

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

Commonwealth of Pennsylvania
Environmental Resources
October 17, 1990

Subject: Source Test Review

To: Data File
Commercial Stone Company, Inc.
Asphaltic Concrete Plant - Springfield Pike
Connellsville Township, Fayette County

From: John S. Pitulski *JSP*
Air Quality Program Specialist
Division of Technical Services and Monitoring
Bureau of Air Quality Control

Through: Chief, Source Testing and Monitoring Section *LBD*

The asphaltic concrete plant at Commercial Stone Company's Springfield Pike facility is a batch-mix design with a rated capacity of 300 tons per hour. The burners servicing the unit are fired by No. 2 fuel oil. Effluent gases from the plant are controlled by a knock-out box and fabric filter collector both manufactured by McCarter Corporation.

Particulate emission testing was conducted at the source on August 24, 1990 by Comprehensive Safety Compliance, Inc. The three tests appear to have been conducted in accordance with all applicable test methods and are acceptable to the Department.

The following data was extracted from the test report:

Test Run Number	1	2	3
Asphalt Production Rate (tons/hour)	287.9	297.2	241.0
Volumetric Flowrate (dscfm)	24,500	25,300	26,000
Particulate Concentration (gr/dscf)	0.010	0.011	0.012
Particulate Emission Rate (lb/hr)	2.1	2.3	2.7
Allowable Emission Rate (lb/hr)	17.4	17.6	16.1

cc: Mr. Richard L. Murray - Greensburg District Office
Mr. Joseph Pezzie - Pittsburgh Regional Office
Permit File No. 26-303-006
EPA/RSL
Reading Pile-Stack Test
Douglas Lesher

JSP:bad

PARTICULATE EMISSION TESTING
ASPHALT PLANT BAGHOUSE
SPRINGFIELD PIKE QUARRY
COMMERCIAL STONE
CONNELLSVILLE, PA

Report to:

Mr. Ted Dinardo
Commercial Stone Inc.
2200 Springfield Pike
Connellsville, PA 15425

Report by:

Mr. Richard L. Campbell
Division Manager

Comprehensive Safety Compliance, Inc.
295 William Pitt Way
Pittsburgh, PA 15238

Report Disclaimer

"This report (Particulate Emission Testing) and the associated attachments and appendices has been produced and developed for and at the request of Commercial Stone Company. It conveys the findings of CSC as of the date noted herein. This report (etc.) is intended for the exclusive use of the Commercial Stone Company (including its employees, officers, and Board of Directors) and may not be used, referenced, or cited for any reason whatsoever by any other individual, company, or party whether or not related to or associated with the Commercial Stone Company now or at any time in the future. Any such reliance, use, reference, or citation without the expressed authorization of CSC is expressly prohibited. Any other company, individual, or party relying upon, using, referencing, or citing this report does so at their own risk and detriment. No guarantee or warranty of whatever nature, whether expressed or implied by or in this report (etc.) which may flow to the Commercial Stone Company is granted or conveyed to, or may be assumed to have been granted to or conveyed to anyone else."

TABLE OF CONTENTS

- 1.0 Introduction
- 2.0 Summary of Results
- 3.0 Process and Test Program Description

APPENDIX

- A. Formulas and Calculations
- B. Sampling Methodology & Equipment Calibration
- C. Field Data Sheets
- D. Process Data
- E. Laboratory Data
- F. V. E. Certification

1.0 INTRODUCTION

On August 24, 1990, particulate emission testing and opacity observations were performed on the Asphalt Plant Baghouse at Commercial Stone Company's Springfield Pike plant in Connellsville, PA.

The test program was authorized by Ms. Leah Trielle of Commercial Stone Company. Testing was performed by Mr. Richard Campbell, Mr. Darren Midberry and visible emission readings by Mr. Kevin Kennedy of Comprehensive Safety Compliance, Inc. (CSC). Testing was observed by Mr. Tim Kunz and Mr. Dick Murray of the Pennsylvania Department of Environmental Resources Air Pollution Control Bureau.

2.0 SUMMARY OF RESULTS

Table No. 1 below is a summary of Particulate Emission Data and Opacity Data from tests on the Sand Plant Baghouse.

Table No. 2 is a summary of flue gas parameters.

TABLE NO. 1
Particulate Emissions and Opacity Data

Test Data 1990	Test No.	Test Location	Particulate Emission Data			Opacity Data ^c		
			Conc. ^a Gr/dscf	Emission Rate ^b lb/hr.	Allowable lb/hr.	Min. %	Max. %	Highest 6 min Avg. %
8/24	SA-1	Baghouse Outlet	0.010	2.1	17.4	0	0	0
8/24	SA-2	Baghouse Outlet	0.011	2.3	17.6	0	0	0
8/24	SA-3	Baghouse Outlet	0.012	2.7	16.1	0	0	0

(a) Grains per dry standard cubic foot

(b) Pounds per hour

(c) Opacity data from EPA Method 9 observations

TABLE NO. 2
Summary of Flue Gas Parameters

Test Date 1990	Test No.	Test Location	Percent Moisture	Stack Temp. °F	Percent		Flow Rates	
					CO ₂ ^a	O ₂ ^b	ACFM ^c	DSCFM ^d
8/24	SA-1	Baghouse Outlet	15.0	274	5.9	13.1	41,500	24,500
8/24	SA-2	Baghouse Outlet	16.5	276	5.4	14.0	43,600	25,300
8/24	SA-3	Baghouse Outlet	16.9	252	5.0	14.2	43,500	26,000

a percent carbon dioxide by volume

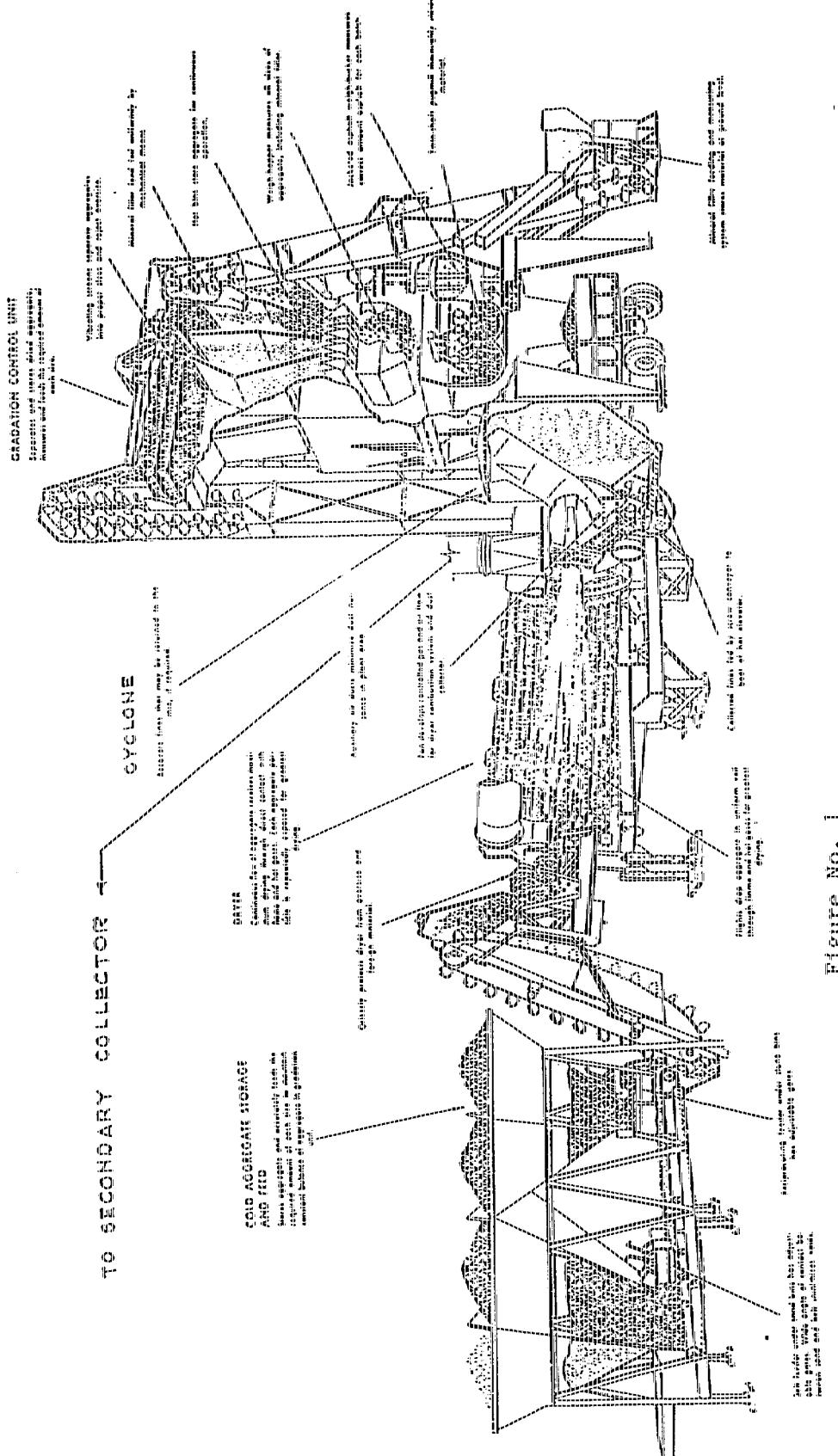
b percent oxygen by volume

c actual cubic feet per minute

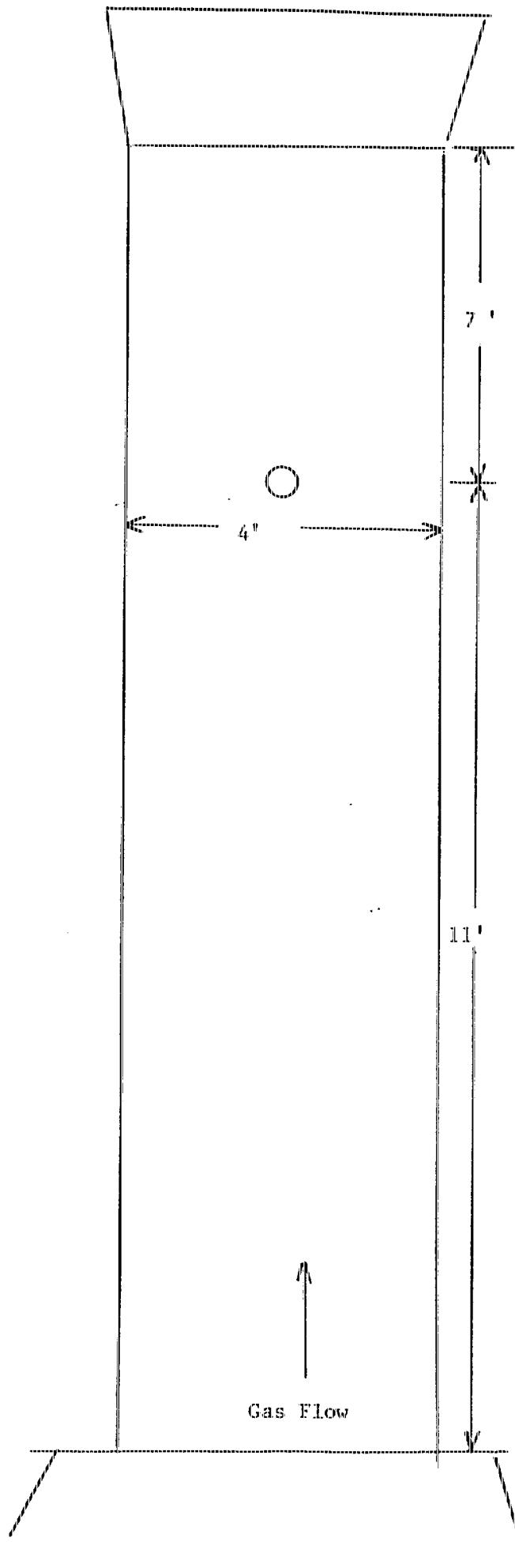
d dry standard cubic feet per minute

3.0 PROCESS AND TEST PROGRAM DESCRIPTION

Process Description


The Commercial Stone plant at Springfield Pike has an Asphalt plant manufactured by the McCarter Corporation. The process begins with the loading of different sized aggregate from stockpiles, usually into four "cold" bins. From these cold bins calibrated vibratory feeders control the amounts of each aggregate falling onto a conveyor that leads to the inlet of the dryer. The function of the dryer is to remove surface moisture and heat the aggregate in order to be coated with asphalt cement in the pugmill. The dryer is an inclined rotary drum, 108 inches in diameter and 34 feet long, in which the aggregate is dried and heated by a natural gas burner. The dryer is designed with "flights" on the inside that tumble the aggregate and increase exposure to the hot gases. The burner is located at the aggregate discharge or low end of the dryer; therefore, the combustion gases flow counter current to aggregate flow. The effluent gases from the dryer are directed to a primary cyclone and a fabric filter secondary collector. The plant is rated for production of 350 tons/hr. A schematic of the process is shown in Figure No.1. Production data is provided in Table No. 3.

Emission Control System


Emissions from the plant are controlled by a McCarter Model McC-756-5 baghouse. The baghouse has 756 nine foot bags. The bag material is NOMEX. Control System Process Data is provided in Appendix D.

Test Program Description

Testing was conducted on the Particulate Emissions from the Asphalt Plant Baghouse. The sampling location is shown in Figure No. 2. Sample duration was 72 minutes for all three tests.

Process Schematic

Sample Point Location

Point No.	Percent of Diameter	Point Location Inches
1	2.1	1.0
2	6.7	3.2
3	11.8	5.7
4	17.7	8.5
5	25.0	12.0
6	35.6	17.1
7	64.4	30.9
8	75.0	36.0
9	82.3	39.5
10	88.2	42.3
11	93.3	44.8
12	97.9	47.0

Circular Duct

2 sample ports 90° apart
 12 points per port
 24 total sample points

FIGURE NO. 2

Commercial Stone Asphalt Plant
 Sampling Location

TABEL NO. 3
Process Production
Springfield Pike Asphalt Plant

DATE 1990	TEST NO	AVERAGE PRODUCTION RATE TONS/HR
8/24	SA-1	287.9
8/24	SA-2	297.2
8/24	SA-3	241.0

Additional process data is provided in Appendix D.

Method 5 Sampling Procedures

After selecting the sampling site and the minimum number of traverse points, the stack pressure, temperature, moisture and range of velocity head were measured according to the procedures described in the Federal Register*.

Approximately 200 grams of silica gel was weighed in a sealed impinger prior to each test. Glass fiber filters** (4 inch diameter) desiccated for at least 24 hours, dried at 105°C for 2 hours and weighed to the nearest 0.1mg. on an analytical balance. One hundred ml of distilled water was placed in each of the first two impingers; the third impinger was initially empty; and the impinger containing the silica gel was placed next in series. The sampling train was leak-checked at the sampling site prior to each test run by plugging the inlet to the nozzle and pulling 15-inch Hg vacuum, at the conclusion of the test by plugging the inlet to the nozzle and pulling a vacuum equal to the highest vacuum reached during the test run. A more detailed description of the sampling and analytical procedures is provided in Appendix B.

*Federal Register, CFR 40, Part 60, July 1, 1989.

