 030294-200611
COLLECTION DATE: unidentified
COLLECTED BY: Client
RECEIVED DATE: 3/02/94**CONTACT:** Al Towbridge**ANALYSIS****EPA 6010**

	<i>Sample No.:</i>	<i>Sample ID.:</i>	<i>1-1 Inlet</i>	ANALYSIS
	<i>UNITS</i>	<i>MDL</i>	<i>RESULTS</i>	DATE
Calcium	ug	50	1850	3/08/94
Magnesium	ug	50	350	3/08/94
Sodium	ug	50	11000	3/08/94
Potassium	ug	50	10000	3/08/94
Sulfur	ug	10	1050	3/14/94

ANALYSIS**EPA 6010**

	<i>Sample No.:</i>	<i>Sample ID.:</i>	<i>1-2 Inlet</i>	ANALYSIS
	<i>UNITS</i>	<i>MDL</i>	<i>RESULTS</i>	DATE
Calcium	ug	50	1850	3/08/94
Magnesium	ug	50	350	3/08/94
Sodium	ug	50	10500	3/08/94
Potassium	ug	50	10500	3/08/94
Sulfur	ug	10	750	3/14/94

ANALYSIS**EPA 6010**

	<i>Sample No.:</i>	<i>Sample ID.:</i>	<i>1-3 Inlet</i>	ANALYSIS
	<i>UNITS</i>	<i>MDL</i>	<i>RESULTS</i>	DATE
Calcium	ug	50	2700	3/08/94
Magnesium	ug	50	350	3/08/94
Sodium	ug	50	10000	3/08/94
Potassium	ug	50	9500	3/08/94
Sulfur	ug	10	1000	3/14/94

ND means Not Detected*MDL* means Method Detection Limit*ug* means MicrogramsA member of The Marmon Group of Companies
91

LABORATORY ANALYSIS REPORT**DATE:** March 17, 1994**PAGE:**

2 Of 2

CLIENT: MMT Environmental
4610 N. Churchill St.
St. Paul, MN 55126**PROJECT NO.:** 030294-200611
COLLECTION DATE: unidentified
COLLECTED BY: Client
RECEIVED DATE: 3/02/94**CONTACT:** Al Towbridge

This report has been reviewed by me for technical accuracy and completeness. The analyses were performed using EPA or other approved methodologies and the results were reported on an "as received" basis unless otherwise noted. Please contact me if you have any questions or comments regarding this report. Spectrum Labs, Inc. appreciates the opportunity to provide this analytical service for you.

*Report Submitted By,**Thomas L. Halverson
Laboratory Manager**TLH:wmh
mmt076-1*

A member of The Marmon Group of Companies

March 23, 1994

MMT Report #10057

APPENDIX D: CALIBRATION DATA

Friday

CALIBRATION
DRY TEST METER/ORIFICE METER

Page: SSGA-1-58

Date: 2.4.94

Barometric Pressure, in. Hg. (Pb): 28.61

EQUIPMENT IDENTIFICATION			
Control Unit 4	Dry Test Meter	Wet Test Meter	Calibration Type
Mfg: Andersen	Mfg: rockwell	Mfg: GCA Corporation	General: <input checked="" type="checkbox"/>
Model: Universal	Model: S-175	Model: Precision	Post-test: <input checked="" type="checkbox"/>
SN: 591 544	SN: 83	SN: 11 AH 12	

COMPUTER PRINTOUT

Inlet Gisok

Pre-test

H	V _W	T _W	V _D	T _D	Q	C	H _A
0.5	3.743	71	3.640	68.8	9.0	1.0226	1.7060
1.0	3.469	71	3.402	72.3	6.0	1.0195	1.7559
2.0	4.827	71	4.722	75.5	6.0	1.0256	1.8028
3.0	11.688	71	11.415	80.0	12.0	1.0333	1.8295

AVERAGE CORRECTION FACTOR: C = 1.0253
AVERAGE ORIFICE CONSTANT: Ha = 1.7741

EQUATIONS:

$$V_w = V_{wf} - V_{wi}$$

$$V_d = V_{df} - V_{di}$$

$$T_d = \langle T_{ii} + T_{if} + T_{ci} + T_{af} \rangle / 4$$

$$C = Vw * Pb * (Td + 460) / (Vd * (Pb + H/13.6) * (Tw + 460))$$

$$H2 = 0.0317 \cdot H \cdot ((Tw+460)*0/Vw)^2 / (Pb + (Td+460))$$

~~Calibration of μ vs. λ~~

CALIBRATION
DRY TEST METER/ORIFICE METER

Page: SSQA-1-59

Friday
Date: 2-25-94

Barometric Pressure, in. Hg. (Pb): 28.52

EQUIPMENT IDENTIFICATION

Control Unit 4	Dry Test Meter	Wet Test Meter	Calibration Type
Mfg: Andersen	Mfg: rockwell	Mfg: GCA Corporation	General: x
Model: Universal	Model: S-175	Model: Precision	Post-test: x
SN: 591-544	SN: 83	SN: 11 AH 12	

