

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at [www.epa.gov/ttn/chief/ap42/](http://www.epa.gov/ttn/chief/ap42/)

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02\_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

48-3240-0008  
51-810-0003

# RAMCON

---

ENVIRONMENTAL CORPORATION



ENCLOSURE

RAMCON BUILDING    223 SCOTT ST.    MEMPHIS, TN. 38112    901/458-7000

MAY 19 1987

RAMCON

ENVIRONMENTAL CORPORATION

RAMCON BUILDING

223 SCOTT STREET

MEMPHIS, TENNESSEE 38112

TELEPHONE 901 / 458-7000

800 / 458-4567

SOURCE SAMPLING  
for  
PARTICULATE EMISSIONS  
APAC - VIRGINIA, INC.  
Virginia Beach, Virginia  
April 30, 1987

Bob Lambeth  
Bob Lambeth  
APAC - Virginia

G. Sumner Buck  
G. Sumner Buck, III  
President

Ken Allmendinger  
Ken Allmendinger  
Team Leader

## TABLE OF CONTENTS

|       |                              |    |
|-------|------------------------------|----|
| I.    | INTRODUCTION                 | I  |
| II.   | TEST RESULTS                 | I  |
| III.  | TEST PROCEDURES              | I  |
| IV.   | THE SOURCE                   | 4  |
| V.    | EQUIPMENT USED               | 10 |
| VI.   | LABORATORY PROCEDURES        | 11 |
| VII.  | CALCULATIONS                 | 15 |
| VIII. | FIELD DATA                   | 25 |
| IX.   | CALIBRATIONS                 | 34 |
| X.    | RAMCON PERSONNEL             | 41 |
| XI.   | STACK TEST MONITORING REPORT | 42 |

(2)

TABLE I

SUMMARY OF TEST RESULTS  
April 30, 1987

| <u>Test Run</u> | <u>Time</u>    | <u>Grain Loading</u> | <u>Isokinetic Variation</u> | <u>Actual Emissions</u> |
|-----------------|----------------|----------------------|-----------------------------|-------------------------|
| 1               | 10:07 to 11:34 | 0.0214 gr/SCF        | 99%                         | 3.2 lbs/hr              |
| 2               | 11:59 to 13:28 | 0.0144 gr/SCF        | 101%                        | 2.3 lbs/hr              |
| 3               | 13:47 to 15:38 | 0.0132 gr/SCF        | 102%                        | 2.1 lbs/hr              |
| Average:        |                |                      | 0.0163 gr/SCF               | 2.5 lbs/hr              |

On the basis of these test results, the average grain loading of the three test runs was below the .04 gr/SCF emissions limitation set by US EPA and the State of Virginia. Therefore, the plant is operating in compliance with State and Federal Standards.

III. TEST PROCEDURES

A. Method Used: The source sampling was conducted in accordance with requirements of the U.S. Environmental Protection Agency as set forth in 39 FR 9314, March 8, 1974, 60.93, as amended.

B. Problems Encountered: No problems were encountered that affected testing.

**IV. THE SOURCE**

1. **Aggregate bins:** Virgin aggregate is fed individually into each of four bins by type. It is metered onto a conveyor belt running under the bins to a shaker screen. The proportion of each aggregate type is determined by the job mix formula and pre-set to be metered out to meet these specifications.
2. **Preliminary oversize screen:** The aggregate is fed through a shaker screen where oversize rocks and foreign material is screened out of the mix.
3. **Weigh conveyor belt:** The aggregate is conveyed to the rotary drum dryer on a conveyor belt which weighs the material. The production rate is determined by this weight reading.
4. **Rotary drum dryer/mixer:** The aggregate is fed into the rotary drum dryer where it is tumbled by flighting into a veil in front of a flame which drives off the moisture. Further mixing is also accomplished in this drum. Hot liquid asphalt is injected approximately one-third of the way down the inclined drum where it is mixed with the aggregate.
5. **Burner:** The fuel fired burner is used to provide the flame which dries the aggregate.
6. **Knock off baffling:** A baffling plate is inserted in the "dirty" side plenum as a knock out for heavy particles in the air stream. These particles fall to the bottom of the baghouse.
7. **Baghouse:** The hot gases are pulled through the bags into the clean air plenum. The solid particulate matter is trapped on the dust coat buildup on the bags. A bag cleaning cycle consisting of jet burst of air from the inside (or clean air side) of the bags sends a large bubble of air down the inside of the bags shaking loose buildup on the bag surface. This particulate matter is collected at the bottom of the baghouse and reinjected into the drum mixer where it is used as part of the finished project.
8. **Liquid asphalt storage:** The liquid asphalt is stored in this heated tank until it is needed in the mixer. The amount of asphalt content and its temperature are pre-set for each different type job.
9. **Conveyor to surge/storage bin:** The finished product of aggregate mixed with liquid asphalt is conveyed to a surge bin.
10. **Surge/Storage bin:** The asphaltic cement is dumped into this surge bin and metered out to dump trucks which pull underneath a slide gate at the bottom of the bin.
11. **Control/operators house:** The entire plant operation is controlled from this operator's house.
12. **Truck loading scale:** As the trucks receive the asphalt from the storage/surge bin they are weighed on the loading scale which tells the plant operator the amount of asphalt that is being trucked on each individual load.
13. **Fuel Storage**

(7)

DATA SUMMARYPlant

1. Manufacturer of plant Astec Industries.
2. Designed maximum operating capacity 250 TPH @ 5 % moisture.
3. Actual operation rate 200 TPH @ 4 % moisture.
4. Startup date 4-7-87.
5. Type of fuel used in dryer #2.
6. Quantity of fuel consumption Appox 2 gal/Ton.