A. FORMULAS AND CALCULATIONS

NOMENCLATURE AND DIMENSIONS

A_s	= cross-sectional area of stack, ft^2
A_n	= area of sampling nozzle, ft^2
B_{ws}	= proportional by volume of water vapor in the gas stream, dimensionless
C_p	= pitot tube coefficient, dimensionless = .84
C_s	= concentration of particulate matter in stack gas, gr/scf, dry basis
%CO	= percent of carbon monoxide by volume, dry basis
%CO ₂	= percent of carbon dioxide by volume, dry basis
H	= average pressure drop across the orifice meter, inches of H_2O
I	= percent of isokinetic sampling
M_d	= dry molecular weight, $1\text{b}/1\text{b-mole}$
M_n	= total amount of particulate matter collected, mg.
M_s	= molecular weight of stack gas (wet basis), $1\text{b}/1\text{b-mole}$
%N ₂	= percent of nitrogen by volume, dry basis
%O ₂	= percent of oxygen by volume, dry basis
p	= velocity head of stack gas, inches of H_2O
P_{bar}	= barometric pressure, inches of Hg
P_s	= absolute stack gas pressure, inches of Hg
pmr	= particulate matter emission rate, 1bs/hr
Q_s	= volumetric flow rate, wet basis, standard conditions
$Q_{s, std}$	= volumetric flow rate, dry basis, standard
T_m	= average temperature of dry gas meter, $^{\circ}\text{R}$
T_s	= average temperature of stack gas, $^{\circ}\text{R}$

V_{1c} = total volume of liquid collected in impingers and silica gel, ml.
 V_m = volume of sample through the dry gas meter at meter conditions, ft^3
 $V_{w\text{std}}$ = volume of gas sample through the dry gas meter at standard conditions,
 ft^3
 V_s = stack gas velocity at stack conditions, fps
 $V_{w\text{std}}$ = volume of water in the gas sample at standard conditions, ft^3
 t = total sampling time, minutes

Note: Standard conditions = 70°F and 29.92 inches of Hg.

Example Calculations for Particulate Emissions

Test No. SA-1

1. Volume of dry gas sampled corrected to standard conditions. Note: V_m must be corrected for leakage if any leakage rates exceed L_a .)

$$V_{m\text{ std}} = 17.65 \times V_m \times Y \quad \left[\frac{P_{\text{bar}} + \frac{\Delta H}{13.6}}{T_m} \right] =$$

$$V_{m\text{ std}} = 17.65 \times 55.603 \times (.995) \quad \left[\frac{28.9 + \frac{1.4}{13.6}}{559} \right] = 50.664$$

2. Volume of water vapor at standard conditions, ft^3 .

$$V_{w\text{ std}} = 0.04707 V_1 \quad \text{c} =$$

$$V_{w\text{ std}} = 0.04707 \times 190.5 = 8.97$$

3. Moisture content in stack gas.

$$B_{ws} = \frac{V_{w\text{c std}}}{V_{m\text{ std}} + V_{w\text{c std}}} = B_{ws} = \frac{8.97}{50.664 + 8.97} = .150$$

4. Dry molecular weight of stack gas.

$$M_d = 0.440 (\% \text{ CO}_2) + 0.320 (\% \text{ O}_2) + 0.280 (\% \text{ N}_2 + \% \text{ CO}) =$$

$$M_d = 0.440 (5.9) + 0.32 (13.1) + 0.280 (81) = 29.47$$

5. Molecular weight of stack gas

$$M_s = M_d (1 - B_{ws}) + 18 B_{ws} =$$

$$M_s = 29.47 (1 - .150) + 18 (.150) = 27.75$$

6. Stack velocity at stack conditions, fps

$$V_s = 85.49 \times C_p \times \sqrt{\Delta p \text{ avg.}} \times \sqrt{\frac{T_s}{P_s M_s}} =$$

SA-1

$$V_s = 85.49 \times .84 \times (.801) \times \sqrt{\frac{734}{28.95 \times 27.75}} = 54.98$$

7. Stack gas volumetric flow rate at stack conditions, cfh

$$Q_s = 3600 \times V_s \times A_s$$

$$Q_s = 60 \times 54.98 \times 12.57 = 41,466 \text{ ACFM}$$

8. Dry stack gas volumetric flow rate at standard conditions, cfh.

$$Q_{s, \text{std}} = 17.65 Q_s \frac{P_s}{T_s} (1 - B_{ws}) = \text{SCFM} \times 60 = \text{SCFH}$$

$$Q_{\text{std}} = 17.65 \times 41,466 \times \frac{28.95}{734} \times (1 - .15) = 24,536 \times 60 = 1,472,160 \text{ SCFH}$$

9. Concentration in g/scf

$$C'_s = 0.001 \text{ g/mg} \frac{M}{V_{\text{m, std}}} = 0.001 \times \frac{33.4}{50.664} = 0.00066$$

$$0.00066 \times 15.43 = 0.010 \text{ gr/dscf}$$

10. Particulate mass emission rate, lbs/hr.

$$\text{pmr} = \frac{C_s \times Q_{s, \text{std}}}{454} = \frac{0.00066 \times 1,472,160}{454} = 2.1 \text{ lb/hr}$$

11. Isokinetic variation

$$I = \frac{100}{60} \frac{T_s}{V_s} \left[\frac{V_1}{A_s} + \frac{T}{P_s} \gamma \frac{P_{\text{bar}}}{13.6} \right] =$$

$$I = \frac{55.603}{60 \times 72 \times 54.98 \times 28.95 \times .000327} \frac{(.995) (28.9 + 13.6)}{559} = 110.3\%$$

Example Calculations for Particulate Emissions

Test No. SA-2

1. Volume of dry gas sampled corrected to standard conditions. Note: V_m must be corrected for leakage if any leakage rates exceed L_a .)

$$V_{m\text{ std}} = 17.65 \times V_m \times Y = \left[\frac{P_{\text{bar}} + \frac{\Delta H}{13.6}}{\frac{T_m}{564}} \right] =$$

$$V_{m\text{ std}} = 17.65 \times 56.245 \times (.995) \left[\frac{28.9 + 13.6}{564} \right] = 50.820$$

2. Volume of water vapor at standard conditions, ft^3 .

$$V_{w\text{ std}} = 0.04707 V_1 =$$

$$V_{w\text{ std}} = 0.04707 \times 203.9 = 9.597$$

3. Moisture content in stack gas.

$$B_{ws} = \frac{V_{w\text{c std}}}{V_{m\text{ std}} + V_{w\text{c std}}} = B_{ws} = \frac{9.597}{50.820 + 9.597} = .165$$

4. Dry molecular weight of stack gas.

$$M_d = 0.440 (\% \text{ CO}_2) + 0.320 (\% \text{ O}_2) + 0.280 (\% \text{ N}_2 + \% \text{ CO}) =$$

$$M_d = 0.440 (5.4) + 0.32 (14.0) + 0.280 (80.6) = 29.42$$

5. Molecular weight of stack gas

$$M_s = M_d (1 - B_{ws}) + 18 B_{ws} =$$

$$M_s = 29.42 (1 - .165) + 18 (.165) = 27.53$$

6. Stack velocity at stack conditions, fps

$$V_s = 85.49 \times C_p \times \sqrt{\Delta p \text{ avg.}} \times \sqrt{\frac{T_s}{P_s M_s}} =$$

$$V_s = 85.49 \times .84 \times (.837) \times \sqrt{\frac{736}{28.95 \times 27.53}} = 57.76$$

7. Stack gas volumetric flow rate at stack conditions, cfh

$$Q_s = 3600 \times V_s \times A_s$$

$$Q_s = 60 \times 57.76 \times 12.57 = 43,562 \text{ ACFM}$$

8. Dry stack gas volumetric flow rate at standard conditions, cfh.

$$Q_{s, \text{std}} = 17.65 Q_s \frac{P_s}{T_s} (1 - B_{ws}) = \text{SCFM} \times 60 = \text{SCFH}$$

$$Q_{\text{std}} = 17.65 \times 43,562 \times \frac{28.95}{736} \times (1 - .165) = 25,253 \times 60 = 1,515,180$$

9. Concentration in g/scf

$$C'_{s, \text{std}} = 0.001 \text{ g/mg} \frac{M}{V_{\text{std}}} = 0.001 \times \frac{34.9}{50.820} = .00069$$

$$.00069 \times 15.43 = 0.011 \text{ gr/dscf}$$

10. Particulate mass emission rate, lbs/hr.

$$\text{pmr} = \frac{C_s \times Q_{s, \text{std}}}{454} = \frac{.00069 \times 1,515,180}{454} = 2.3 \text{ lb/hr}$$

11. Isokinetic variation

$$I = \frac{V_m}{100} \left[\frac{T_s}{60} \left(\frac{V_t}{V_s} \frac{P_s}{P_{bar}} + \frac{1}{A_n} \right) + \frac{H}{13.6} \right] =$$

$$I = \frac{56.245}{60 \times 72 \times 57.76 \times 28.95 \times .000327} \left(\frac{1.6}{.995} \right) = 106.7$$

Example Calculations for Particulate Emissions

Test No. SA-3

1. Volume of dry gas sampled corrected to standard conditions. Note: V_m must be corrected for leakage if any leakage rates exceed L_e .)

$$V_{m\text{std}} = 17.65 \times V_m \times \gamma \quad \left[\frac{P_{\text{bar}} + \frac{\Delta H}{13.6}}{T_m} \right] =$$

$$V_{m\text{std}} = 17.65 \times 57.120 \times (.995) \quad \left[\frac{28.9 + 13.6}{570} \right] = 51.093$$

2. Volume of water vapor at standard conditions, ft^3 .

$$V_{w\text{std}} = 0.04707 V_1 \quad \text{c} =$$

$$V_{w\text{std}} = 0.04707 \times 221.5 = 10.426$$

3. Moisture content in stack gas.

$$B_{ws} = \frac{V_{w\text{cstd}}}{V_{m\text{std}} + V_{w\text{cstd}}} = B_{ws} = \frac{10.426}{51.093 + 10.426} = .169$$

4. Dry molecular weight of stack gas.

$$M_d = 0.440 (\% \text{CO}_2) + 0.320 (\% \text{O}_2) + 0.280 (\% \text{N}_2 + \% \text{CO}) =$$

$$M_d = 0.440 (5.0) + 0.320 (14.2) + 0.280 (80.8) = 29.37$$

5. Molecular weight of stack gas

$$M_s = M_d (1 - B_{ws}) + 18 B_{ws} =$$

$$M_s = 29.37 (1 - .169) + 18 (.169) = 27.45$$

6. Stack velocity at stack conditions, fps

$$V_s = 85.49 \times C_p \times \sqrt{\Delta p \text{ avg.} \times \sqrt{\frac{T_s}{P_s M_s}}} =$$

SA-3

$$V_s = 85.49 \times .84 \times (.848) \times \sqrt{\frac{712}{28.95 \times 27.45}} = 57.64$$

7. Stack gas volumetric flow rate at stack conditions, cfh

$$Q_s = 3600 \times V_s \times A_s$$

$$Q_s = 60 \times 57.64 \times 12.57 = 43,472 \text{ ACFM}$$

8. Dry stack gas volumetric flow rate at standard conditions, cfh.

$$Q_{s, \text{std}} = 17.65 Q_s \frac{P_s}{T_s} (1 - B_{ws}) = \text{SCFM} \times 60 = \text{SCFH}$$

$$Q_{\text{std}} = 17.65 \times 43,472 \times \frac{28.95}{712} \times (1 - .165) = 26,050 \times 60 = 1,563,000$$

9. Concentration in g/scf

$$C'_s = 0.001 \text{ g/mg} \frac{M}{V_{\text{std}}} = 0.001 \times \frac{40.1}{51.093} = 0.00078$$

$$0.00078 \times 15.43 = 0.012 \text{ gr/dscf}$$

10. Particulate mass emission rate, lbs/hr.

$$\text{pmr} = \frac{C_s \times Q_{\text{std}}}{454} = \frac{0.00078 \times 1,563,000}{454} = 2.7 \text{ lb/hr}$$

11. Isokinetic variation

$$I = \frac{100}{60} \frac{T_s}{V_s} \left[\frac{V_1}{C_s} + \frac{T_m}{P_s} \gamma \frac{P_{\text{bar}}}{A_n} + \frac{H}{13.6} \right] =$$

$$I = \frac{100}{60} \frac{(712)}{57.64} \left[\frac{57.120}{221.5} + \frac{570}{.995} \frac{(.28.9 + 13.6)}{.000327} \right] = 105.3$$

Formula,

$$A = 0.76E^{0.42}, \text{ where:}$$

A = Allowable emissions in pounds per hour

E = Emission index = F x W pounds per hour

F = Process factor in pounds per unit, and

W = Production or charging rate in units per hour

F = 6 lbs/ton

W = Tons/hr

Test No.1

$$A = 0.76 (6 \times 287.9)^{0.42} = 17.4 \text{ lbs/hr}$$

Test No. 2

$$A = 0.76 (6 \times 297.2)^{0.42} = 17.6 \text{ lbs/hr}$$

Test No. 3

$$A = 0.76 (6 \times 241.0)^{0.42} = 16.1 \text{ lbs/hr}$$

B. SAMPLING METHODOLOGY & EQUIPMENT CALIBRATION

SAMPLE AND VELOCITY TRAVERSSES FOR STATIONARY SOURCES EPA METHOD 1

The following method was used in this test program. Sampling procedures follow those described in EPA Method 1 of the Federal Register*.

SELECTION OF THE MEASUREMENT SITE

The velocity measurement were taken at (***) stack (or duct) diameters downstream and (**) diameters upstream from any flow disturbances.

CHOOSING THE NUMBER OF TRAVERSE POINTS (non-Cyclonic flow)

Particulate Traverse Sampling

At least twelve (12) traverse points were sampled for circular (or rectangular) stack diameters greater than .61 meters. At least eight (8) traverse points were sampled for circular stacks and nine (9) points for rectangular stacks for equivalent diameters for .30 to .61 meters. For other stack diameters, Figure 1-1 was referred to.

Non-Particulate Traverse Sampling

The above procedure was used except that Figure 1-2 is substituted for Figure 1-1.

CROSS SECTIONAL TRAVERSE POINT LOCATIONS

The traverse points were located on two (2) perpendicular diameters. For particulate traverse samples, one of the above diameters was positioned in the plane containing the greatest concentration variation.

Circular Stacks

EPA Method 1, Figure 1-3 and Table 1-2 was referred to.

Rectangular Stacks

Using Figure 1-4 and Table 1-1 a rectangular grid, sectioned into as many equal areas as there are traverse points, was constructed. A sample was taken at the center of each elemental area in the grid.

No traverse points were located within 2.5 centimeters of the stack wall for stack diameters greater than .61 meters. For stack diameters equal to or less than .61 meters, no traverse points were located within 1.3 centimeters. For both of the above cases, where the sample nozzle inside diameter was greater than the adjusted distances, the larger distance was used.

*Federal Register, CFR 40, Part 60, July 1, 1989

** Check sampling location schematic included.

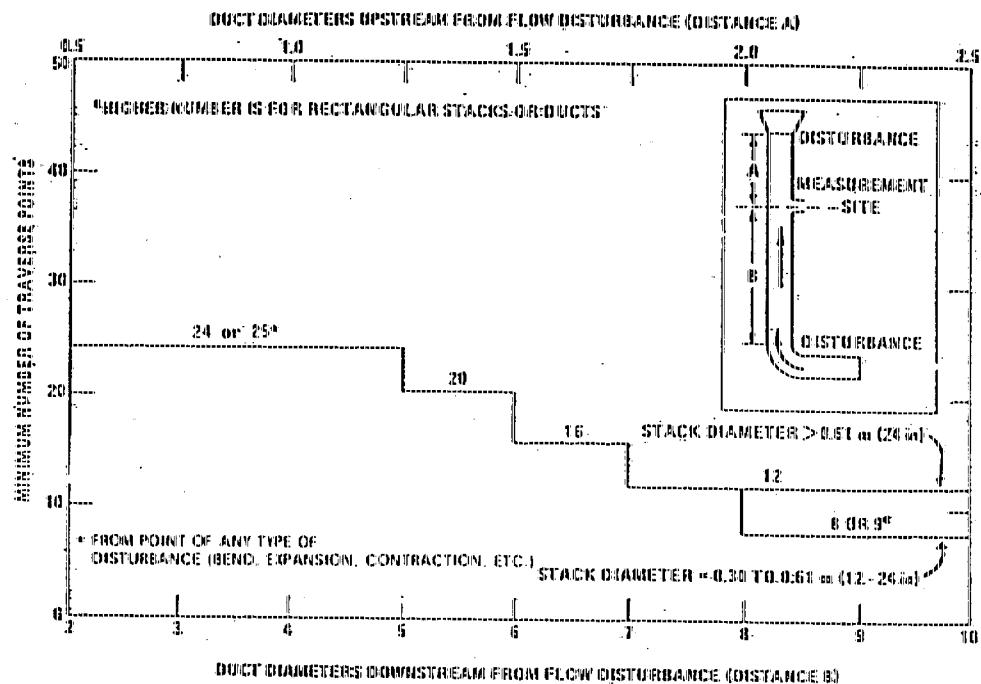


Figure 1-2. Minimum number of traverse points for particulate traverses.