EQUIPMENT CALIBRATION

Orifice Pressure Drop in. WC	Pump Vac. in. Hg	Wet Test Meter				Dry Test Meter								Elapsed Time min.
		Volume, CF		Temp. °F	Volume, CF		Temperature, °F		Inlet		Outlet			
		Initial V _{wi}	Final V _{wf}		V _{di}	V _{df}	T _{ii}	T _{if}	T _{oi}	T _{of}				
0.5	0	ZERO	3.404	72	787.76	787.03	66	66	71	67			8	
1.0	0	3.404	9.226	72	787.03	782.70	67	70	79	69			10	
2.0	0	9.226	17.278	72	792.70	800.59	76	69	70	85			10	
3.0	0	17.278	25.116	72	800.59	808.20	82	70	71	89			8	

COMPUTER PRINTOUT

Int'l. Comate

Post - Test

H	V _w	T _w	V _d	T _d	Q	C	H ₀
0.5	3.404	72	3.269	67.5	8.0	1.0312	1.6470
1.0	5.822	72	5.572	71.3	10.0	1.0224	1.7470
2.0	8.852	72	7.880	75.0	10.0	1.0223	1.8139
3.0	7.838	72	7.620	78.0	8.0	1.0322	1.8274

AVERAGE CORRECTION FACTOR: C = 1.0270

AVERAGE ORIFICE CONSTANT: H₀ = 1.7589

EQUATIONS:

$$V_{wi} = V_{wf} - V_{di}$$

$$V_d = V_{df} - V_{di}$$

$$T_d = (T_{ii} + T_{if} + T_{oi} + T_{of}) / 4$$

$$C = V_w * Pb * (T_d + 460) / (V_d * (Pb + H / 13.6) * (T_w + 460))$$

$$H_0 = 0.0317 * H * ((T_w + 460) * Q / V_w)^{1/2} / (Pb * (T_d + 460))$$

Average C = 1.0262

Calibration Performed by:

96 (int)

Ted Miltions

CALIBRATION

Page: SSQA-1-

38

Mon.

DRY TEST METER/ORIFICE METER

Date: 1.17.94

Barometric Pressure, in. Hg. (Pb):

28.97

EQUIPMENT IDENTIFICATION

Control Unit 5	Dry Test Meter	Wet Test Meter	Calibration Type
Mfg: mmt	Mfg: Rockwell	Mfg: GCA Corporation	General: X
Model: Universal	Model:	Model: Precision	Post-test: X
SN: 92-9093	SN: [REDACTED]	SN: 11 AH 12	

EQUIPMENT CALIBRATION

Orifice Pressure Drop in. WC H	Pump Vac. in.Hg	Wet Test Meter				Dry Test Meter						Elapsed Time, min. Q	
		Volume, CF		Temp. °F	Volume, CF		Temperature, °F		Inlet		Outlet		
		Initial Vwi	Final Vwf		Initial Vdi	Final Vdf	Tii	Tif	Toi	Tof			
0.5	0	zero	4.042	66	627.393	631.557	62	69	62	63	10		
1.0	0	4.042	6.323	66	631.557	633.918	63	70	74	64	4		
2.0	0	6.323	11.104	66	633.918	638.894	64	74	83	66	6		
3.0	0	11.104	19.846	66	638.894	648.047	62	76	68	91	9		

COMPUTER PRINTOUT

*H. Garside**Outlet**Pre-Test*

H	Vw	Tw	Vd	Td	Q	C	Hg
0.5	4.042	66	4.164	64.0	10.0	0.9658	1.7682
1.0	2.281	66	2.361	67.5	4.0	0.9564	1.7649
2.0	4.781	66	4.976	71.8	6.0	0.9664	1.7934
3.0	8.742	66	9.153	76.8	9.0	0.9672	1.7935

AVERAGE CORRECTION FACTOR: C = 0.9665

AVERAGE ORIFICE CONSTANT: Hg = 1.7800

EQUATIONS:

$$Vw = Vwf - Vwi$$

$$Vd = Vdf - Vdi$$

$$Td = (Tii + Tif + Toi + Tof) / 4$$

$$C = Vw * Pb * (Td+460) / (Vd * (Pb+H/13.6) * (Tw+460))$$

$$Hg = 0.0317 * H * ((Tw+460)*Q/Vw)^2 / (Pb * (Td+460))$$

Calibration Performed by:

97 (Print) *Ted Gibbons*

CALIBRATION

Page: 350A-1- 39

DRY TEST METER/ORIFICE METER

Friday

Date: 2.25.94

Barometric Pressure, in. Hg. (Pb): 28.52

EQUIPMENT IDENTIFICATION

Control Unit 5	Dry Test Meter	Wet Test Meter	Calibration Type
Mfg: mmt	Mfg: Rockwell	Mfg: RCA Corporation	General: X
Model: Universal	Model:	Model: Precision	Post-test: X
SN: 92-9093	SN: [REDACTED]	SN: 11 AH 12	

EQUIPMENT CALIBRATION

Orifice Pressure Drop in. WC H	Pump Vac. in.Hg	Wet Test Meter			Dry Test Meter			Elapsed Time, min. Q
		Volume, CF		Temp. °F Tw	Volume, CF		Temperature, °F	
		Initial Vwi	Final Vwf		Initial Vdi	Final Vdf	Inlet Tii	Outlet Tof °C
0.5	0	zero	3.312	72	762.563	766.018	70	70
1.0	0	3.312	8.402	72	766.018	771.347	80	71
2.0	0	8.402	13.167	72	771.347	776.348	89	72
3.0	0	13.167	21.012	72	776.348	784.628	95	74
							77	77
							101	101
								8
								9
								8

COMPUTER PRINTOUT

Outlets

Post-Test

H	Vd	Tw	Vd	Td	Q	C	Hg
0.5	3.312	72	3.455	72.8	8.0	0.9587	1.7226
1.0	5.090	72	5.329	78.8	9.0	0.9648	1.8256
2.0	4.765	72	5.001	82.8	6.0	0.9671	1.8380
3.0	7.845	72	8.280	86.8	8.0	0.9663	1.7950

AVERAGE CORRECTION FACTOR: C = 0.9642

AVERAGE ORIFICE CONSTANT: Hg = 1.7953

EQUATIONS:

$$Vw = Vwf - Vwi$$

$$Vd = Vdf - Vdi$$

$$Td = (Tii + Tif + Toi + Tof) / 4$$

$$C = Vw * Pb * (Td+460) / (Vd * (Pb+H/13.6) * (Tw+460))$$

$$Hg = 0.0317 * H * ((Tw+460)*0/Vd)^2 / (Pb * (Td+460))$$

Average C = .9654

Calibration performed by

CALIBRATION

S-TYPE PITOT TUBE

Probe ID: 86" S.S.

Date: 10-8-93

S-Type Pitot Tube ID No.: 85

Ambient Temperature, °F: 63

Standard Pitot Tube ID No.: 1.5 ft.

Barometric Pressure, in. Hg.: 28.65

Standard Pitot Tube Coefficient: 0.990

Stock Thermocouple 85" inflex + 24" flex

PITOT TUBE EXAMINATION

Alignment Check	Pitot Tube Dimensions	Pitot Assembly Intercomponent Spacings
✓ $\alpha_1 < 10^\circ$	External tubing diameter (D_t): <u>3/8</u>	Pitot to nozzle (X):
✓ $\alpha_2 < 10^\circ$	Base to Side A opening plane (P_A): <u>.58</u>	Pitot to probe sheath (Y):
✓ $\beta_1 < 5^\circ$	Base to Side B opening plane (P_B): <u>.56</u>	Pitot to thermocouple, along probe (W):
✓ $\beta_2 < 5^\circ$		Pitot to thermocouple, perpendicular to probe (Z):
✓ $Q < 1/8$ in.		
✓ $R < 1/32$ in.		

DESIRED CALIBRATION POINT		SIDE A CALIBRATION		SIDE B CALIBRATION	
Velocity ft/sec	P_{std} in. WC	P_{std} in. WC	P_s in. WC	P_{std} in. WC	P_s in. WC
20	0.09	0.140	0.200	0.170	0.240
40	0.37	0.380	0.540	0.400	0.550
60	0.82	0.820	1.140	0.900	1.250
80	1.45	1.400	2.000	1.380	1.950
100	2.30				

COMPUTER PRINTOUT

SIDE A CALIBRATION				SIDE B CALIBRATION			
P_{std}	P_s	C_p	$C_p - C_p(A)$	P_{std}	P_s	C_p	$C_p - C_p(B)$
0.140	0.200	0.828	-0.003	0.170	0.240	0.833	-0.004
0.380	0.540	0.830	-0.001	0.400	0.550	0.844	0.007
0.820	1.140	0.840	0.008	0.900	1.250	0.840	0.002
1.400	2.000	0.828	-0.003	1.380	1.950	0.833	-0.005

 $C_p(A) = 0.832$ $C_p(B) = 0.838$ Side A ($\pm \gamma$) = .005Side B ($\pm \gamma$) = .005

Calibration Performed by:

(Print) Bill & Ted

(Signature) Bill & Ted

CALIBRATION
S-TYPE PITOT TUBE

Date: 10-8-93

S-Type Pitot Tube ID No.: 96"

Ambient Temperature, °F: 63

Standard Pitot Tube ID No.: 1.5 ft.