Aggregate

7. Name/type of mix P-401.
8. Percent asphalt in mix 5.2 %.
9. Temperature of asphalt 340°.
10. Sieve/Screening analysis: % Passing;

|      |      |      |     |      |
|------|------|------|-----|------|
| 1"   | 3/8" | 85.8 | 30  | 27.4 |
| 3/4" | 1/4  | 69.7 | 50  | 16.9 |
| 1/2" | 1/8  | 54.5 | 200 | 6.0  |

Baghouse

11. Manufacturer Astec Industries.
12. No. of bags 715. Type of bags Dupont Nomex.
13. Air to cloth ratio 6:1. Designed ACFM 42,000 CFM.
14. Square feet of bags 7000.
15. Type of cleaning; pulse jet         , reverse air ✓, plenum pulse         , other         .
16. Cleaning cycle time 4 sec.
17. Interval between cleaning cycle 4 sec.
18. Pressure drop across baghouse 8 - 9 psi.
19. Pulse pressure on cleaning cycle .3 psi.

COMPANY NAME APAC-VA Inc DATE 4-30-87

## PLANT DATA

(و)

**COMPANY NAME**

**COMPANY REP.**

DATE

Phone #

**DATA SOURCE**

## PLANT LOCATION

## PLANT MANUFACTURER

**PLANT MODEL NO.**

**PLANT TYPE**

**MIX SPECIFICATION NO.**

**OIL SPECIFICATION NO.**

**TIME: START**

**STOP**

A.T. °F R.H. %

V. EQUIPMENT USED

Equipment used on conducting the particulate emissions test was:

- A. The Lear Siegler PM-100 stack sampler with appropriate auxillary equipment and glassware. The train was set up according to the schematic on the nex page.
- B. An Airguide Instruments Model 211-B (uncorrected) aneroid barometer was used to check the barometric pressure.
- C. Weston dial thermometers are used to check meter tem-  
peratures. An Analogic Model 2572 Digital Thermocouple is  
used for stack temperatures.
- D. A Hays 621 Analyzer was used to measure the oxygen, carbon  
dioxide and carbon monoxide content of the stack gases. For  
non-combustion sources, A Bacharach Instrument Company  
Fyrite is used for the gas analysis.
- E. Filters are mady by Schleicher and Schuell and are type 1-HV  
with a porosity of .03 microns.
- F. The acetone is reagent grade or ACS grade with a residue of  
 $\leq .001$ .

## LABORATORY PROCEDURES FOR PARTICULATE SAMPLING

### I. Field Preparation

#### A. FILTERS: Fiberglass 4" sampling filters are prepared as follows:

Filters are removed from their box and numbered on the back side with a felt pen. The numbering system is continuous from job to job. The filters are placed in a dessicator to dry for at least 24 hours. Clean plastic petri dishes, also numbered, top and bottom, are placed in the dessicator with the filters. After dessication, the filters are removed one at a time and weighed on the Sartorius analytical balance, then placed in the correspondingly numbered petri dish. Weights are then recorded in the lab record book. Three filters are used for each complete particulate source emissions test and there should be several extra filters included as spares.

#### B. SILICA GEL: Silica Gel used for the test is prepared as follows:

Approximately 200 g of silica gel is placed in a wide mouth "Mason" type jar and dried in an oven (175°C for two hours). The open jars are removed and placed in a dessicator until cool (2 hours) and then tightly sealed. The jars are then numbered and weighed on the triple beam balance to the closest tenth of a gram, and this weight is recorded for each sealed jar. The number of silica gel jars used is the same as the number of filters. Silica gel should be indicating type, 6-16 mesh.

### II. Post-Testing Lab Analysis

#### A. FILTERS: The filters are returned to the lab in their sealed glass filter holder which was used in field sampling. In the lab these holders are opened. The filter is placed in its petri dish with the lid off and returned to the dessicator for at least 24 hours. The top half of the filter holder is washed into the corresponding probe wash bottle and the bottom half of the filter holder is washed into the corresponding impinger catch bottle. (See II, C and D). After dessication, the filters are reweighed. The final weight is recorded in the lab record book. The filter pick up weight is calculated and recorded also. This procedure is repeated for all filters used in the field.

Alternately, the test team may opt to oven dry the filters at 220°F for two to three hours, weigh the sample, and use this weight as a final weight.

#### B. SILICA GEL: The sealed silica gel jars should be reweighed on the triple-beam balance and their weights recorded as shown on previous page.

- C. PROBE RINSINGS: In all tests, a probe wash-out analysis will be necessary. These samples are returned in sealed Mason jars and consist of A.R. Acetone with an unknown solid content. Clean 250 ml beakers are used to make this analysis. These should be immaculately washed and rinsed with deionized water, then oven dried at 105°C for about one hour. The beakers should be moved to the dessicator to cool for ninety (90) minutes, then labeled with a pencil and weighed on the Sartorius analytical balance. Any variance from this procedure should be duplicated exactly when reweighing, as this procedure has been found to be quite sensitive. After preparing the necessary number of beakers (one for each probe wash and one blank) the Mason jars should be opened, poured into the beaker, and any material remaining on the jar walls rinsed with an acetone wash bottle into the beaker. The amount of liquid in the beaker should be noted on the analysis form. The acetone rinsings are evaporated on a warming plate. The liquid is kept swirled with an air sweep to prevent "bumping". When the acetone is evaporated the beakers are weighed as in Section II A.
- D. IMPINGER CATCH: In some testing cases, the liquid collected in the impingers must be analyzed for solids content. This involves a similar procedure to the probe wash solids determination, except that the liquid is deionized water.
- E. ACETONE: Conduct a blank analysis of acetone in the 1 gallon glass container. This acetone will be used in the field for rinsing the probe, nozzle, and top half of the filter holder. Performing such a blank analysis prior to testing will insure that the quality of the acetone to be used will not exceed the .001% residual purity standard.

#### SPECIAL NOTE

When sampling sources high in moisture content, (such as asphalt plants) the filter paper sometimes sticks to the filter holder. When removing the filter it may tear. In order to maintain control of any small pieces of filter paper which may be easily lost, they are washed with acetone into the probe washing. This makes the filter weight light (sometimes negative) and the probe wash correspondingly heavier. The net weight is the same and no particulate is lost. This laboratory procedure is taught by EPA in the Quality Assurance for Source Emissions Workshop at Research Triangle Park and is approved by EPA.