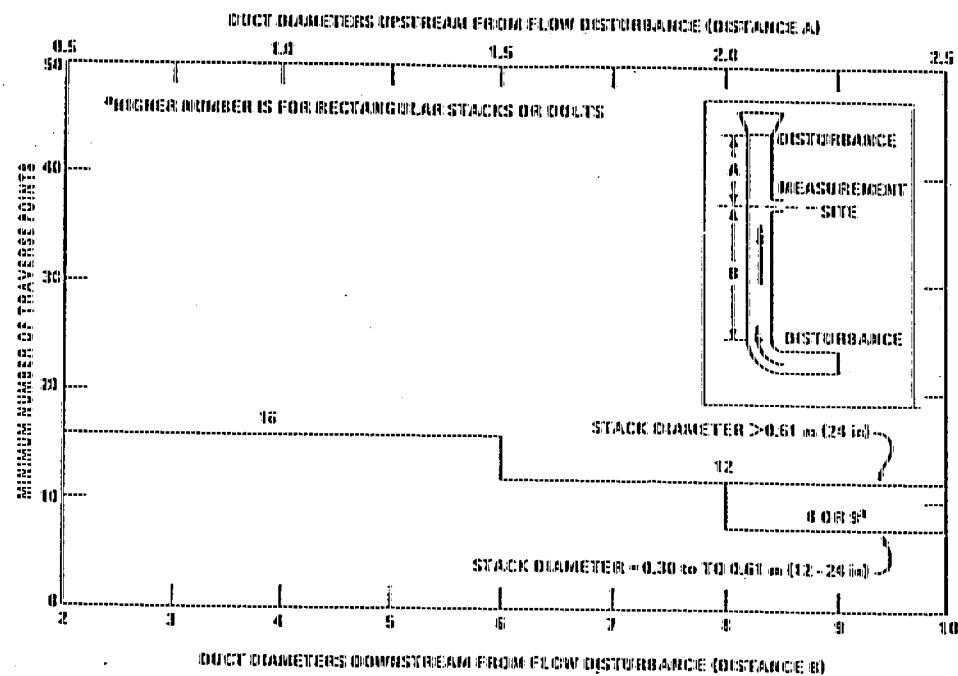


Figure 1-2. Minimum number of traverse points for velocity (nonparticulate) traverses.

TABLE 1-2. LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from inside wall to traverse point)

Traverse point number on a diameter	Number of traverse points on a diameter...											
	2	4	6	8	10	12	14	16	18	20	22	24
1	14.6	6.7	4.4	3.2	2.6	2.1	1.9	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3		75.0	29.6	19.4	14.6	11.0	9.0	6.5	7.5	6.7	6.0	5.5
4			93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	7.9
5				85.4	67.7	34.2	25.0	20.1	16.3	14.6	12.5	11.6
6					95.6	80.6	65.6	56.6	46.9	32.0	16.5	14.6
7						89.5	77.6	66.4	56.6	29.3	23.6	16.1
8							96.0	85.4	75.0	63.4	37.5	29.5
9								81.8	82.3	73.1	62.5	38.2
10									97.4	88.2	79.9	71.7
11										93.3	85.4	78.0
12											81.2	74.4
13												60.7
14												39.8
15												60.2
16												67.7
17												72.0
18												77.0
19												85.4
20												88.6
21												91.0
22												93.5
23												92.1
24												94.5
												96.8
												98.9
												99.9

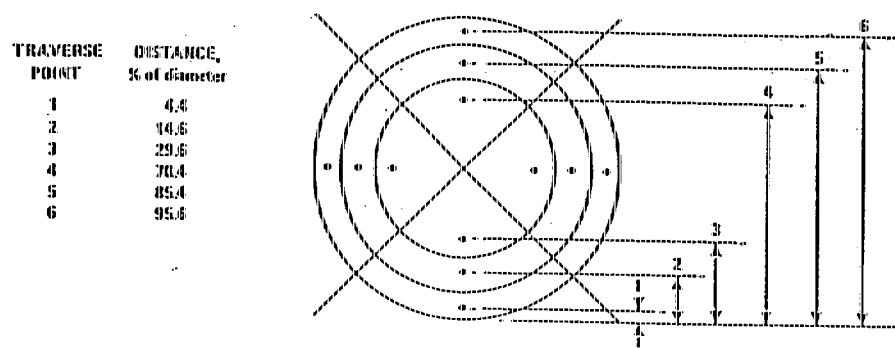


Figure 1-3. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points indicated.

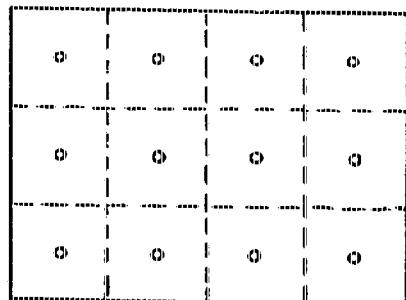


Figure 1-4. Example showing rectangular stack cross section divided into 12 equal areas, with a traverse point at centroid of each area.

Verification of the Absence of Cyclonic Flow through Stacks

For any stack where there existed a possibility of cyclonic flow, a test for the presence of cyclonic flow was performed using a manometer and Type S pitot tube.

The manometer was leveled and zeroed before the pitot tube was connected to the probe and positioned at each traverse point. The pitot tube was rotated (if necessary) until a null reading was obtained. All rotation angles were assigned absolute values. When no rotation was necessary, a value of 0 degrees was assigned. The values were summed, and the resultant angle called alpha (). Twenty (20) degrees was the limit of acceptability of the measurement locations for the average value of alpha with a Standard Deviation of ten (10) degrees or less.

A minimum of 24 traverse points for circular ducts and 42 points for rectangular ducts were used in the determination of gas flow angles. When the absence of cyclonic gas flow was verified, these same points were used to obtain velocity measurements.

EPA METHOD 2

DETERMINE OF STACK GAS VELOCITY AND VOLUMETRIC FLOW RATE

DETERMINATION OF STACK GAS VELOCITY AND VOLUMETRIC FLOW RATE EPA METHOD 2

The average velocity in a stack (or duct) was determined from the gas' density and average velocity head with a Type S pitot tube and stack gas flow was quantified.

SAMPLING APPARATUS

The apparatus consisted of the following equipment:

Pitot Tube - Type S pitot tube that meet all geometry standards was used to monitor stack gas velocity.

Draft Gauge - An inclined manometer made by Dwyer with readability of 0.01 inches H₂O in the 0-1 inch range was used.

Temperature Gauge - Included a thermocouple and digital readout capable of measuring temperatures to within 1.5% of the minimum stack temperatures.

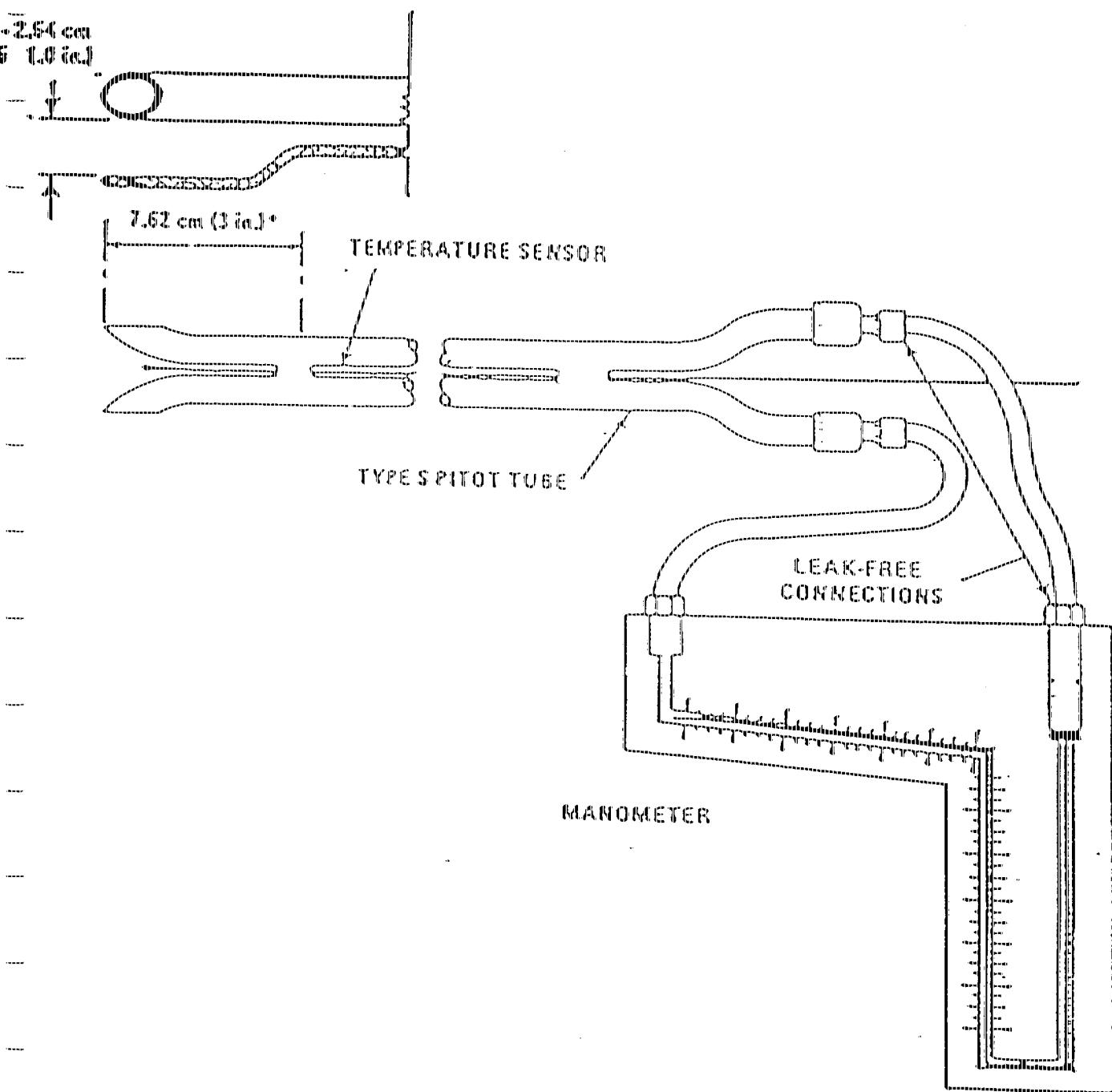
Barometer - A barometer capable of measuring atmospheric pressure to within 2.5 mm Hg.

Gas Density Determination Equipment - Fyrite analyzer.

SAMPLING PROCEDURE

The apparatus was set up as illustrated in Figure 1.

The pretest leak-check was conducted for both the impact and static openings of the Pitot tube.


After adjusting the manometer level and zero, the velocity head and temperature were measured for each traverse point and recorded on the data sheet.

In addition, the static pressure in the stack was measured and the atmospheric pressure recorded.

The stack gas dry molecular weight was determined using EPA Method 3.

The moisture content was obtained using either EPA Method 4 or EPA Method 5.

The cross sectional area of the stack (or duct) at the sampling location was measured and recorded.

EPA Method 2
Flow Measurement System

EPA METHOD 3

GAS ANALYSIS FOR CARBON DIOXIDE, OXYGEN, EXCESS AIR & DRY

GAS ANALYSIS FOR CARBON DIOXIDE, OXYGEN, EXCESS AIR AND DRY
MOLECULAR WEIGHT

EPA METHOD 3

The following method was used in this test program. Sampling procedures followed those described in EPA Method 3 of the Federal Register*.

SAMPLING APPARATUS

The gas analysis sampling train used in these tests at the exit stack meet the design specifications established by the Federal EPA and was assembled by Comprehensive Safety Compliance, Inc. (CSC) personnel.

The apparatus consisted of the following:

INTEGRATE SAMPLING: APPARATUS

PROBE - A stainless steel probe equipped with an in-stack or out-stack glass wool filter to remove particulate matter.

PUMP - A leak-free, diaphragm-type pump to transport sample gas to the flexible bag.

CONDENSER - A water-cooled condenser to remove excess moisture.

VALVE - A needle valve to adjust the sample flow rate.

SURGE TANK - A surge tank installed between the pump and rate meter to eliminate the pulsation effect of the diaphragm pump on the rate meter.

RATE METER - A rotameter capable of measuring flow rates to within $\pm 2\%$ of a flow range of 500 to 1000 cubic centimeters per minute.

ORSAT ANALYZER - This combustible gas analyzer was used to determine dry molecular weight (DMW) for O_2 , CO_2 and CO .

INTEGRATED SAMPLING

The sample train was set up as shown in Figure No. 1.

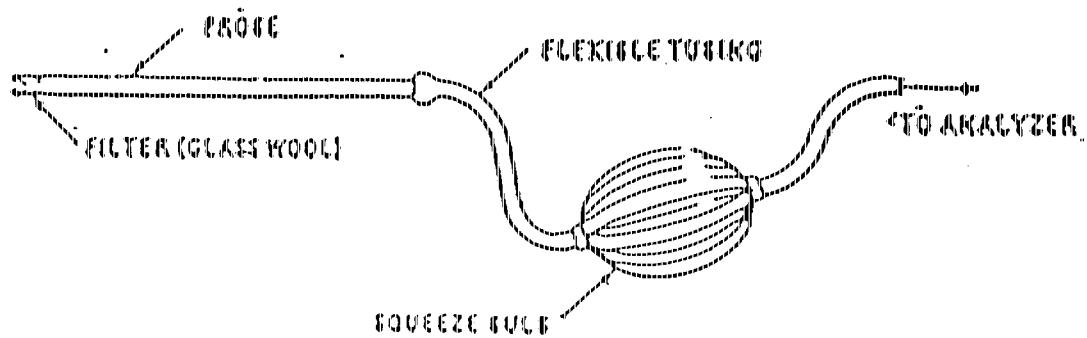
For single point sampling the sample point location was at the center of the cross-section or at least 1 meter away from the stack wall. The analyzer leak test was performed, and the flexible bag as well as the sample train was also leak tested.

For multi-point sampling at least eight traverse points were sampled in circular stacks with diameters less than .61 meters (9 points for rectangular stacks of .61 meter equivalent diameter). At least twelve points were sampled for all other cases.