Barometric Pressure, in. Hg.: 28.65

Standard Pitot Tube Coefficient: 0.990

103" SS Probe 99" std in-fley thermocouple

PITOT TUBE EXAMINATION

Alignment Check	Pitot Tube Dimensions	Pitot Assembly Intercomponent Spacings
<input checked="" type="checkbox"/> $\alpha_1 < 10^\circ$	External tubing diameter (D_t): <u>3/4</u>	Pitot to nozzle (X):
<input checked="" type="checkbox"/> $\alpha_2 < 10^\circ$	Base to Side A opening plane (P_A): <u>.56</u>	Pitot to probe sheath (Y):
<input checked="" type="checkbox"/> $\beta_1 < 5^\circ$	Base to Side B opening plane (P_B): <u>.56</u>	Pitot to thermocouple, along probe (W):
<input checked="" type="checkbox"/> $\beta_2 < 5^\circ$		Pitot to thermocouple, perpendicular to probe (Z):
<input checked="" type="checkbox"/> $Q < 1/8$ in.		
<input checked="" type="checkbox"/> $R < 1/32$ in.		

DESIRED CALIBRATION POINT		SIDE A CALIBRATION		SIDE B CALIBRATION	
Velocity ft/sec	P _{std} in. WC	P _{std} in. WC	P _s in. WC	P _{std} in. WC	P _s in. WC
20	0.09	0.135	0.190	0.145	0.205
40	0.37	0.380	0.550	0.390	0.550
60	0.82	0.900	1.300	0.880	1.250
80	1.45	1.500	2.180	1.420	2.050
100	2.30				

COMPUTER PRINTOUT

SIDE A CALIBRATION				SIDE B CALIBRATION			
P _{std}	P _s	C _p	C _p -C _p (A)	P _{std}	P _s	C _p	C _p -C _p (B)
0.135	0.190	0.834	0.009	0.145	0.205	0.833	0.002
0.380	0.550	0.823	-0.003	0.390	0.550	0.834	0.003
0.900	1.300	0.824	-0.002	0.880	1.250	0.831	0.000
1.500	2.180	0.821	-0.004	1.420	2.050	0.824	-0.006

C_p(A) = 0.826C_p(B) = 0.830Side A (a_n) = .005Side B (a_n) = .004

Calibration Performed by:

(Print) Bill & Ted

(Signature) Bill & Ted

CALIBRATION
NOZZLE DIAMETER

Nozzle Number	Nominal Diameter, in.	D1	D2	D3	Nozzle* Diameter, in.
-	-	-	-	-	-
S-1		.745	.744	.744	.744
S-2		.299	.299	.300	.299
S-3		.375	.374	.374	.374
S-4		.499	.499	.499	.499
S-5		.373	.374	.374	.374
S-6		.363	.364	.365	.364
S-7		.181	.181	.182	.181
S-8		.245	.245	.245	.245
3		.123	.123	.122	.123
4		.177	.177	.177	.177
13		.313	.313	.313	.313
14	Bud threads as of 10-7-93	.315	.315	.316	.315
17		.369	.370	.370	.370
18		.435	.437	.436	.436
19		.485	.485	.484	.485

* Nozzle diameter = $(D1 + D2 + D3)/3$

Calibration Performed by:

(Print) Bill Anderson(Signature) Bill AndersonDate: 10-7-93

CALIBRATION
NOZZLE DIAMETER

Nozzle Number	Nominal Diameter, in.	Measured Diameter, in.			Nozzle* Diameter, in.
		D1	D2	D3	
L-1		.174	.175	.175	.175
L-2		.249	.249	.248	.249
L-3		.359	.358	.358	.358
L-4		.497	.495	.498	.497
L-5		.125	.124	.125	.125
L-6		.300	.300	.301	.300
L-7		.179	.179	.179	.179
L-8		.489	.490	.490	.490
L-9		.744	.746	.745	.745
L-10		.247	.247	.246	.247
L-11		.250	.250	.250	.250
L-12		.248	.247	.245	.247
L-13		.240	.241	.240	.240
L-14		.199	.199	.199	.199
L-15	Bad throat 10.6	.369	.369	.369	.369
L-28		.570	.574	.570	.570

* Nozzle diameter = (D1 + D2 + D3)/3

Calibration Performed by:

(Print) Bill Anderson(Signature) Bill AndersonDate: 10-7-93