## **VII. CALCULATIONS**

(16)

Dry Gas Volume :

$$V_{m(\text{std})} = V_m \left[ \frac{T_{(\text{std})}}{T_m} \right] \left[ \frac{P_{\text{bar}} + \Delta H}{13.6} \right] = 17.64 \frac{^{\circ}\text{R}}{\text{in. Hg.}} Y V_m \left[ \frac{P_{\text{bar}} + \Delta H}{13.6} \right] \frac{T_m}{T_m}$$

Where:

$V_{m(\text{std})}$  = Dry Gas Volume through meter at standard conditions, cu.ft.  
 $V_m$  = Dry Gas Volume measured by meter, cu.ft.  
 $P_{\text{bar}}$  = Barometric pressure at orifice meter, in. Hg.  
 $P_{\text{std}}$  = Standard absolute pressure, (29.92 in. Hg.)  
 $T_m$  = Absolute temperature at meter  $^{\circ}\text{R}$   
 $T_{\text{std}}$  = Standard absolute temperature ( 528  $^{\circ}\text{R}$ )  
 $\Delta H$  = Average pressure drop across orifice meter, in.  $\text{H}_2\text{O}$   
 $Y$  = Dry gas meter calibration factor  
13.6 = Inches water per inches Hg.

$$\text{Run # 1 } V_{m(\text{std})} = 17.64 (1.02)(53.16) \left[ \frac{(30.08) + \frac{1.19}{13.6}}{567} \right] = 50.82 \text{ dsc}$$

$$\text{Run # 2 } V_{m(\text{std})} = 17.64 (1.02)(57.91) \left[ \frac{(30.08) + \frac{1.35}{13.6}}{570} \right] = 55.09 \text{ dsc}$$

$$\text{Run # 3 } V_{m(\text{std})} = 17.64 (1.02)(56.35) \left[ \frac{(30.08) + \frac{1.29}{13.6}}{566} \right] = 53.98 \text{ dsc}$$

Dry molecular weight:

$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N_2).$$

Where:

- $M_d$  = Dry molecular weight, lb./lb.-mole.
- $\%CO_2$  = Percent carbon dioxide by volume (dry basis).
- $\%O_2$  = Percent oxygen by volume (dry basis).
- $\%N_2$  = Percent nitrogen by volume (dry basis).
- $\%CO$  = Percent carbon monoxide by volume (dry basis).
- 0.264 = Ratio of  $O_2$  to  $N_2$  in air, v/v.
- 0.28 = Molecular weight of  $N_2$  or CO, divided by 100.
- 0.32 = Molecular weight of  $O_2$  divided by 100.
- 0.44 = Molecular weight of  $CO_2$  divided by 100.

Run # 1:  $M_d = 0.44(4.0\%) + 0.32(13.3\%) + 0.28(1.0\% + 82.7\%) = 29.2$   
 (lb./lb.-mole)

Run # 2:  $M_d = 0.44(4.0\%) + 0.32(12.0\%) + 0.28(1.0\% + 84.0\%) = 29.1$   
 (lb./lb.-mole)

Run # 3:  $M_d = 0.44(4.5\%) + 0.32(12.5\%) + 0.28(1.0\% + 83.0\%) = 29.2$   
 (lb./lb.-mole)

(20)

$$\text{Moisture content of stack gases: } B_{ws} = \frac{V_{wc\_std} + V_{wsq\_std}}{V_{wc\_std} + V_{wsq\_std} + V_m \text{ std}} \times 100$$

Where:

$B_{ws}$  = Proportion of water vapor, by volume, in the gas stream.

$V_m$  = Dry gas volume measured by dry gas meter, (dcf).

$V_{wc\_std}$  = Volume of water vapor condensed corrected to standard conditions (scf).

$V_{wsq\_std}$  = Volume of water vapor collected in silica gel corrected to standard conditions (scf).

$$\text{Run # 1: } B_{ws} = \frac{16.9 + .7}{16.9 + .7 + 50.82} \times 100 = 25.7 \%$$

$$\text{Run # 2: } B_{ws} = \frac{17.7 + .8}{17.7 + .8 + 55.09} \times 100 = 25.1 \%$$

$$\text{Run # 3: } B_{ws} = \frac{17.9 + .7}{17.9 + .7 + 53.98} \times 100 = 25.6 \%$$

---


$$\text{Molecular weight of stack gases: } M_s = M_d (1 - B_{ws}) + 18 (B_{ws})$$

Where:

$M_s$  = Molecular weight of stack gas, wet basis, (lb./lb.-mole).

$M_d$  = Molecular weight of stack gas, dry basis, (lb./lb.-mole).

$$\text{Run # 1: } M_s = 29.2 (1 - .257) + 18 (.257) = 26.3 \text{ (lb./lb.-mole).}$$

$$\text{Run # 2: } M_s = 29.1 (1 - .251) + 18 (.251) = 26.3 \text{ (lb./lb.-mole).}$$

$$\text{Run # 3: } M_s = 29.2 (1 - .256) + 18 (.256) = 26.3 \text{ (lb./lb.-mole).}$$

(22)

Stack gas flow rate:

$$Q_{sd} = 3600 \left| \frac{1 - R_{wc}}{A} \right| V_s \frac{A}{T_{std}} \left| \frac{T_{std}}{T_{stk}} \right| \left| \frac{P_s}{P_{std}} \right|$$

Where:

- $Q_{sd}$  = Dry volumetric stack gas flow rate corrected to standard conditions, (dscf/hr),  
A = Cross sectional area of stack (ft.<sup>2</sup>),  
3600 = Conversion factor, sec./hr.,  
 $t_s$  = Stack temperature (°f),  
 $T_s$  = Absolute stack temperature, (°R),  
 $T_{std}$  = Standard absolute temperature, (528°R),  
 $P_{bar}$  = Barometric pressure at measurement site, (in.Hg.),  
 $P_g$  = Stack static pressure, (in.Hg.); =  $P_{bar} + P_g$ ,  
 $P_s$  = Absolute stack gas pressure, (in.Hg.); =  $P_{bar} + P_g$ ,  
 $P_{std}$  = Standard absolute pressure, (29.92 in.Hg.)