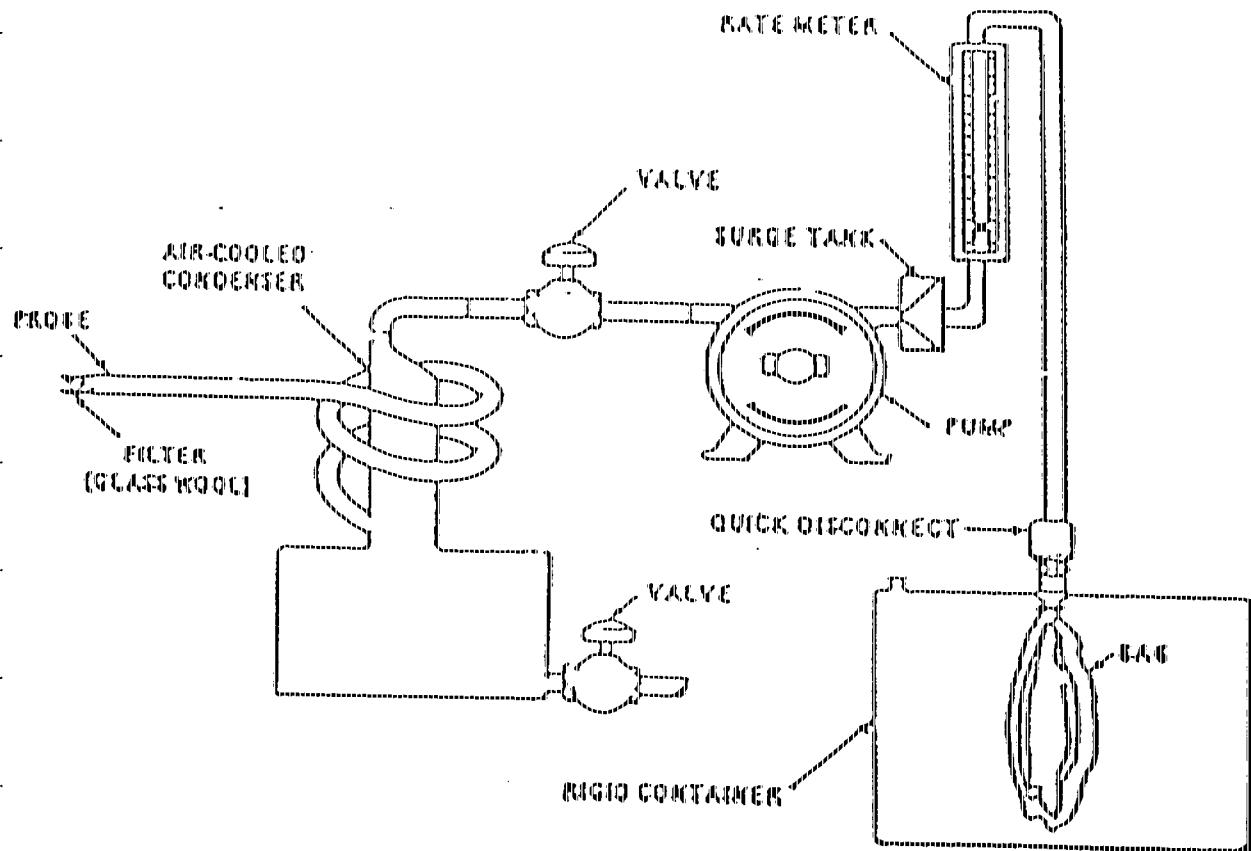
Traverse point location was performed; with respect to EPA Method 1. All points were traversed and sampled for an equal length of time.

After positioning the probe and purging the sample line, the sample bag was connected to the train.

The sample was taken at a constant rate. The run was simultaneous with the lasted the total duration of the pollutant emission rate determination.


One flue gas sample was taken for each pollutant emission rate determination. Within eight hours the samples were analyzed for % CO₂ and O₂. The % N₂ and CO were determined and the dry molecular weight was calculated.

SAMPLE ANALYSIS


After a sample was drawn into a combustible gas analyzer, it was immediately analyzed for percent CO₂ and O₂. The percentage of the gas that is N₂ and CO was determined by subtracting the sum of the percents CO₂ and O₂ from 100 percent.

During sample analysis for a given gas, consecutive passes through the analyzer absorbing solutions were made until two consecutive readings were obtained. All values were averaged and recorded to the nearest 0.1%.

The analyzer was leak-tested before and after the analyses was performed.

Grab-sampling train.

EPA Method 0
Gas Composition Sampling Train

CO₂ ANALYSIS

The results of three analyses differ by no more than:

- a) .3% volume when the CO₂ was greater than 4% of the total gas volume.
- b) .2% volume when CO₂ was less than or equal to 4% of the total gas volume.

O₂ ANALYSIS

The analytical procedure was repeated until the results of three analyses differ by no more than:

- a) .3% volume when O₂ was less than or equal to 15% of total gas volume.
- b) .2% by volume when O₂ was greater than or equal to 15% of total gas volume.

CO AND N₂ ANALYSIS

For percent CO and N₂, the analytical procedure was repeated until three analyses differ by no more than .3%.

DETERMINATION OF THE DRY MOLECULAR WEIGHT

The DMW of each sample was determined using the following formula:

$$DMW = 0.440 (\% CO_2) + .322 (\% O_2) + .280 (\% N_2 + \% CO)$$

EMISSION RATE CORRECTION FACTOR OR EXCESS AIR DETERMINATION

An EPA approved combustible gas analyzer was used to determine the excess air content in the stack emissions.

For single point and grab samples, the values obtained for % O₂, CO and N₂ were substituted in the following equation to determine the % excess air:

$$\% EA = \frac{\% O_2 - .5\% CO}{.264\% N_2 - (\% O_2 - .5\% CO)} \times 100\%$$

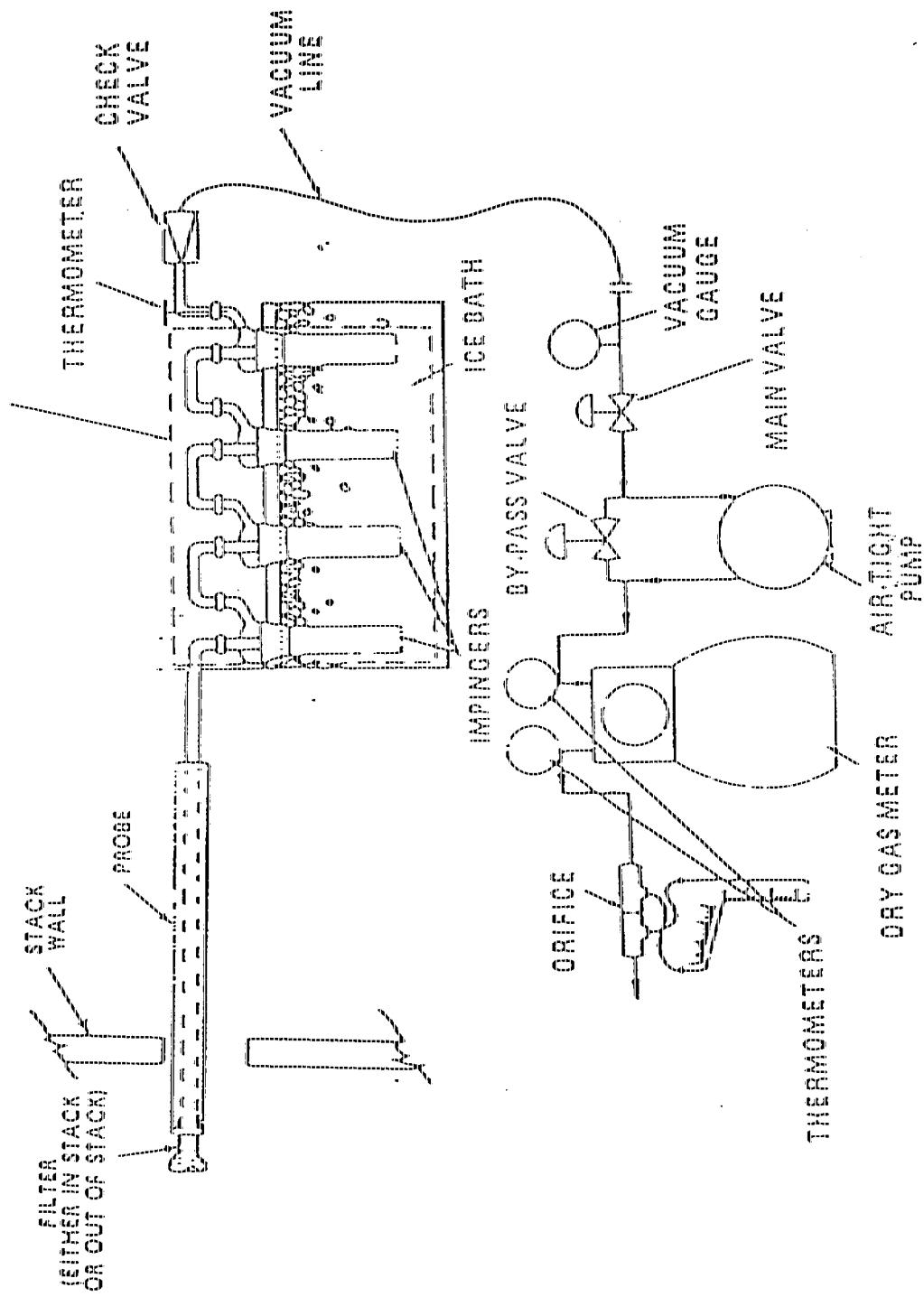
The fuel factor, F, calculated as follows:

$$F = \frac{20.9 - \% O_2}{\% CO_2}$$

*20.9 = The percent of O₂ by volume in ambient air.

SAMPLING PROCEDURE

After selecting the sampling site and the minimum number of traverse points, the stack pressure and temperature was measured according to the procedures described in the Federal Register^{*}.


Approximately 200 grams of silica gel were weighed in a sealed impinger prior to each test. One-hundred ml of distilled water was placed in each of the first two impingers; the third impinger was initially empty; and the impinger containing the silica gel was placed next in series. The train was set up with the probe as shown in Figure A-1. The sampling train was leak-checked at the sampling site prior to each test run by plugging the inlet to the nozzle and pulling a 15 inch Hg vacuum, and at the conclusion of the test by plugging the inlet to the nozzle and pulling a vacuum equal to the highest vacuum reached during the test run.

Crushed ice was placed around the impingers to keep the temperature of the gases leaving the last impinger at 68 F or less.

During sampling, stack gas and sampling train data were recorded at each sampling point and when significant changes in stack flow conditions occur. All sampling data were recorded on the Field Data Sheet.

^{*}Federal Register, CFR 40, Part 60, July 1, 1989

IMPINGER TRAIN OPTIONAL, MAY BE REPLACED
BY AN EQUIVALENT CONDENSER

Moisture sampling train-reference method.

SAMPLE RECOVERY PROCEDURE

The sampling train was moved carefully from the test site to the cleanup area. Sample fractions were recovered as follows:

1. The volume of water from the first three impingers was measured and recorded on the Recovery Data Sheet.
2. The silica gel from the fourth impinger was weighed and the gain recorded on the Sample Recovery Data Sheet with other pertinent data.

EPA METHOD 5
DETERMINATION OF PARTICULATE EMISSIONS

DETERMINATION OF PARTICULATE EMISSIONS EPA METHOD 5

The following method was used in this test program. Sampling procedures followed those described in Method 5 of the Federal Register*.

SAMPLING APPARATUS

The particulate sampling train used in these tests at the exit stack met design specifications established by the Federal EPA and was assembled by Comprehensive Safety Compliance, Inc. (CSC) personnel. It consisted of:

Nozzle - Stainless steel (316) with sharp, tapered leading edge and accurately measured round opening.

Probe - Glass lined with a heating system capable of maintaining a minimum gas temperature of 250 F at the exit end during sampling.

Filter Holder - Pyrex glass with heating system capable of maintaining a filter temperature of approximately 250 F.

Draft Gauge - An inclined manometer made by Dwyer with readability of 0.01 inches H₂O in the 0-1 inch range was used.

Impingers - Four impingers connected in series with glass ball joints. The first, third and fourth impingers were of the Greensburg-Smith design, modified by replacing the tip with a 1/2 inch I.D. glass tube extending to 1/2 inch from the bottom of the flask.

Metering System - Vacuum gauge, leak-free pump, thermometers capable of measuring temperature to within 5°, calibrated dry gas meter, and related equipment, to maintain an isokinetic sampling rate and to determine sample volume. The dry gas meter is made by Rockwell and the fiber vane pump is made by Gast.

Barometer - Aneroid type to measure atmospheric pressures to ± 0.1 inch Hg.

*Federal Register, CFR 40, Part 60, July 1, 1989

SAMPLING PROCEDURE

After selecting the sampling site and the minimum number of traverse points, the stack pressure, temperature, moisture and range of velocity head were measured according to the procedures described in the Federal Register*.

Approximately 200 grams of silica gel was weighed in a sealed impinger prior to each test. Glass fiber filters** (4 inch diameter) were desiccated for at least 24 hours, dried at 105 C for 2 hours and weighed to the nearest 0.1 mg on an analytical balance. One hundred ml of distilled water was placed in each of the first two impingers; the third impinger was initially empty; and the impinger containing the silica gel was placed next in series. The train was set up with the probe as shown in Figure A-1. The sampling train was leak-checked at the sampling site prior to each test run by plugging the inlet to the nozzle and pulling 15 inch Hg vacuum, and at the conclusion of the test by plugging the inlet to the nozzle and pulling a vacuum equal to the highest vacuum reached during the test run.

The pitot tube and line were leak-checked at the test site prior to and following the initial velocity traverse. The check was made by blowing into the impact opening of the pitot tube* until 3 or more inches of water were recorded on the manometer and then capping the impact opening and holding it for 15 seconds to assure it was leak free. The static pressure side of the pitot tube was leak checked using the same procedure, except suction was used to obtain the 3 inch H₂O manometer reading. Crushed ice was placed around the impingers to keep the temperature of the gases leaving the last impinger at 68 F or less.

During sampling, stack gas and sampling train data were recorded at each sampling point and when significant changes in stack flow conditions occurred. Isokinetic sampling rates were set throughout the sampling period with the aid of a nomograph or calculator. All sampling were recorded on the Particulate Field Data Sheet.

* Federal Register, CFR 40, Part 60, July 1, 1989
**934 AH type

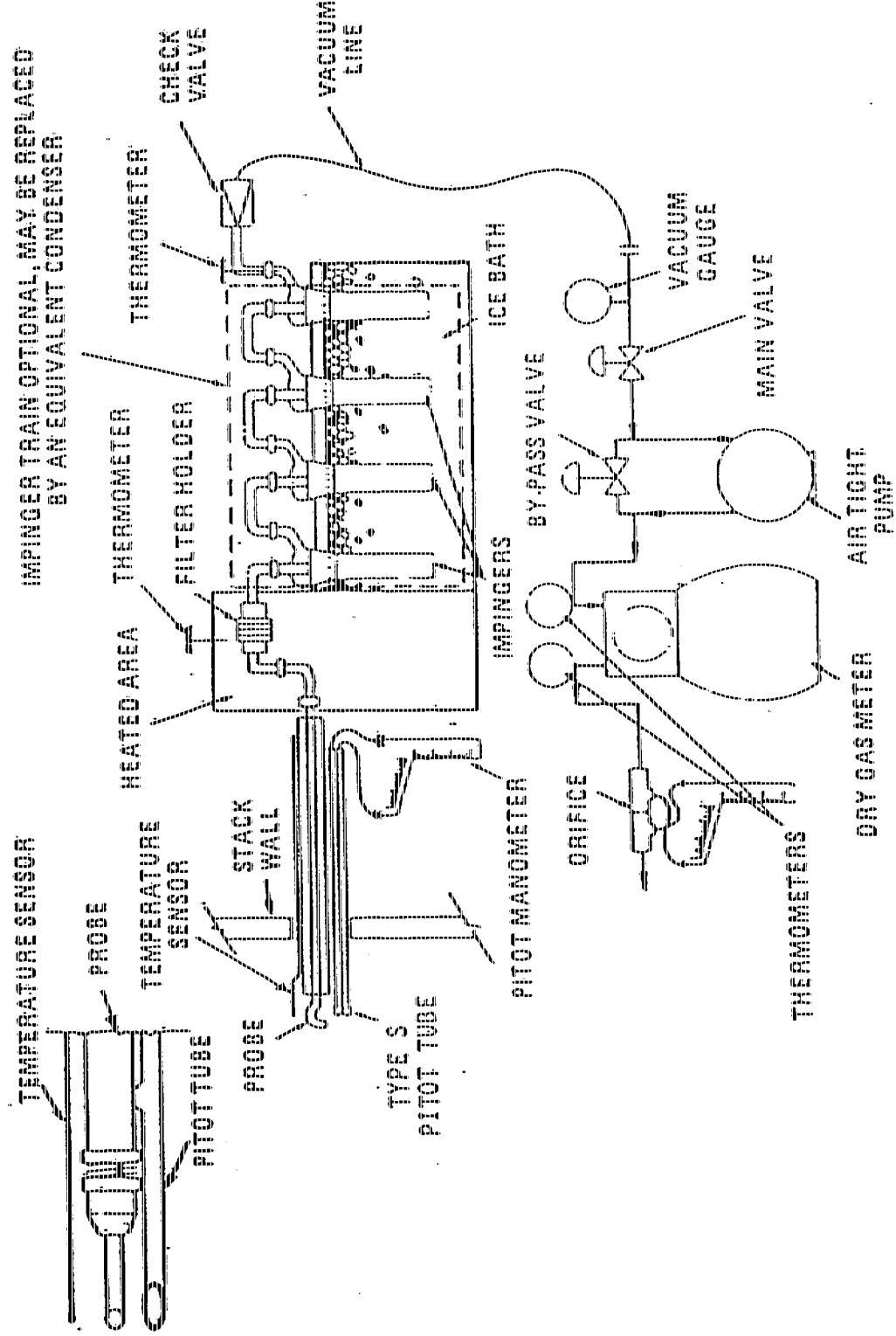


Figure 1. Schematic of Method 5 sampling train.