Run # 1:

$$Q_{sd} = 3600 (1 - .251) (76.06) (7.7) \left| \frac{528}{735} \right| \left| \frac{30.08}{29.92} \right| = 1055054 \text{ dscf/}$$

Run # 2:

$$Q_{sd} = 3600 (1 - .256) (73.87) (7.7) \left| \frac{528}{746} \right| \left| \frac{30.08}{29.92} \right| = 1089885 \text{ dscf/}$$

Run # 3:

(24)

Isokinetic variation :  $I = 100 T_s$ 

$$\frac{0.002669 V_{ic} + (V_m/T_m)(P_{bar} + \Delta H/13.6)}{60 \quad 0 \quad V_s \quad P_s \quad A_n}$$

Where:

$I$  = Percent isokinetic sampling.  
 100 = Conversion to percent.  
 $T_s$  = Absolute average stack gas temperature, °R.  
 0.002669 = Conversion factor, Hg - ft<sup>3</sup>/ml - °R.  
 $V_{ic}$  = Total volume of liquid collected in impingers and silica gel.  
 $T_m$  = Absolute average dry gas meter temperature, °R.  
 $P_{bar}$  = Barometric pressure at sampling site, (in.Hg).  
 $\Delta H$  = Average pressure differential across the orifice meter, (in.H<sub>2</sub>O).  
 13.6 = Specific gravity of mercury.  
 60 = Conversion seconds to minutes  
 0 = Total sampling time, minutes.  
 $V_s$  = Stack gas velocity, ft./sec.  
 $P_s$  = Absolute stack gas pressure, in.Hg.  
 $A_n$  = Cross sectional area of nozzle, ft<sup>2</sup>.

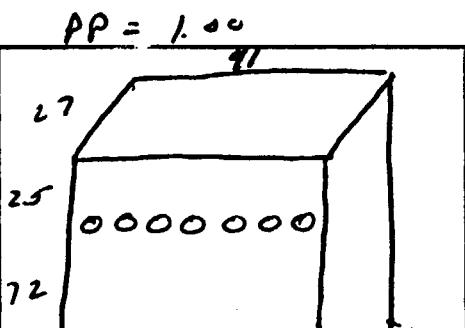
Run # 1:

$$I = 100 \times \frac{53.2}{\frac{(0.002669)(374.0) + 567}{60 (84) (70.93) (30.08) (.000264)}} = 99 \%$$

Run # 2:

$$I = 100 \times \frac{57.9}{\frac{(0.002669)(394.0) + 570}{60 (84) (76.06) (30.08) (.000264)}} = 101 \%$$

Run # 3:


$$I = 100 \times \frac{56.3}{\frac{(0.002669)(395.0) + 566}{60 (84) (73.87) (30.08) (.000264)}} = 102 \%$$

## RAMCON ENVIRONMENTAL CORPORATION

pg 1 of 3

Plant APAC

Location Virginia Beach Va.  
 Operator R. Allender  
 Date 4-30-87  
 Run No. 1  
 Sample Box No. 1  
 Meter Box No. 646882  
 Meter H  $\theta$  1.69  
 Factor 1.0486  
 Pitot Tube Coefficient Cp .79



Ambient Temperature 75  
 Barometric Pressure 30.02 mmHg 560 315  
 Assumed Moisture, % 2.5 mmHg 200 301  
 Probe Length, m(ft) 3 mmHg 360 14  
 Nozzle Identification No. 0002240  
 Avg. Calibrated Nozzle Dia., (in.) .120 .20  
 Probe Heater Setting 4.5  
 Leak Rate, m<sup>3</sup>/min. (cfm) 4.00  
 Probe Liner Material 3/16" stainless  
 Static Pressure, mm Hg (in. Hg) .01  
 Filter No. SG-1937

Schematic of Stack Cross Section

| TRAV. PT NO. | SAMPLING TIME (θ) min. | VACUUM in. Hg | STACK TEMP (Ts) °F | VELOCITY HEAD (Ps) in H <sub>2</sub> O | PRESSURE DIFF. ORF. MTR in H <sub>2</sub> O | GAS SAMPLE VOLUME ft <sup>3</sup> | GAS SAMPLE TEMP. AT DRY GAS METER °F |        | FILTER HOLDER TEMP °F | GAS TEMP LVG CONDENSER OR LAST IMPINGER °F |
|--------------|------------------------|---------------|--------------------|----------------------------------------|---------------------------------------------|-----------------------------------|--------------------------------------|--------|-----------------------|--------------------------------------------|
|              |                        |               |                    |                                        |                                             |                                   | Inlet                                | Outlet |                       |                                            |
| 1            | 10:07:40<br>10:09      | 2             | 260                | 1.6                                    | 1.6                                         | 216.079<br>217.44                 | 90                                   | 85     | 240                   | 50                                         |
| 2            | 10:11                  | 2             | 260                | 1.6                                    | 1.6                                         | 218.85                            | 95                                   | 85     | 245                   | 50                                         |
| 3            | 10:13                  | 3             | 270                | 1.6                                    | 1.6                                         | 220.13                            | 100                                  | 85     | 250                   | 45                                         |
| 4            | 10:15                  | 3             | 270                | 1.6                                    | 1.6                                         | 221.55                            | 105                                  | 85     | 250                   | 45                                         |
| 5            | 10:17                  | 3             | 270                | 1.5                                    | 1.5                                         | 222.95                            | 105                                  | 85     | 250                   | 45                                         |
| 6            | 10:19:40               | 3             | 270                | 1.5                                    | 1.5                                         | 224.377                           | 110                                  | 85     | 255                   | 40                                         |
| 9) 1         | 10:20<br>10:22         | 3             | 270                | 1.3                                    | 1.3                                         | 225.72                            | 110                                  | 85     | 255                   | 40                                         |
| 2            | 10:24                  | 2             | 265                | 1.1                                    | 1.1                                         | 226.95                            | 110                                  | 85     | 255                   | 40                                         |
| 3            | 10:26                  | 2             | 270                | 1.3                                    | 1.3                                         | 228.27                            | 110                                  | 85     | 250                   | 40                                         |
| 4            | 10:28                  | 2             | 280                | 1.3                                    | 1.3                                         | 229.60                            | 115                                  | 90     | 250                   | 40                                         |
| 5            | 10:30                  | 2             | 280                | 1.4                                    | 1.4                                         | 230.98                            | 115                                  | 90     | 250                   | 40                                         |
| 6            | 10:32                  | 2             | 275                | 1.4                                    | 1.4                                         | 232.31                            | 120                                  | 90     | 240                   | 40                                         |
| c) 1.        | 10:32:20<br>10:34      | 2             | 270                | 1.3                                    | 1.3                                         | 233.65                            | 120                                  | 90     | 240                   | 40                                         |

CO<sub>2</sub> : 4.0 4.0

**RAMCON** emissions test log sheet, cont. DATE 5-1-87 LOCATION 19919 B. TEST NO. 1

RAMCON emissions test log sheet, cont. DATE 5-1-87 LOCATION <sup>APAC</sup> Va. Beach, VA TEST NO. 2

| TRAVERSE POINT | SAMPLING TIME<br>o (min) | VACUUM<br>in. Hg<br>(in. Hg) | STACK TEMP<br>T <sub>s</sub> ('F) | VELOCITY<br>HEAD<br>ΔP <sub>s</sub> (in. H <sub>2</sub> O) | ORIFICE DIFF.<br>PRESSURE<br>ΔH (in. H <sub>2</sub> O) | GAS VOLUME<br>V <sub>m</sub> (ft. <sup>3</sup> ) | GAS SAMPLE TEMP. ('F) |     | SAMPLE BOX TEMP.<br>(°F) | IMPIINGER TEMP<br>(°F) |
|----------------|--------------------------|------------------------------|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------|-----|--------------------------|------------------------|
|                |                          |                              |                                   |                                                            |                                                        |                                                  | in                    | out |                          |                        |
| 2              | 12:26                    | 9                            | 290                               | 1.4                                                        | 1.4                                                    | 289.99                                           | 122                   | 96  | 260                      | 90                     |
| 3              | 12:28                    | 9                            | 290                               | 1.4                                                        | 1.1                                                    | 291.37                                           | 129                   | 96  | 260                      | 90                     |
| 4              | 12:30                    | 9                            | 290                               | 1.3                                                        | 1.3                                                    | 292.73                                           | 126                   | 96  | 260                      | 90                     |
| 5              | 12:32                    | 9                            | 290                               | 1.3                                                        | 1.3                                                    | 299.06                                           | 126                   | 96  | 250                      | 90                     |
| 6              | 12:34                    | 9                            | 290                               | 1.2                                                        | 1.2                                                    | 295.357                                          | 126                   | 96  | 250                      | 90                     |
| D) 1           | 12:35                    | 9                            | 285                               | 1.1                                                        | 1.1                                                    | 296.63                                           | 120                   | 96  | 255                      | 95                     |
| 2              | 12:37                    | 9                            | 285                               | 1.2                                                        | 1.2                                                    | 297.93                                           | 122                   | 96  | 255                      | 95                     |
| 3              | 12:38                    | 9                            | 285                               | 1.2                                                        | 1.2                                                    | 299.21                                           | 124                   | 96  | 255                      | 45                     |
| 4              | 12:40                    | 9                            | 290                               | 1.4                                                        | 1.4                                                    | 300.59                                           | 126                   | 96  | 260                      | 45                     |
| 5              | 12:42                    | 9                            | 290                               | 1.4                                                        | 1.4                                                    | 301.97                                           | 126                   | 96  | 260                      | 45                     |
| 6              | 12:44                    | 9                            | 290                               | 1.3                                                        | 1.3                                                    | 303.315                                          | 126                   | 96  | 260                      | 45                     |
| E) 1           | 12:52                    | 9                            | 290                               | 1.2                                                        | 1.2                                                    | 304.62                                           | 122                   | 96  | 250                      | 45                     |
| 2              | 12:54                    | 9                            | 285                               | 1.3                                                        | 1.3                                                    | 305.95                                           | 124                   | 96  | 250                      | 45                     |
| 3              | 12:56                    | 9                            | 285                               | 1.4                                                        | 1.4                                                    | 307.34                                           | 126                   | 96  | 250                      | 45                     |
| 4              | 12:58                    | 9                            | 285                               | 1.4                                                        | 1.4                                                    | 308.73                                           | 126                   | 96  | 255                      | 45                     |
| 5              | 1:00                     | 9                            | 285                               | 1.5                                                        | 1.5                                                    | 310.15                                           | 126                   | 96  | 253                      | 45                     |
| 6              | 1:02                     | 9                            | 285                               | 1.3                                                        | 1.3                                                    | 311.52                                           | 126                   | 96  | 255                      | 50                     |
| F) 1           | 1:03:05                  | 9                            | 280                               | 1.1                                                        | 1.1                                                    | 312.79                                           | 122                   | 96  | 245                      | 50                     |
| 2              | 1:07                     | 9                            | 280                               | 1.3                                                        | 1.3                                                    | 314.01                                           | 124                   | 96  | 245                      | 50                     |
| 3              | 1:09                     | 4                            | 280                               | 1.3                                                        | 1.3                                                    | 315.17                                           | 121                   | 71  | 245                      | -                      |

## RAMCON ENVIRONMENTAL CORPORATION

Plant AQSCLocation VA Beach, VA.Operator Bill TuckerDate 4-20-87Run No. 3Sample Box No. 3Meter Box No. 6-916-8222Meter H @ 1.69Factor 1.0186Total Tube Coefficient Cp .79

|                                       |                     |             |         |
|---------------------------------------|---------------------|-------------|---------|
| Ambient Temperature                   | 80                  | WATER TEMP. | 80      |
| Barometric Pressure                   | 30.08 mm            | 370         | 31.4    |
| Assumed Moisture, %                   | 25                  | 800         | 274     |
| Probe Length, in (ft)                 | 3                   | 370         | 1.5     |
| Nozzle Identification No.             | 00002620            | (In.)       | 229/228 |
| Avg. Calibrated Nozzle Dia.,          | 4.5                 |             |         |
| Probe Heater Setting                  |                     |             |         |
| Leak Rate, m <sup>3</sup> /min. (cfm) |                     |             |         |
| Probe Liner Material                  | 316 Stainless Steel |             |         |
| Static Pressure, mm Hg (in. Hg)       | 0                   |             |         |
| Filter No.                            | SG-1951             |             |         |