SAMPLE RECOVERY PROCEDURE

The sampling train was moved carefully from the test site to the cleanup area. Samples of the acetone and distilled water used in the sample recovery were taken for use as blanks. The volume of water from the first three impingers was measured. Sample fractions were recovered as follows:

Container No. 1 - The filter was removed from its holder and placed in a petri dish and sealed.

Container No. 2 - Loose particulate and H_2O washings from all sample-exposure surface prior to the filter were placed in a sample container, sealed and labelled. Particulate was removed from the probe with the aid of a brush and H_2O rinsing. The liquid level was marked after the container was sealed.

Container No. 3 - Loose particulate and acetone washings from all sample-exposure surface prior to the filter were placed in a sample container, sealed and labeled. Particulate was removed from the probe with the aid of a brush and acetone rinsing. The liquid level was marked after the container was sealed.

Container No. 4 - A minimum of 200 ml of acetone was taken for the blank analysis. The blank was obtained and treated in a similar manner as the acetone washing.

Container No. 5 - Distilled water in the impinger section of the sampling train was measured and placed in a sample container. The impingers and connecting glassware were rinsed with distilled H_2O and this rinse was added to the container for shipment to the laboratory.

Container No. 6 - The impinger section of the sampling train of the connecting glassware was rinsed with acetone and this rinse was put in a container for shipment to the laboratory.

Container No. 7 - A minimum of 200 ml of distilled water was taken for the blank analysis. The blank was obtained and treated in a similar manner as the water rinse.

The silica gel from the fourth impinger was weighed and the gain recorded on the Sample Recovery Data Sheet with other pertinent data.

ANALYTICAL PROCEDURES

The following procedures were used and follow the methods described in the DER Source Testing Manual*.

Container No. 1 - The filter and any loosed particulate matter from this sample container were placed into a tared glass weighing dish, baked at 105 C for 2 hours, desiccated for 24 hours to a constant weight and weighed to the nearest 0.1 mg.

Container No. 2 - The H₂O washings were transferred to a tared beaker and evaporated to dryness at 105 C temperature and pressure, desiccated for 24 hours to a constant weight, and weighed to the nearest 0.1 mg.

Container No. 3 - the acetone washings were transferred to a tared beaker and evaporated to dryness at ambient temperature and pressure, desiccated for 24 hours to a constant weight, and weighed to the nearest 0.1 mg.

Container No. 4 - The acetone blank was transferred to a tared breaker and evaporated to dryness at ambient temperature and pressure. The blank was then desiccated for 24 hours to a constant weight and weighed to the nearest 0.1 mg.

Container No. 5 - The contents of this container were filtered through 0.8-.22 micron tared filters to remove insoluble particulate. The filters and filtrates in tared breakers were evaporated to dryness at 105 C, then desiccated to a constant weight and weighed on an analytical balance to the nearest 0.1 mg.

Container No. 6 - The acetone was transferred to a tared beaker and evaporated to dryness at ambient temperature and pressure. The sample was then desiccated for 24 hours to a constant weight and weighed to the nearest 0.1 mg.

Container No. 7 - The distilled water blank was transferred to a tared beaker and evaporated to dryness at 105 C. The blank was desiccated to a constant weight and weighed on analytical balance to the nearest 0.1 mg.

The term "constant weight" means a difference of no more than 0.5 mg or 1% of total weight less tare weight, whichever is greater between two consecutive readings, with no less than 6 hours of desiccation between weighings.

EPA Method 9
Visual Determination of the
Opacity of Emissions from Stationary Sources

Determination of Opacity of Emissions from Stationary Sources

EPA Method 9

The following method was used in this test program. Observation procedures follow those described in EPA Method 9 of the Federal Register *.

Observation Procedures

The opacity of emissions from stationary sources was determined visually by a qualified observer. The qualified observer stood at a distance sufficient to provide a clear view of the emissions with the sun oriented in the 140° sector to his back. Consistent with maintaining the above requirement, the observer made his observations from a position such that his line of vision was approximately perpendicular to the plume direction, and approximately perpendicular to the longer axis of the outlet. The observer recorded the name of the plant, emissions location, type facility, observer's name and affiliation, a sketch of the observer's position relative to the source, and the date on a field data sheet (Figure 1). The time, estimated distance to the emission location, approximate wind direction, estimated wind speed, description of the sky condition (presence and color of clouds), and plume background were recorded on a field data sheet at the time opacity readings were taken.

Opacity observations were made at the point of greatest opacity in the portion of the plume where condensed water vapor was not present. The observer did not look continuously at the plume, but momentarily at 15-seconds intervals.

SOURCE NAME			OBSERVATION DATE				START TIME		STOP TIME			
ADDRESS			SEC MIN	0	15	30	45	SEC MIN	0	15	30	45
			1					31				
CITY		STATE	ZIP	2				32				
PHONE		SOURCE ID NUMBER		3				33				
PROCESS EQUIPMENT		OPERATING MODE		4				34				
CONTROL EQUIPMENT		OPERATING MODE		5				35				
DESCRIBE EMISSION POINT				6				36				
START STOP				7				37				
HEIGHT ABOVE GROUND LEVEL		HEIGHT RELATIVE TO OBSERVER		8				38				
START	STOP	START	STOP	9				39				
DISTANCE FROM OBSERVER		DIRECTION FROM OBSERVER		10				40				
START	STOP	START	STOP	11				41				
DESCRIBE EMISSIONS				12				42				
START	STOP	START	STOP	13				43				
EMISSION COLOR		PLUME TYPE: CONTINUOUS <input checked="" type="checkbox"/> FUGITIVE <input type="checkbox"/> INTERMITTENT <input type="checkbox"/>		14				44				
WATER DROPLETS PRESENT:		IF WATER DROPLET PLUME NO <input type="checkbox"/> YES <input checked="" type="checkbox"/> ATTACHED <input type="checkbox"/> DETACHED <input type="checkbox"/>		15				45				
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED				16				46				
START	STOP	START	STOP	17				47				
DESCRIBE BACKGROUND				18				48				
START	STOP	START	STOP	19				49				
BACKGROUND COLOR		SKY CONDITIONS		20				50				
START	STOP	START	STOP	21				51				
WIND SPEED		WIND DIRECTION		22				52				
START	STOP	START	STOP	23				53				
AMBIENT TEMP.		WET BULB TEMP.	RH, percent	24				54				
START	STOP			25				55				
Source Layout Sketch				26				56				
Draw North Arrow				27				57				
				28				58				
				29				59				
				30				60				
				AVERAGE OPACITY FOR HIGHEST PERIOD				NUMBER OF READINGS ABOVE % WERE				
				RANGE OF OPACITY READINGS				MINIMUM MAXIMUM				
				OBSERVER'S NAME (PRINT)								
COMMENTS				OBSERVER'S SIGNATURE				DATE				
				ORGANIZATION								
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS				CERTIFIED BY				DATE				
SIGNATURE												
TITLE		DATE		VERIFIED BY				DATE				

If condensed water vapor was present within the plume as it emerged from the emission outlet, opacity observations were made beyond the point in the plume at which condensed water vapor was no longer visible. The observer recorded the approximate distance from the emission outlet to the point in the plume at which the observations were made.

If water vapor in the plume condensed and became visible at a distinct distance from the emission outlet, the opacity of emissions were evaluated at the emission outlet prior to the condensation of water vapor and the formation of the steam plume.

Opacity observations were recorded to the nearest 5 percent at 15-second intervals on an observational record sheet (Figure 1). A minimum of 24 observations were recorded. Each momentary observation recorded was deemed to represent the average opacity of emissions for a 15-second period.

Opacity was determined as an average of 24 consecutive observations recorded at 15-second intervals. The observations recorded on the record sheet were divided into sets of 24 consecutive observations. A set was composed of any 24 consecutive observations. For each set of 24 observations, the average was calculated by summing the opacity of the 24 observations and dividing this sum by 24.

To receive certification as a qualified observer, a candidate was tested and demonstrated the ability to assign opacity readings in 5 percent increments to 25 different black plumes and 25 different white plumes, with an error not to exceed 15 percent opacity on any one reading and an average error not exceed 7.5 percent opacity in each category.

The certification is valid for a period of 6 months, at which time the qualification procedure must be repeated by any observer in order to retain certification. The certification test consists of showing the candidate a complete run of 50 plumes-25 black plumes and 25 white plumes-generated by a smoke generator. Plumes within each set of 25 black and 25 white runs were presented in random order. The candidate assigned an opacity value to each plume and recorded his observation on a suitable form. At the completion of each run of 50 readings, the score of the candidate was determined. If a candidate failed to qualify, the complete run of 50 readings was repeated in any retest. The smoke test was administered as part of a smoke school and was preceded by training of familiarization runs of the smoke generator during which candidates were shown black and white plumes of known opacity.

METER BOX CALIBRATION DATA AND CALCULATION FORM

Date 8/6/90

Meter box number 443

Barometric pressure, $P_b = 28.9$ in. Hg Calibrated by John Kennedy

Orifice manometer setting (ΔH), in. H_2O	Gas volume		Temperatures					Time (θ), min	Y_i	ΔH_{θ}^i in. H_2O	
	Wet test meter (V_w), ft ³	Dry gas meter (V_d), ft ³	Wet test meter (t_w), °F	Inlet (t_{d_i}), °F	Outlet (t_{d_o}), °F	Avg (t_d), °F					
0.5	5	930.400 926.150	72 °F	108 109	79 83	97	12.10	.996			
1.0	5	926.260 931.560	73 °F	103 103	88 91	101	8.14	.990			
1.5	10	935.088 945.327	73 °F	105 105	79 79	102	13.00	1.017			
2.0	10	945.592 956.395	73 °F	111 115	80 84	97	8.30	.994			
3.0	10	956.939 967.938	73 °F	111 110	85 86	106	10.00	.998			
4.0	10	968.026 978.629	73 °F	110 140	86 86	107	8.39	.993			
											Avg .998

ΔH , in. H_2O	$\frac{\Delta H}{13.6}$	$Y_i = \frac{V_w P_b (t_d + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t_w + 460)}$	$\Delta H_{\theta}^i = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[\frac{(t_w + 460) \theta}{V_w} \right]^2$
0.5	0.0368	$\frac{1(28.9)(552)}{5.25(28.9)(532)} = .996$	
1.0	0.0737	$\frac{5.30(28.97)(533)}{10.62(28.9)(562)} = .990$	
1.5	0.110	$\frac{10.37(29.01)(533)}{10.62(28.9)(557)} = .917$	
2.0	0.147	$\frac{10.953(29.02)(533)}{10.62(28.9)(560)} = .994$	
3.0	0.221	$\frac{10.567(29.12)(533)}{10(28.9)(562)} = .998$	
4.0	0.294	$\frac{10.603(29.19)(533)}{10(28.9)(562)} = .973$	

a If there is only one thermometer on the dry gas meter, record the temperature under t_d .

POSTTEST DRY GAS METER CALIBRATION DATA FORM

Test numbers 9-10-90 Date 9-10-90 Meter box number 443
 Barometric pressure, $P_b = 29.40$ in. Hg Dry gas meter number 866

Orifice manometer setting, (Δt) , in. H ₂ O	Gas volume	Temperature						V ₁
		Wet test meter (t_w), ft ³	Dry gas meter (t_d), ft ³	Outlet (t_d), °F	Average (t_d), °F	Time (O), min	Vacuum setting, in. Hg	
2"	10	10.667	7.2	62/36	62/36	2	12.52	$\frac{10.667(29.4+13.6)(532)}{10(29.4+13.6)(532)}$
2"	10	10.704	7.2	62/38	62/38	2	12.54	$\frac{10.704(29.4+13.6)(532)}{10(29.4+13.6)(532)}$
2"	10	10.757	7.2	62/39	62/39	2	12.56	$\frac{10.757(29.4+13.6)(532)}{10(29.4+13.6)(532)}$
								$V = .995$

a If there is only one thermometer on the dry gas meter, record the temperature under t_d .

V_w = Gas volume passing through the wet test meter, ft³.

V_d = Gas volume passing through the dry gas meter, ft³.

t_w = Temperature of the gas in the wet test meter, °F.

t_d = Temperature of the inlet gas of the dry gas meter, °F.

t_{d1} = Temperature of the outlet gas of the dry gas meter, °F.

t_{d0}

Average temperature of the gas in the dry gas meter, obtained by the average of t_{d1} and t_{d0} , °F.

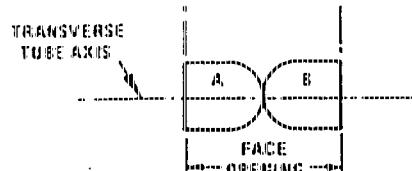
ΔH = Pressure differential across orifice, in H₂O.

V_1 = Ratio of accuracy of wet test meter to dry gas meter for each run.

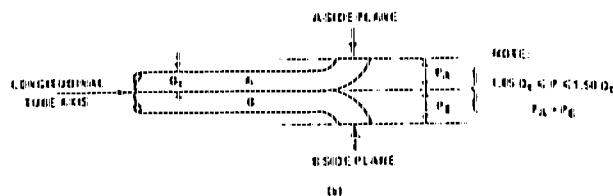
V = Average ratio of accuracy of wet test meter to dry gas meter for all three runs;

Tolerance = pretest $V \pm 0.05V$

P_b = Barometric pressure, in. Hg.


O = Time of calibration run, min.

PITOT TUBE INSPECTION DATA SHEET


Pitot Tube Identification Number: #7

Date: 2/23/90

1. What is the external diameter of the tubing in inches? .362"
2. Are the face opening planes perpendicular to the transverse axis as in Figure A (end view)? Yes
3. Are the face opening planes parallel to the longitudinal axis as in Figure B (top view)? Yes
4. Are both legs of equal length and center lines coincident, when viewed from both sides as in Figure (C)? Yes
5. Does the tube meet all the geometric specifications to be assigned a .84 coefficient? Yes

(a)

(b)

(c)

CALIBRATED BY: Eric Kennedy

NOZZLE CALIBRATION DATA FORM

Date 8/23/90 calibrated by R. G. Campbell

Nozzle identification number	D_1 (in.)	D_2 (in.)	D_3 (in.)	ΔD (in.)	D_{avg}
#3	.245	.245	.245	0.0	.245

where:

$D_{1,2,3}$ = Three different nozzle diameters, in.; each diameter measure within 0.001 in.