## Schematic of Stack Cross Section

| TRAV. PT NO. | SAMPLING TIME (θ) min. | STACK TEMP (T <sub>s</sub> ) °F | VACUUM in Hg | VELOCITY HEAD (P <sub>s</sub> ) in H <sub>2</sub> O | PRESSURE DIFF. ORF. MTR in H <sub>2</sub> O | GAS SAMPLE VOLUME ft <sup>3</sup> | GAS SAMPLE TEMP. AT DRY GAS METER °F |        | GAS TEMP LVS CONDENSER OR LAST DRYNGR °F | GAS TEMP FILTER HOLDER °F |
|--------------|------------------------|---------------------------------|--------------|-----------------------------------------------------|---------------------------------------------|-----------------------------------|--------------------------------------|--------|------------------------------------------|---------------------------|
|              |                        |                                 |              |                                                     |                                             |                                   | Inlet                                | Outlet |                                          |                           |
| 1            | 47.49                  | 4                               | 290          | 1.5                                                 | 1.5                                         | 321.216                           | 98                                   | 98     | 290                                      | 40                        |
| 2            | 1.51                   | 4                               | 290          | 1.5                                                 | 1.5                                         | 330.38                            | 110                                  | 98     | 240                                      | 45                        |
| 3            | 1.53                   | 4                               | 290          | 1.4                                                 | 1.4                                         | 331.73                            | 116                                  | 96     | 245                                      | 45                        |
| 4            | 1.55                   | 3                               | 290          | 1.3                                                 | 1.3                                         | 333.14                            | 118                                  | 96     | 245                                      | 95                        |
| 5            | 1.57                   | 3                               | 290          | 1.3                                                 | 1.3                                         | 334.56                            | 120                                  | 97     | 250                                      | 45                        |
| 6            | 1.59                   | 3                               | 290          | 1.2                                                 | 1.2                                         | 335.99                            | 120                                  | 94     | 255                                      | 45                        |
| 7)           | 2.00                   | 3                               | 290          | 1.2                                                 | 1.2                                         | 337.35                            | 116                                  | 94     | 255                                      | 45                        |
| 2            | 2.09                   | 3                               | 280          | 1.4                                                 | 1.4                                         | 339.69                            | 120                                  | 97     | 255                                      | 75                        |
| 3            | 2.06                   | 3                               | 285          | 1.5                                                 | 1.5                                         | 340.81                            | 122                                  | 99     | 255                                      | 95                        |
| 4            | 2.08                   | 3                               | 285          | 1.5                                                 | 1.5                                         | 341.91                            | 122                                  | 99     | 255                                      | 95                        |
| 5            | 2.16                   | 3                               | 285          | 1.3                                                 | 1.3                                         | 342.83                            | 122                                  | 99     | 260                                      | 45                        |
| 6            | 2.12                   | 4                               | 285          | 1.3                                                 | 1.3                                         | 344.15                            | 122                                  | 99     | 260                                      | 95                        |
| c)           | 2.19                   | 4                               | 285          | 1.1                                                 | 1.1                                         | 345.47                            | 118                                  | 99     | 265                                      | 95                        |

CO<sub>2</sub> - 9.5%

| POINT | SAMPLE | SAMPLING TIME (min) | VACUUM (in. Hg) | STACK TEMP (°F) | GAS SAMPLE TEMP. (°F) | SAMPLE IMPINGEMENT | IMPINGEMENT            |                       | BOX TEMP. (°F) | VOLUME (in.³) | APs (in. Hg) | HEAD PRESSURE (in. Hg) | ORIFICE DISS. | GAS VELOCITy | HEAD TEMP (in. Hg) |
|-------|--------|---------------------|-----------------|-----------------|-----------------------|--------------------|------------------------|-----------------------|----------------|---------------|--------------|------------------------|---------------|--------------|--------------------|
|       |        |                     |                 |                 |                       |                    | IMPINGEMENT TIME (min) | IMPINGEMENT TEMP (°F) |                |               |              |                        |               |              |                    |
| 4     | 3.59   | 4                   | 385             | 1.4             | 373:96                | 130                | 92                     | 350                   | 45             | 130           | 380          | 1.4                    | 373:96        | 1.4          | 385                |
| 5     | 3.01   | 4                   | 380             | 1.3             | 379:79                | 120                | 92                     | 350                   | 45             | 130           | 380          | 1.3                    | 379:79        | 1.3          | 380                |
| 6     | 3.03   | 4                   | 380             | 1.3             | 376:12                | 120                | 92                     | 355                   | 45             | 130           | 380          | 1.3                    | 376:12        | 1.3          | 380                |
| 1     | 3.03   | 4                   | 385             | 1.2             | 377:92                | 118                | 92                     | 355                   | 45             | 130           | 385          | 1.2                    | 377:92        | 1.2          | 385                |
| 2     | 3.08   | 4                   | 390             | 1.2             | 378:74                | 118                | 92                     | 355                   | 45             | 130           | 390          | 1.2                    | 378:74        | 1.2          | 390                |
| 3     | 3.10   | 4                   | 390             | 1.3             | 386:08                | 120                | 92                     | 355                   | 45             | 130           | 390          | 1.3                    | 386:08        | 1.3          | 390                |
| 4     | 335    | 4                   | 390             | 1.3             | 381:96                | 98                 | 98                     | 255                   | 45             | 130           | 390          | 1.3                    | 381:96        | 1.3          | 390                |
| 5     | 337    | 4                   | 390             | 1.3             | 382:82                | 128                | 98                     | 255                   | 45             | 130           | 390          | 1.3                    | 382:82        | 1.3          | 390                |
| 6     | 338    | 4                   | 390             | 1.1             | 384:163               | 112                | 96                     | 260                   | 45             | 130           | 390          | 1.1                    | 384:163       | 1.1          | 390                |