ΔD = Maximum difference between any two diameters, in.,
 $\Delta D \leq 0.004$ in.

D_{avg} = Average of D_1 , D_2 , and D_3 .

C. FIELD DATA SHEETS

Visible Emission Observation Form

SOURCE NAME	Commercial Stone											
ADDRESS	Springfield Pike											
CITY	STATE	ZIP	1 SEC MIN	0	15	30	45	MIN	0	15	30	45
PHONE	SOURCE ID NUMBER											
PROCESS EQUIPMENT	Operating Mode											
CONTROL EQUIPMENT	Operating Mode											
DESCRIBE EMISSION POINT												
START	STOP											
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER											
START 35	STOP 35	START 35	STOP 35	9	0	0	0	0	39	0	0	0
DISTANCE FROM OBSERVER												
START 50	STOP 50	START 5	STOP	10	0	0	0	0	40	0	0	0
DIRECTION FROM OBSERVER												
DESCRIBE EMISSIONS												
START	STOP											
EMISSION COLOR	PLUME TYPE: CONTINUOUS <input checked="" type="checkbox"/> FUGITIVE <input type="checkbox"/> INTERMITTENT <input type="checkbox"/>											
START	STOP	START	STOP	13	0	0	0	0	43	0	0	0
WATER DROPLETS PRESENT:	IF WATER DROPLET PLUME NO <input type="checkbox"/> YES <input checked="" type="checkbox"/> ATTACHED <input type="checkbox"/> DETACHED <input type="checkbox"/>											
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED												
START	STOP											
DESCRIBE BACKGROUND												
START	STOP	START	STOP	17	0	0	0	0	47	0	0	0
BACKGROUND COLOR	SKY CONDITIONS											
START	STOP	START	STOP	18	0	0	0	0	48	0	0	0
WIND SPEED	WIND DIRECTION											
START 0-1 mph	STOP	START S	STOP	19	0	0	0	0	49	0	0	0
AMBIENT TEMPERATURE	WET BULB TEMP. RH percent											
START 65°	STOP	START	STOP	20	0	0	0	0	50	0	0	0
Source Layout Sketch												
Draw North Arrow												
AVERAGE OPACITY FOR HIGHEST PERIOD												
NUMBER OF READINGS ABOVE % WERE												
RANGE OF OPACITY READINGS												
MINIMUM												
MAXIMUM												
OBSERVER'S NAME (PRINT)												
KEVIN KENNEDY												
COMMENTS TEST-1												
OBSERVER'S SIGNATURE												
DATE 8/29/90												
ORGANIZATION CSC INC.												
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS												
SIGNATURE												
CERTIFIED BY CTA DATE 8/29/90												
TITLE DATE												
VERIFIED BY DATE												

Visible Emission Observation Form

SOURCE NAME	COMMERCIAL STONE											
ADDRESS	Springfield Pike											
CITY	STATE	ZIP	SEC	0	15	30	45	SEC	0	15	30	45
PHONE	SOURCE ID NUMBER											
PROCESS EQUIPMENT	OPERATING MODE											
CONTROL EQUIPMENT	OPERATING MODE											
DESCRIBE EMISSION POINT												
START	STOP											
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER											
START 35'	STOP 35'	START 35'	STOP 35'	9	0	0	0	0	39			
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER											
START 60'	STOP 60'	START S	STOP	10	0	0	0	0	40			
DESCRIBE EMISSIONS												
START	STOP											
EMISSION COLOR	PLUME TYPE: CONTINUOUS <input checked="" type="checkbox"/> FUGITIVE <input type="checkbox"/> INTERMITTENT <input type="checkbox"/>											
START	STOP	FUGITIVE <input type="checkbox"/> INTERMITTENT <input checked="" type="checkbox"/>										
WATER DROPLETS PRESENT:	IF WATER DROPLET PLUME											
NO <input checked="" type="checkbox"/> YES <input type="checkbox"/>	ATTACHED <input type="checkbox"/> DETACHED <input checked="" type="checkbox"/>											
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED												
START	STOP											
DESCRIBE BACKGROUND												
START	STOP											
BACKGROUND COLOR	SKY CONDITIONS											
START	STOP	START	STOP	19					49			
WIND SPEED	WIND DIRECTION											
START 0 mph	STOP	START S E	STOP	20					50			
AMBIENT TEMP.	WET BULB TEMP. RH percent											
START	STOP											
Source Layout Sketch												
Draw North Arrow												
COMMENTS TEST-1												
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS												
SIGNATURE												
TITLE												
DATE												
CERTIFIED BY EIA DATE MARCH 1990												
VERIFIED BY DATE												

Visible Emission Observation Form

SOURCE NAME		Commercial Stove		OBSERVATION DATE				10:13		START TIME				11:50				
ADDRESS		Springfield Pike		SEC	0	15	30	45	MIN	0	15	30	45	SEC	0	15	30	45
CITY		STATE	PA	1	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	2	<input type="radio"/>	<input checked="" type="radio"/>	<input type="radio"/>	<input type="radio"/>	3	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
PHONE		SOURCE ID NUMBER		4	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	5	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	6	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
PROCESS EQUIPMENT		OPERATING MODE		7	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	8	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	9	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
CONTROL EQUIPMENT		OPERATING MODE		10	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	11	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	12	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
DESCRIBE EMISSION POINT				13	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	14	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	15	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START	STOP	HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER	16	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	17	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	18	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START 35'	STOP 15'	START 35'	STOP	19	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	20	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	21	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
DISTANCE FROM OBSERVER		DIRECTION FROM OBSERVER		22	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	23	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	24	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START 60'	STOP	START S	STOP	25	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	26	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	27	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
DESCRIBE EMISSIONS				28	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	29	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	30	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START	STOP	EMISSION COLOR	PLUME TYPE	CONTINUOUS	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	31	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	32	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START	STOP	FUGITIVE	INTERMITTENT	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	33	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	34	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	
WATER DROPLETS PRESENT		IF WATER DROPLET PLUME		35	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	36	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	37	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
NO <input checked="" type="checkbox"/>	YES <input type="checkbox"/>	ATTACHED	DETACHED	38	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	39	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	40	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED				41	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	42	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	43	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START	STOP	DESCRIBE BACKGROUND		44	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	45	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	46	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START 10' off S	STOP	BACKGROUND COLOR	SKY CONDITIONS	47	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	48	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	49	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START 10' off S	STOP	START 10' off S	STOP	50	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	51	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	52	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
WIND SPEED		WIND DIRECTION		53	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	54	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	55	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
START 0 mph	STOP	START S	STOP	56	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	57	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	58	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
AMBIENT TEMP.		WET BULB TEMP.	RH, percent	59	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	60	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	61	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
Source Layout Sketch		Draw North Arrow		62	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	63	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	64	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				65	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	66	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	67	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				68	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	69	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	70	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				71	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	72	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	73	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				74	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	75	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	76	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				77	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	78	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	79	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				80	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	81	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	82	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				83	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	84	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	85	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				86	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	87	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	88	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				89	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	90	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	91	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				92	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	93	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	94	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				95	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	96	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	97	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				98	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	99	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	100	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				101	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	102	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	103	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				104	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	105	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	106	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				107	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	108	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	109	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				110	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	111	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	112	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				113	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	114	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	115	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				116	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	117	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	118	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				119	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	120	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	121	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				122	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	123	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	124	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				125	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	126	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	127	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				128	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	129	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	130	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				131	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	132	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	133	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				134	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	135	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	136	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				137	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	138	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	139	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				140	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	141	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	142	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				143	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	144	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	145	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				146	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	147	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	148	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				149	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	150	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	151	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				152	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	153	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	154	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				155	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	156	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	157	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				158	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	159	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	160	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				161	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	162	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	163	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				164	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	165	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	166	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				167	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	168	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	169	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				170	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	171	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	172	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				173	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	174	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	175	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				176	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	177	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	178	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				179	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	180	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	181	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				182	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	183	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	184	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				185	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	186	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	187	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				188	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	189	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	190	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				191	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	192	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	193	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				194	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	195	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	196	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				197	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	198	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	199	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				200	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	201	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	202	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				203	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	204	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	205	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				206	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	207	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	208	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				209	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	210	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	211	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
				212	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	213	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	214	<input type="radio"/>	<input		

Visible Emission Observation Form

SOURCE NAME	Commercial Stone					OBSERVATION DATE	Bladensburg		START TIME	10:18		STOP TIME	11:50		
ADDRESS	Springfield Pike					SEC	0	15	30	45	SEC	0	15	30	45
MIN	1	0	0	0	0	MIN	0	15	30	45					
CITY	STATE	ZIP	2			2	0	0	0	0	0	31			
PHONE	SOURCE ID NUMBER					3	0	0	0	0	0	32			
PROCESS EQUIPMENT		OPERATING MODE					4	0	0	0	0	0	33		
CONTROL EQUIPMENT		OPERATING MODE					5	0	0	0	0	0	34		
Belt conveyor		NORMALLY					6	0	0	0	0	0	35		
DESCRIBE EMISSION POINT							7	0	0	0	0	0	36		
START	STOP					8	0	0	0	0	0	37			
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER					9	0	0	0	0	0	38			
START	STOP	START	STOP			10	0	0	0	0	0	39			
DISTANCE FROM OBSERVER		DIRECTION FROM OBSERVER					11	0	0	0	0	0	40		
START	STOP	START	STOP			12	0	0	0	0	0	41			
DESCRIBE EMISSIONS							13						42		
START	STOP					14						43			
EMISSION COLOR	PLUME TYPE: CONTINUOUS <input checked="" type="checkbox"/> FUGITIVE <input type="checkbox"/> INTERMITTENT <input type="checkbox"/>					15						44			
START	STOP	START	STOP			16						45			
WATER DROPLETS PRESENT		IF WATER DROPLET PLUME NO <input type="checkbox"/> YES <input checked="" type="checkbox"/>					17						46		
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED							18						47		
START	STOP					19						48			
DESCRIBE BACKGROUND							20						49		
START	STOP	START	STOP			21						50			
BACKGROUND COLOR		SKY CONDITIONS					22						51		
START	STOP	START	STOP			23						52			
WIND SPEED		WIND DIRECTION					24						53		
START	STOP	START	STOP			25						54			
AMBIENT TEMP.		WET BULB TEMP. RH percent					26						55		
START	STOP	START	STOP			27						56			
Source Layout Sketch		Draw North Arrow					28						57		
							29						58		
							30						59		
							31						60		
							AVERAGE OPACITY FOR HIGHEST PERIOD				NUMBER OF READINGS ABOVE % WERE				
							RANGE OF OPACITY READINGS				MINIMUM MAXIMUM				
							OBSERVER'S NAME (PRINT)				KENNEDY				
COMMENTS		TEST-2					OBSERVER'S SIGNATURE				DATE 4/24/90				
							ORGANIZATION E.S.C.I.N.C.								
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS							CERTIFIED BY E.P.A.				DATE 4/24/90				
SIGNATURE							VERIFIED BY								
TITLE		DATE									DATE				

Visible Emission Observation Form

SOURCE NAME		OBSERVATION DATE					START TIME		STOP TIME								
Common Stove Springfield R.R.		3/24/90					10:20										
ADDRESS		SEC	MIN	0	15	30	45	SEC	MIN	0	15	30	45				
		1	0	0	0	0	0	31	0	0	0	0	0				
CITY		2	0	0	0	0	0	32	0	0	0	0	0				
PHONE		3	0	0	0	0	0	33	0	0	0	0	0				
PROCESS EQUIPMENT		4	0	0	0	0	0	34	0	0	0	0	0				
CONTROL EQUIPMENT		5	0	0	0	0	0	35	0	0	0	0	0				
Bag house		6	0	0	0	0	0	36	0	0	0	0	0				
DESCRIBE EMISSION POINT		7	0	0	0	0	0	37	0	0	0	0	0				
START STOP		8	0	0	0	0	0	38	0	0	0	0	0				
HEIGHT ABOVE GROUND LEVEL START 35' STOP 35'	HEIGHT RELATIVE TO OBSERVER START 35' STOP 35'	9	0	0	0	0	0	39	0	0	0	0	0				
DISTANCE FROM OBSERVER START 60' STOP	DIRECTION FROM OBSERVER START 60' S STOP	10	0	0	0	0	0	40	0	0	0	0	0				
DESCRIBE EMISSIONS		11	0	0	0	0	0	41	0	0	0	0	0				
START STOP		12	0	0	0	0	0	42	0	0	0	0	0				
EMISSION COLOR	PLUME TYPE: CONTINUOUS <input checked="" type="checkbox"/> FUGITIVE <input type="checkbox"/> INTERMITTENT <input type="checkbox"/>	13	0	0	0	0	0	43	0	0	0	0	0				
START STOP	14	0	0	0	0	0	0	44	0	0	0	0	0				
WATER DROPLETS PRESENT NO <input type="checkbox"/> YES <input checked="" type="checkbox"/>	IF WATER DROPLET PLUME ATTACHED <input type="checkbox"/> DETACHED <input checked="" type="checkbox"/>	15	0	0	0	0	0	45	0	0	0	0	0				
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED		16	0	0	0	0	0	46	0	0	0	0	0				
START STOP		17	0	0	0	0	0	47	0	0	0	0	0				
DESCRIBE BACKGROUND		18	0	0	0	0	0	48	0	0	0	0	0				
START STOP		19	0	0	0	0	0	49	0	0	0	0	0				
BACKGROUND COLOR	SKY CONDITIONS	20	0	0	0	0	0	50	0	0	0	0	0				
START STOP	START STOP	21	0	0	0	0	0	51	0	0	0	0	0				
WIND SPEED	WIND DIRECTION	22	0	0	0	0	0	52	0	0	0	0	0				
START STOP	START STOP	23	0	0	0	0	0	53	0	0	0	0	0				
AMBIENT TEMP	WET BULB TEMP	RH, percent	24	0	0	0	0	0	54	0	0	0	0	0			
START 70° F STOP			25	0	0	0	0	0	55	0	0	0	0	0			
Source Layout Sketch		Draw North Arrow										26	0	0	0	0	0
		(N)										27	0	0	0	0	0
		X Emission Point										28	0	0	0	0	0
		Sun-Wind-Plume and Stack Observers Position 7:40° Sun Location Line										29	0	0	0	0	0
		AVERAGE OPACITY FOR HIGHEST PERIOD										30	0	0	0	0	0
		NUMBER OF READINGS ABOVE % WERE															
		RANGE OF OPACITY READINGS															
		MINIMUM															
		MAXIMUM															
COMMENTS		TEST-3										OBSERVER'S NAME (PRINT)		Kerry Kennedy			
												OBSERVER'S SIGNATURE		4/24/90			
												ORGANIZATION		CSC INC.			
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS SIGNATURE		CERTIFIED BY										ETA		4/24/90			
TITLE		VERIFIED BY												DATE			

Visible Emission Observation Form

SOURCE NAME		OBSERVATION DATE					START TIME		STOP TIME				
Comm. Stone Springfield Pike		8/24/90	SEC	0	15	30	45	MIN	0	15	30	45	SEC
ADDRESS		MIN	0	0	0	0	0	MIN	0	0	0	0	0
		1	0	0	0	0	0	1	0	0	0	0	0
CITY		STATE	ZIP	2	0	0	0	0	2	0	0	0	0
PHONE		SOURCE ID NUMBER					3	0	0	0	0	0	3
							4	0	0	0	0	0	4
PROCESS EQUIPMENT		OPERATING MODE					5	0	0	0	0	0	5
CONTROL EQUIPMENT		OPERATING MODE					6	0	0	0	0	0	6
BAG house		Alarmed					7	0	0	0	0	0	7
DESCRIBE EMISSION POINT							8	0	0	0	0	0	8
START		STOP					9	0	0	0	0	0	9
HEIGHT ABOVE GROUND LEVEL		HEIGHT RELATIVE TO OBSERVER					10	0	0	0	0	0	10
START 35'		STOP 35'					11	0	0	0	0	0	11
DISTANCE FROM OBSERVER		DIRECTION FROM OBSERVER					12	0	0	0	0	0	12
START 60'		STOP 60'					13	0	0	0	0	0	13
DESCRIBE EMISSIONS							14	0	0	0	0	0	14
START		STOP					15	0	0	0	0	0	15
EMISSION COLOR		PLUME TYPE: CONTINUOUS <input checked="" type="checkbox"/> FUGITIVE <input type="checkbox"/> INTERMITTENT <input type="checkbox"/>					16	0	0	0	0	0	16
START		STOP					17	0	0	0	0	0	17
WATER DROPLETS PRESENT		IF WATER DROPLET PLUME NO <input type="checkbox"/> YES <input checked="" type="checkbox"/>					18	0	0	0	0	0	18
NO		ATTACHED <input type="checkbox"/> DETACHED <input checked="" type="checkbox"/>					19	0	0	0	0	0	19
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED							20	0	0	0	0	0	20
START		STOP					21	0	0	0	0	0	21
DESCRIBE BACKGROUND							22	0	0	0	0	0	22
START		STOP					23	0	0	0	0	0	23
BACKGROUND COLOR		SKY CONDITIONS					24	0	0	0	0	0	24
START		STOP					25	0	0	0	0	0	25
WIND SPEED		WIND DIRECTION					26	0	0	0	0	0	26
START 0-1 mph		STOP					27	0	0	0	0	0	27
AMBIENT TEMP		WET BULB TEMP.		RH, percent			28	0	0	0	0	0	28
START 70° F		STOP					29	0	0	0	0	0	29
Source Layout Sketch		Draw North Arrow					30	0	0	0	0	0	30
							31	0	0	0	0	0	31
							32	0	0	0	0	0	32
							33	0	0	0	0	0	33
							34	0	0	0	0	0	34
							35	0	0	0	0	0	35
							36	0	0	0	0	0	36
							37	0	0	0	0	0	37
							38	0	0	0	0	0	38
							39	0	0	0	0	0	39
							40	0	0	0	0	0	40
							41	0	0	0	0	0	41
							42	0	0	0	0	0	42
							43	0	0	0	0	0	43
							44	0	0	0	0	0	44
							45	0	0	0	0	0	45
							46	0	0	0	0	0	46
							47	0	0	0	0	0	47
							48	0	0	0	0	0	48
							49	0	0	0	0	0	49
							50	0	0	0	0	0	50
							51	0	0	0	0	0	51
							52	0	0	0	0	0	52
							53	0	0	0	0	0	53
							54	0	0	0	0	0	54
							55	0	0	0	0	0	55
							56	0	0	0	0	0	56
							57	0	0	0	0	0	57
							58	0	0	0	0	0	58
							59	0	0	0	0	0	59
							60	0	0	0	0	0	60
AVERAGE OPACITY FOR HIGHEST PERIOD							NUMBER OF READINGS ABOVE % WERE						
RANGE OF OPACITY READINGS							MINIMUM					MAXIMUM	
OBSERVER'S NAME (PRINT)												Kein Kennedy	
COMMENTS		TEST-3					OBSERVER'S SIGNATURE					DATE 8/25/90	
I HAVE RECEIVED A COPY OF THESE OPACITY OBSERVATIONS							CERTIFIED BY					DATE 8/25/90	
SIGNATURE													
TITLE		DATE					VERIFIED BY					DATE	

PLAN: 204 204
LOCATION: Corporation Area
OPERATOR: 2/C Corvin
DATE: 8/16/60
RUN NO.: SA-1
SAMPLE BOX NO.: 4493

MOTOR BOX NO.: #4493
WATER LINE: WATER LINE
FACTOR: KF = 2.31
PILOT TUBE DENSITY, ρ : 1.94
CONTRAPTION OF STACK CROSS SECTION
Location: 450 ft
Stack diam.: 450

TRAVERSE POINT , NUMBER	SAMPLING TIME (hr, min.)	VACUUM (in. Hg)	STACK TEMPERATURE ($^{\circ}$ F)	VELOCITY HEAD (in. H_2O)	PRESSURE DIFFERENTIAL ACROSS ORIFICE METER (in. H_2O)	GAS SAMPLE VOLUME (lit.)	GAS SAMPLE TEMPERATURE AT DRY GAS METER ($^{\circ}$ F)	GAS SAMPLE TEMPERATURE, LAST METER, ($^{\circ}$ F)	WATER HOLDER CONDENSER TEMPERATURE, LAST METER, ($^{\circ}$ F)
A-1	3	3.5	245	.65	1.5	835.930	75	76	254
2	6	3.5	268	.64	1.5	836.891	104	74	260
3	9	3.5	268	.65	1.5	841.849	110	76	257
4	12	3.5	265	.65	1.6	844.999	112	79	262
5	15	3.0	267	.64	1.4	847.492	114	82	264
6	18	3.0	258	.60	1.2	850.325	112	82	261
7	21	3.0	266	.57	1.25	852.325	113	83	265
8	24	3.0	266	.50	1.1	854.120	113	84	266
9	27	3.0	276	.55	1.1	856.040	114	83	264
10	30	3.0	289	.45	1.0	857.760	114	84	262
11	33	3.0	250	.45	1.0	859.810	113	83	264
12	36	3.0	290	.45	1.0	860.384	113	83	259
2-1	60	4.5	279	1.0	2.2	864.310	82	83	240
2	42	4.5	280	.95	2.1	867.020	121	87	260
3	45	4.5	276	.98	3.2	870.105	128	87	263
4	48	4.5	280	.90	2.0	872.675	127	86	258
5	51	4.0	267	.60	1.8	877.475	123	89	260
L	59	4.0	258	.80	1.8	877.475	123	75	264
TOTAL							Avg.	Avg.	
AVERAGE		374	261	1.4	55.603	Avg.	Avg.		

INPUT WATER
Final: 278 ml Final 229.6 ml
Init. 300 ml Init. 210.1 ml
Cond. 172 ml Cond. 18.5 ml

DRY GAS ANALYSIS

Time	0.0	5.0	10.0	15.0
0.2	12.0	13.2	13.0	13.1

1004 11 11
 OPERATOR 2 Computer
 DATE 5/24/90
 RUN NO. 5A-1
 SAMPLE BOX NO.
 METER BOX NO. 244413
 METER AMT
 GFACTOR
 PILOT TYPE COEFFICIENT, C_p 0.94

CHAMAN DE SÁIA COMO SÍCIONE
SOLAR DE SÁIA — 34

NOZZLE IDENTIFICATION NO. 11-3
 AVERAGE CALIBRATED NOZZLE DIAMETER, in. 24.5
 PROBE HEATER SETTING 0.0
 LEAK RATE, (ml) 0.0000
 PROBE LINER MATERIAL Glass
 STATIC PRESSURE, in. Hg 7.5

C-074
 3 MPTINGER WATER
 final 242 ml
 salt, 200 ml
 cond., 17.8 ml
 final 100 ml
 DESCANT one
 one

CRSAT ANALYSES

PLAN: 24
LOCATION: 4440 ft. 100 ft. 100 ft.
OPERATOR: P. G. May Jr. 11
DATE: 8/24/60
RUN NO.: SA-2

SAMPLE BOX NO.: 4443
MOTOR BOX NO.: 4443
METER AMPS: 1
G-FACTOR: 2.4
FRICTION COEFFICIENT, μ : 0.24

SCHMATIC OF STACK CROSS SECTION
Stack dimen.: 4124
Location: 4124

Heated: Final
BAROMETRIC PRESSURE: 26.9
ASSIMILATED MOISTURE, %: 0
PROBE LENGTH, in.: 0
NOZZLE IDENTIFICATION NO.: #3
AVG. CALIBRATED NOZZLE DIAMETER, in.: 2.45
PROBE HEATER SETTING: 250
LEAK RATE, (cm): 0
PROBE LINER MATERIAL: Glass
STATIC PRESSURE: (in. Hg): 4.75
FILTER NO.: 0

TRAVESE POINT NUMBER	TIME (in. min.)	SAMPLING TIME (in. min.)	VACUUM (in. Hg)	STACK TEMPERATURE ($^{\circ}$ F.)	VELOCITY HEAD (in. H ₂ O)	PRESSURE ACROSS ORIFICE METER (in. H ₂ O)	GAS SAMPLE		TEMPERATURE OF GAS LEAVING CONDENSER OR LAST HEATING PIPE
							TIME	VOLUME (ml)	
8-1	3	2.0	2.74	11	2.4	99.7	410	3.4	84.5
2	6	2.5	2.73	1.0	2.2	99.5	150	1.5	78
3	9	3.0	2.63	1.1	2.4	97.6	930	150	86
4	12	3.5	2.56	.95	3.1	98.3	60	1.1	84
5	15	4.0	2.55	.90	2.0	98.0	80	1.5	86
6	18	4.0	2.53	.80	1.8	95.4	65	1.5	85
7	21	4.0	2.54	.75	1.7	97.6	15	1.6	86
8	24	4.0	2.52	.70	1.6	98.7	10	1.4	87
9	27	3.5	2.52	.60	1.3	91.6	30	1.8	87
10	30	3.5	2.53	.60	1.3	93.5	50	1.5	88
11	33	3.5	2.60	.60	1.2	95.4	60	1.8	88
12	36	2.5	2.69	.55	1.2	97.3	10	1.8	89
13-1	39	4.0	2.72	.70	1.5	96.8	10	1.8	90
13-2	42	4.0	2.81	.65	1.45	92.3	20	1.2	91
13	45	4.0	2.67	.65	1.45	90.9	12	1.1	91
14	48	4.0	2.72	.65	1.45	93.5	150	1.2	91.8
15	51	4.0	2.75	.75	1.6	93.0	10	1.4	94
16	54	5.0	2.91	.60	1.6	93.0	10	1.3	93
TOTAL									
AVERAGE									
		27.6	2.87	1.6	56.245	Avg.		104	

INSPIRED WATER
Final 3.65 ml Final 2.49 ml
Init. 2.00 ml Init. 2.31 ml
Cond. 1.65 ml Cond. 1.69 ml

CRSAT ANALYSES		
Time		
00:00	54	54
00:10	54	54
00:20	14.0	14.0
00:30	14.0	14.0

LOCATION A-1 A-1
 OPERATOR C. G. Knobbe
 DATE 8/24/90
 RUN NO. SA-3
 SAMPLE BOX NO. 44443
 METER ANG. —
 C-FACTOR 254
 PITOT TUBE COEFFICIENT, C. .254

SCHEMATIC OF STACK CROSS SECTION
 Location Stack diameter

TRAVELING POINT , ANGULAR	TIME min.	SAMPLING TIME min.	VACUUM (in. Hg)	STACK TEMPERATURE (°F)	VELOCITY HEAD (APS.)	PRESSURE DIFFERENTIAL ACROSS ORIFICE METER	GAS SAMPLE VOLUME (ml)		GAS SAMPLE TEMPERATURE " AT DRY GAS METER		TEMPERATURE OF GAS LEAVING CONDENSER OR LIQUID IMPINGER (°F)		
							INLET	OUTLET	INLET	OUTLET	INLET	OUTLET	
A-7	57	4	268	60	1.4	0.34	677	130	94	272	55	55	
6	66	4	310	58	1.2	0.36	930	128	98	274	57	57	
7	63	4	313	55	1.2	0.39	930	128	95	268	56	56	
10	66	4	311	55	1.3	0.41	364	129	95	268	57	57	
11	67	4	309	55	1.3	0.43	580	110	95	271	58	58	
12	11:45	72	2	209	55	1.3	0.51	710	128	95	272	59	59
TOTAL									Avg.	Avg.			
AVERAGE									Avg.	Avg.			

IMPRINGER WATER
 Final 2.85 ml Final 2.49 ml Time 30.1 sec
 Init. 2.06 ml Init. 2.30 ml Init. 14.6 sec
 Cond. 1.95 ml Cond. 1.99 ml Cond. 6.6 sec

ORSAT ANALYSES			
<u>2.4</u>	<u>5.4</u>	<u>54</u>	
<u>14.6</u>	<u>14.0</u>	<u>14.0</u>	

PLAN: S-1
 LOCATION: Asphalt Plant
 OPERATOR: R. G. Semple
 DATE: 8/24/60
 RUN NO.: SA-5
 SAMPLE BOX NO.: 12443
 METER BOX NO.: 12443
 METER ANG: 0
 GFACTOR: 1.0
 PILOT TUBE CONCENTRATION, C_p: 5.4

SCHEMATIC OF STACK CROSS SECTION
 Location: Stack diam. 12 ft

TRAVELING POINT NUMBER	SAMPLING TIME hr. min.	VACUUM IN. Hg.	STACK TEMPERATURE IN. Hg. (°F)	VELOCITY HEAD IN. Hg. (mm H ₂ O)	PRESSURE DIFFERENTIAL ACROSS ORIFICE NETA IN. Hg. (mm H ₂ O)	GAS SAMPLE VOLUME IN. (L)	GAS SAMPLE TEMPERATURE AT DAY GAS WELD		WATER VAPOR CONCEN. OR TEMPERATURE, LAST HEATING, IN. Hg. (°F)
							IN.	OUT.	
8-2	57	4.0	258	.80	1.60	74.340	131	97	271
8	6.0	4.0	257	.75	1.80	64.640	97	712	462
9	6.3	4.0	250	.70	1.70	49.900	131	93	369
10	6.6	4.0	231	.70	1.70	100.120	127	97	365
11	6.7	4.0	230	.65	1.6	80.3410	124	93	361
12	11:39	7.2	4.0	228	.65	116	105.485	130	93
								269	49
TOTAL									
AVERAGE									

INJECTION WATER: 245.5 ml DESCICANT: 245.5 g TIME: 245.5 sec
 Init. 282 ml Init. 217.4 g O₂: 0.2
 Cond. 195 ml Cond. 26.5 g CO₂: 0.1

C-O 77 ORSAT ANALYSES
 TIME: 245.5 sec
 O₂: 3.0 CO: 5.9
 CO₂: 0.2 H₂: 14.2
 O₂: 0.1

D. PROCESS DATA

09

Material Produced between 8:01 = 9:36

Product ID	Tons
04 ST Blades 90-21	236.02
17 X D3 Weaving 90-10	102.86
02 X D2 Weaving 90-5	10.94
	408.82 Total tons

Ave. 28.790 tons per hour

Material Produced between 10:20 = 11:48

Product ID	Tons
04 ST Blades 90-21	265.14
17 X D3 Weaving 90-10	131.87
02 X D2 Weaving 90-5	39.92
	436.93 Total tons

Ave. 297.23 tons per hour

Material Produced between 13:20 = 15:38

Product ID	Tons
04 ST Blades 90-21	131.99
17 X D3 Weaving 90-10	109.90
02 X D2 Weaving 90-5	49.49
05 BC 8a 90-24	21.99
	313.37 Total tons

Ave. 241.05 tons per hour

Raw Aggregate Blends (Cold Feed)

Product ID

04. St. Binden 90-21	Fine Agg.	32.8 %
	Course Agg.	67.2 %
17 TDS Weining 90-10	Fine Agg.	53.7 %
	Course Agg.	46.3 %
02. TDS Weining 90-5	Fine Agg.	59.7 %
	Course Agg.	40.3 %
05 BCCC 90-24	Fine Agg.	32.8 %
	Course Agg.	67.2 %

Fine Agg. Gradation

Sieve

200	7.9 %
100	15.8 %
50	36.7 %
30	37.6 %
16	49.7 %
8	71.3 %
4	99.7 %
3/8	100 %

At this time, General we will pick up another 2% #200 mesh material off of the coarse aggregate.