RAMCON emissions test log sheet, cont. DATE 5-1-87 LOCATION 1A TEST NO. 3

## METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Date 5-4-87Meter box number 646882Barometric pressure,  $P_b$  = 30.07 in. Hg Calibrated by J. M. S.

| Orifice manometer setting ( $\Delta H$ ), in. $H_2O$ | Gas volume                       |                                 | Temperature                  |                                       |                          | Time ( $\theta$ ), min | $Y_i$         | $\Delta H@_i$ in. $H_2O$ |
|------------------------------------------------------|----------------------------------|---------------------------------|------------------------------|---------------------------------------|--------------------------|------------------------|---------------|--------------------------|
|                                                      | Wet test meter ( $V_w$ ), $ft^3$ | Dry gas meter ( $V_d$ ), $ft^3$ | Wet test meter ( $t_w$ ), °F | Dry gas meter Inlet ( $t_{d_i}$ ), °F | Outlet ( $t_{d_o}$ ), °F |                        |               |                          |
| 0.5                                                  | 5                                | <del>415.31</del><br>420.43     | 73                           | 101<br>110                            | 84<br>85                 | 96.5<br>97.75          | 12:21<br>8:49 | 1.0202<br>1.0155         |
| 1.0                                                  | 5                                | <del>421.84</del><br>426.98     | 73                           | 110<br>110                            | 85<br>86                 | 97.75<br>100           | 14:24         | 1.0168                   |
| 1.5                                                  | 10                               | <del>425.39</del><br>438.68     | 73                           | 114<br>119                            | 86<br>96                 | 100                    |               |                          |
| 2.0                                                  | 10                               |                                 |                              |                                       |                          |                        |               |                          |
| 3.0                                                  | 10                               |                                 |                              |                                       |                          |                        |               |                          |
| 4.0                                                  | 10                               |                                 |                              |                                       |                          |                        |               |                          |
|                                                      |                                  |                                 |                              |                                       | Avg                      | 1.0175                 | 1.66          |                          |

| $\Delta H$ , in. $H_2O$ | $\frac{\Delta H}{13.6}$ | $Y_i = \frac{V_w P_b (t_d + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t + 460)}$ | $\Delta H@_i = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[ \frac{(t_w + 460) \theta}{V_w} \right]^2$ |
|-------------------------|-------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0.5                     | 0.0368                  | .                                                                               |                                                                                                         |
| 1.0                     | 0.0737                  |                                                                                 |                                                                                                         |
| 1.5                     | 0.110                   |                                                                                 |                                                                                                         |
| 2.0                     | 0.147                   |                                                                                 |                                                                                                         |
| 3.0                     | 0.221                   |                                                                                 |                                                                                                         |
| 4.0                     | 0.294                   |                                                                                 |                                                                                                         |

<sup>a</sup> If there is only one thermometer on the dry gas meter, record the temperature under  $t_d$ .

(36)

KEN

## PITOT TUBE CALIBRATION DATA

Calibration pitot tube: type S size (OD) 3/8 ID number 43  
Type S pitot tube ID number 43  $C_p(\text{std})$  = 1  
Calibration: date 1-8-87 performed by JB Allen 25

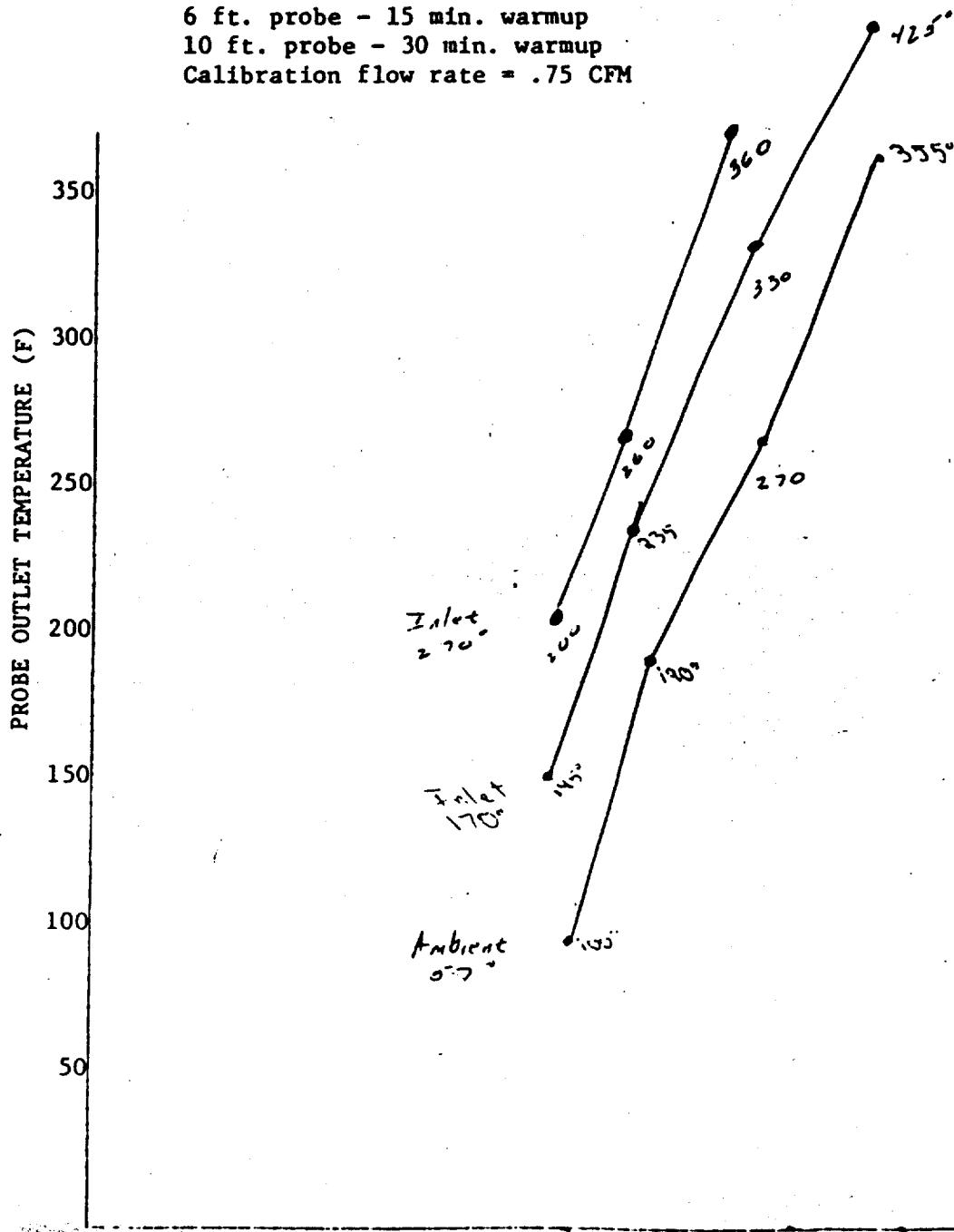
### A-Side Calibration

## B-Side Calibration

$$a_{C_p(S)} = C_{p(\text{std})} \sqrt{\frac{\Delta p_{\text{std}}}{\Delta p_S}} = \underline{\hspace{2cm}}$$

$$b_{DEV} = c_{p(S)} - \bar{c}_p, \text{ (must be } \leq 0.01)$$

$$\bar{C}_p(A) - \bar{C}_p(B) = \text{_____} \text{ (must be } \leq 0.01\text{)}.$$


RAMCON

## Lear Siegler Stack Sampler

Heating Probe CalibrationProbe No. 43 Probe Length 3'Date of Calibration 12-18-86 Signature J. R. Allen Jr.

Name of Company to be tested \_\_\_\_\_

Note: 3 ft. probe - 5 min. warmup  
 6 ft. probe - 15 min. warmup  
 10 ft. probe - 30 min. warmup  
 Calibration flow rate = .75 CFM



## STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 5-19-86 Thermocouple number Hot box  
 Ambient temperature 23 °C Barometric pressure 30.12 in. Hg  
 Calibrator 1/4A Reference: mercury-in-glass ✓  
 other \_\_\_\_\_

| Reference point number | Source <sup>a</sup> (specify) | Reference thermometer temperature, °C | Thermocouple potentiometer temperature, °C | Temperature difference, % |
|------------------------|-------------------------------|---------------------------------------|--------------------------------------------|---------------------------|
| A                      | Boiling water                 | 100 °C                                | 100 °C                                     | 0%                        |
| B                      | Ambient                       | 23 °C                                 | 22.8 °C                                    | < 1%                      |
|                        | 4-30-46                       | 75°F                                  | 75°F                                       | 0%                        |

<sup>a</sup>Type of calibration system used.

<sup>b</sup>
$$\left[ \frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%.$$

RAMCON Environmental Stack Test Team**Sumner Buck - President**

Sumner Buck is the President of RAMCON Environmental. He is a graduate of the EPA 450 "Source Sampling for Particulate Pollutants" course and the 474 "Continuous Emissions Monitoring" course all given at RTP. Mr. Buck is a qualified V.E. reader with current certification. Mr. Buck has personally sampled over 300 stacks including over 200 asphalt plants. He is 43 years old and a graduate of the University of Mississippi with graduate studies at Memphis State University and State Technical Institute of Memphis.

**Ken Allmendinger - Team Leader**

Ken Allmendinger has been employed with RAMCON for three years. He has sampled over 100 asphalt plants with extensive training in Methods 1 through 5. He is qualified as a team leader and has current certification as a V.E. reader.

## STACK TEST MONITORING

SOURCE NAME: APAC Virginia  
 LOCATION: 130x 309, Richmond, VA 23235  
 DATE: 4-30-87

(42)

OBSERVER'S NAME: John E. SteckhertPURPOSE OF TEST: NSPS ParticulateTESTING DONE BY: Ramcon EnvironmentalLAB ANALYSIS DONE BY: " "COMPANY CONTACT: Bob LambethCONTROL EQUIPMENT OPERATING: fabric filter (bag house)OPACITY READING MADE: YES  NO TELEPHONE: 804-774-1113UNIT/PROCESS NAME: hot mix asphalt facilityRATED CAPACITY: 200 tphTYPE FUEL USED: #2 oilAPPROX. PROCESS RATE: 200 tphMETHOD OF DETERMINING PROCESS RATE: computerSTACK HEIGHT: 97INDIVIDUAL STACK  COMMON STACK DIAMETER: (IF ROUND)  (IF RECTANGULAR) WIDTH 27 LENGTH 41

## I. SAMPLING POINT LOCATION

A. DISTANCE DOWNSTREAM FROM ANY FLOW DISTURBANCE:

NATURE OF DISTURBANCE 2. 2 (BEND, CONTRACTION, EXPANSION, FAN, BAFFLES, ETC.)

B. DISTANCE UPSTREAM FRON ANY FLOW DISTURBANCE:

NATURE OF DISTURBANCE 89 (BEND, STACK EXIT CONTRACTION, FAN, BAFFLES, EXPANSION, ETC.)C. NUMBER OF PORTS IN STACK: 7D. NUMBER OF POINTS SAMPLES PER PORT: 6

## II. STACK GAS

A. STACK TEMPERATURE: 275°F

B. ORSAT ANALYSIS:

GRAB  CONTINUOUS

NUMBER OF INTEGRATED SAMPLES

C. PRELIMINARY  $\Delta P$ : MIN. .97 MAX. 1.3

## III. PARTICULATE TEST

A. SAMPLING TRAIN:

1. MANUFACTURER Ramcon Environmental MODEL 12. TEST METHOD: EPA METHOD 5  ASME PTC 21/27 OTHER (DESCRIBE)3. TYPE FILTERS 585 TYPE 3C4. PROBE: LENGTH 3' MATERIAL 316 SS5. PROBE HEATER SETTING 4.56. HEATER BOX SETTING 250°F7. METER CALIBRATION FACTOR 1.018. METER  $\Delta H @$  FACTOR 1.699. DATE OF LAST CALIBRATION CHECK 4-26-87a. ORIFICE METER  b. DRY GAS METER c. TEMPERATURE  d. PITOT TUBE e. NOZZLE DIAMETER  f. OTHER