T r u c k e r t R e t e r r a n c e R e p o r t

REPORT DATE: 08/24/90

DATE: 08/24/90 TIME: 17:57 PLANT ID: 2 PAGE: 3

Ticket	Rec. Code	Time	Date	Trans. Code	Truck Id	Cost Id	Job Id	Pdt Id	Product Name	Tons
0 1284	A	1423	082490	0	DC65	0400480	25512	05	BCBC 90-22	21.93
0003285	A	1428	082490	0	DC60	0400480	25512	05	BCBC 90-22	22.01
0003286	A	1435	082490	0	MT106	0400700	27329	04	ST. BIND 90-21	22.00
0 1287	A	1441	082490	0	64	0400700	27329	04	ST. BIND 90-21	22.01
0 1288	A	1444	082490	0	CRNL	0400801	23634	02	ST. ID-2W 90-5	9.00
0003289	A	1446	082490	0	CRNL	0400801	23632	01	ST. TOP	4.00
0 1290	A	1452	082490	0	GW1	0400700	27329	04	ST. BIND 90-21	22.01
0 1291	A	1457	082490	0	RI109	0400480	25512	05	BCBC 90-22	22.01
0003292	A	1502	082490	0	92	0400700	27329	04	ST. BIND 90-21	21.94
0 1293	A	1507	082490	0	MT112	0400700	27329	04	ST. BIND 90-21	22.01
0 1294	A	1513	082490	0	MT115	0400700	27329	04	ST. BIND 90-21	22.01
0003295	A	1518	082490	0	MT114	0400700	27329	04	ST. BIND 90-21	21.98
0003296	A	1523	082490	0	R17	0400700	27329	04	ST. BIND 90-21	22.02
0 1297	A	1528	082490	0	R16	0400480	25512	05	BCBC 90-22	21.98
0 1298	A	1533	082490	0	R19	0400700	27329	04	ST. BIND 90-21	22.01
0003299	A	1538	082490	0	R3	0400700	27329	04	ST. BIND 90-21	22.00
0 3300	A	1546	082490	0	R18	0400700	27329	04	ST. BIND 90-21	22.01
0 3301	A	1605	082490	0	DC65	0400480	25512	05	BCBC 90-22	22.01
0003302	A	1610	082490	0	DC60	0400480	25512	05	BCBC 90-22	22.00
0 3303	A	1644	082490	0	RI109	0400480	25512	05	BCBC 90-22	21.99
0 3304	A	1656	082490	0	R16	0400480	25512	05	BCBC 90-22	22.00
										Report Total 2616.80

T-10 Control

F2 or F3 or F4 or F5 or F6

F3 or F4 or F5 or F6

DATE: 08/24/90

TIME: 17:56

REPORT DATE: 08/24/90

PLANT ID: 2

PAGE: 2

Ticket	Rec. Code	Time	Date	Tran. Code	Truck Id	Cust Id	Job Id	Pdt Id	Product Name	Tons
103231	A	0953	082490	0	R18	0408700	27329	04	ST.BIND 90-21	21.96
103232	A	0958	082490	0	MT116	0400480	27592	04	ST.BIND 90-21	21.99
103233	A	1001	082490	0	OWN1	0405905	23811	02	ST.ID-2W 90-5	7.99
103234	A	1009	082490	0	R17	04003945	26191	02	ST.ID-2W 90-5	21.99
103235	A	1014	082490	0	V5	0408700	27329	04	ST.BIND 90-21	22.01
103236	A	1020	082490	0	DC60	0400480	27592	04	ST.BIND 90-21	21.99
103237	A	1025	082490	0	MT101	0403505	27763	17	103-H 90-10	21.99
103238	A	1029	082490	0	MT106	0403505	27763	17	103-H 90-10	21.97
103239	A	1033	082490	0	MT105	0403505	27763	17	103-H 90-10	21.97
103240	A	1036	082490	0	MT106	0403505	27763	17	103-H 90-10	21.92
103241	A	1043	082490	0	MT107	0403505	27763	17	103-H 90-10	22.01
103242	A	1047	082490	0	MT104	0403505	27763	17	103-H 90-10	22.01
103243	A	1052	082490	0	OWN1	0408001	23634	02	ST.ID-2W 90-5	8.98
103244	A	1057	082490	0	R3	0403945	24191	02	ST.ID-2W 90-5	21.99
103245	A	1101	082490	0	MT119	0400480	27592	04	ST.BIND 90-21	22.01
103246	A	1106	082490	0	G16	0408700	27329	04	ST.BIND 90-21	23.01
103247	A	1110	082490	0	MT120	0408680	27592	04	ST.BIND 90-21	21.99
103248	A	1114	082490	0	R1109	0400480	27592	04	ST.BIND 90-21	22.02
103249	A	1119	082490	0	V2	0408700	27329	04	ST.BIND 90-21	22.02
103250	A	1123	082490	0	R16	0400480	27592	04	ST.BIND 90-21	22.03
103251	A	1127	082490	0	G4	0408700	27329	04	ST.BIND 90-21	22.02
103252	A	1131	082490	0	DC65	0400480	27592	04	ST.BIND 90-21	21.97
103253	A	1134	082490	0	OWN1	0408001	23634	02	ST.ID-2W 90-5	22.00
103254	A	1139	082490	0	MT112	0408700	27329	04	ST.BIND 90-21	8.95
103255	A	1143	082490	0	MT115	0408700	27329	04	ST.BIND 90-21	22.00
103256	A	1148	082490	0	MT114	0408700	27329	04	ST.BIND 90-21	22.05
103257	A	1152	082490	0	G11	0408700	27329	04	ST.BIND 90-21	22.08
103258	A	1158	082490	0	MT110	0400480	27592	04	ST.BIND 90-21	22.00
103259	A	1202	082490	0	MT116	0400480	27592	04	ST.BIND 90-21	21.99
103260	A	1207	082490	0	DC60	0400480	27592	04	ST.BIND 90-21	22.00
103261	A	1211	082490	0	MT119	0400480	27592	04	ST.BIND 90-21	22.00
103262	A	1216	082490	0	MT120	0400480	27592	04	ST.BIND 90-21	22.01
103263	A	1220	082490	0	MT109	0403505	27743	12	103-H 90-10	22.09
103264	A	1225	082490	0	MT111	0403505	27743	17	103-H 90-10	21.97
103265	A	1230	082490	0	V3	0408700	27329	04	ST.BIND 90-21	21.98
103266	A	1235	082490	0	R19	0408700	27329	04	ST.BIND 90-21	22.01
103267	A	1239	082490	0	R1109	0400480	27592	04	ST.BIND 90-21	22.00
103268	A	1243	082490	0	OWN1	0405905	23811	02	ST.ID-2W 90-5	22.01
103269	A	1248	082490	0	OWN1	0408001	24167	02	ST.ID-2W 90-5	3.50
103270	A	1255	082490	0	MT118	0403505	27743	17	103-H 90-10	15.00
103271	A	1301	082490	0	MT117	0403505	27743	17	103-H 90-10	22.00
103272	A	1307	082490	0	MT102	0403505	27743	17	103-H 90-10	21.94
103273	A	1312	082490	0	R16	0400480	27592	04	ST.BIND 90-21	22.01
103274	A	1316	082490	0	R18	0408700	27329	04	ST.BIND 90-21	22.00
103275	A	1321	082490	0	V5	0408700	27329	04	ST.BIND 90-21	22.01
103276	A	1326	082490	0	MT110	0403945	27766	05	BCDC 90-24	21.96
103277	A	1335	082490	0	MT116	0403945	23811	02	ST.ID-2W 90-5	21.99
103278	A	1338	082490	0	OWN1	0408001	23634	02	ST.ID-2W 90-5	21.99
103279	A	1346	082490	0	MT101	0403505	27743	17	103-H 90-10	9.00
103280	A	1351	082490	0	MT103	0403505	27743	17	103-H 90-10	22.01
103281	A	1357	082490	0	MT119	0408700	27329	04	ST.BIND 90-21	21.99
103282	A	1405	082490	0	MT120	0408300	24167	02	ST.ID-2W 90-5	21.99
103283	A	1411	082490	0	G16	0408700	27329	04	ST.BIND 90-21	23.00

REPORT DATE: 08/24/90

DATE: 08/24/90

TIME: 17:56

PLANT ID: 2

PAGE 8

Jobkey	Rec. Code	Time	Date	Tran. Code	Truck Id	Cust Id	Job Id	Pdt Id	Product Name	Tons
003231	A	0953	082490	0	A18	0400700	27329	04	ST.BIND 90-21	21.96
003232	A	0958	082490	0	MT116	0400480	27392	04	ST.BIND 90-21	21.99
003233	A	1001	082490	0	DN11	04025905	23811	02	ST.ID-2W 90-5	7.99
003234	A	1009	082490	0	A17	0403945	24191	02	ST.ID-2W 90-5	22.01
003235	A	1014	082490	0	V5	0400700	27329	04	ST.BIND 90-21	21.99
003236	A	1020	082490	0	DC68	0400480	27392	04	ST.BIND 90-21	22.00
003237	A	1025	082490	0	MT101	0403585	27763	17	103-H 90-20	21.99
003238	A	1029	082490	0	MT106	0403585	27743	17	103-H 90-10	21.97
003239	A	1033	082490	0	MT105	0403585	27743	17	103-H 90-10	21.92
003240	A	1038	082490	0	MT108	0403585	27763	17	103-H 90-10	21.92
003241	A	1043	082490	0	MT107	0403585	27743	17	103-H 90-10	22.01
003242	A	1047	082490	0	MT104	0403585	27743	17	103-H 90-10	22.01
003243	A	1052	082490	0	DN11	0400001	23634	02	ST.ID-2W 90-5	8.98
003244	A	1057	082490	0	R3	0403945	24191	02	ST.ID-2W 90-5	21.99
003245	A	1101	082490	0	MT119	0400480	27592	04	ST.BIND 90-21	22.01
003246	A	1105	082490	0	616	0400700	27329	04	ST.BIND 90-21	22.01
003247	A	1110	082490	0	MT120	0400480	27592	04	ST.BIND 90-21	21.99
003248	A	1114	082490	0	R1109	0400480	27592	04	ST.BIND 90-21	22.02
003249	A	1119	082490	0	V2	0400700	27329	04	ST.BIND 90-21	22.03
003250	A	1123	082490	0	R16	0400480	27592	04	ST.BIND 90-21	22.02
003251	A	1127	082490	0	64	0400700	27329	04	ST.BIND 90-21	21.97
003252	A	1131	082490	0	DC65	0400480	27592	04	ST.BIND 90-21	22.04
003253	A	1136	082490	0	DN11	0400001	23634	02	ST.ID-2W 90-5	8.95
003254	A	1139	082490	0	MT112	0400700	27329	04	ST.BIND 90-21	22.00
003255	A	1143	082490	0	MT115	0400700	27329	04	ST.BIND 90-21	22.05
003256	A	1148	082490	0	MT114	0400700	27329	04	ST.BIND 90-21	22.00
003257	A	1152	082490	0	GW1	0400700	27329	04	ST.BIND 90-21	22.00
003258	A	1158	082490	0	MT110	0400480	27592	04	ST.BIND 90-21	21.99
003259	A	1202	082490	0	MT115	0400480	27592	04	ST.BIND 90-21	22.00
003260	A	1207	082490	0	DC68	0400480	27592	04	ST.BIND 90-21	22.00
003261	A	1211	082490	0	MT119	0400480	27592	04	ST.BIND 90-21	22.00
003262	A	1216	082490	0	MT120	0400480	27592	04	ST.BIND 90-21	22.01
003263	A	1220	082490	0	MT109	0403505	27743	17	103-H 90-10	21.97
003264	A	1225	082490	0	MT111	0403505	27743	17	103-H 90-10	21.98
003265	A	1230	082490	0	V3	0400700	27329	04	ST.BIND 90-21	22.01
003266	A	1235	082490	0	R19	0400700	27329	04	ST.BIND 90-21	22.00
003267	A	1239	082490	0	R1109	0400480	27592	04	ST.BIND 90-21	22.00
003268	A	1243	082490	0	DN11	04025905	23811	02	ST.ID-2W 90-5	3.50
003269	A	1248	082490	0	DN11	0400300	24147	02	ST.ID-2W 90-5	15.00
003270	A	1255	082490	0	MT118	0403505	27743	17	103-H 90-10	22.00
003271	A	1301	082490	0	MT117	0403505	27743	17	103-H 90-10	21.94
003272	A	1307	082490	0	MT102	0403505	27743	17	103-H 90-10	22.01
003273	A	1312	082490	0	R16	0400480	27592	04	ST.BIND 90-21	22.01
003274	A	1316	082490	0	A18	0400700	27329	04	ST.BIND 90-21	22.00
003275	A	1321	082490	0	V5	0400700	27329	04	ST.BIND 90-21	21.99
003276	A	1326	082490	0	MT110	0403945	23766	05	DCBC 90-24	21.99
003277	A	1335	082490	0	MT116	0403945	24191	02	ST.ID-2W 90-5	21.99
003278	A	1339	082490	0	DN11	0400001	23634	02	ST.ID-2W 90-5	9.00
003279	A	1346	082490	0	MT101	0403505	27743	17	103-H 90-10	22.01
003280	A	1351	082490	0	MT103	0403505	27743	17	103-H 90-10	21.99
003281	A	1357	082490	0	MT119	0400700	27329	04	ST.BIND 90-21	21.98
003282	A	1405	082490	0	MT120	0400300	24147	02	ST.ID-2W 90-5	21.99
003283	A	1411	082490	0	616	0400700	27329	04	ST.BIND 90-21	22.00

TIME LOGIC **REPORT** **TIME** **REPORT** **REPORT**

DATE: 08/24/90 TIME: 17:56 REPORT DATE: 08/24/90

TIME: 17:56

PLANT ID: 2

PAGE: 1

Ticket	Rec. Code	Time	Date	Trans. Code	Track Id	Cust. Id	Job Id	Part Id	Product Name	Yard
003178	A	0539	082490	0	MT102	0403505	27743	17	103-W 90-10	21.90
003179	A	0545	082490	0	MT103	0403505	27743	17	103-W 90-10	22.04
003180	A	0549	082490	0	MT101	0403505	27743	17	103-W 90-10	22.07
003181	A	0601	082490	0	RI58	0400205	27788	02	ST102-W 90-3	21.90
003182	A	0610	082490	0	MT105	0403505	27743	17	103-W 90-10	22.04
003183	A	0615	082490	0	V3	0400700	27329	04	ST.BIND 90-21	21.96
003184	A	0621	082490	0	VS	0400700	27329	04	ST.BIND 90-21	21.97
003185	A	0625	082490	0	R19	0400700	27329	04	ST.BIND 90-21	22.01
003186	A	0629	082490	0	R18	0400700	27329	04	ST.BIND 90-21	22.01
003187	A	0633	082490	0	Q2	0400700	27329	04	ST.BIND 90-21	22.02
003188	A	0635	082490	0	MT105	0403505	27743	17	103-W 90-10	21.94
003189	A	0642	082490	0	MT108	0403505	27743	17	103-W 90-10	21.94
003190	A	0646	082490	0	MT107	0403505	27743	17	103-W 90-10	21.98
003191	A	0650	082490	0	MT104	0403505	27743	17	103-W 90-10	21.94
003192	A	0657	082490	0	G16	0400700	27329	04	ST.BIND 90-21	23.06
003193	A	0701	082490	0	G4	0400700	27329	04	ST.BIND 90-21	22.03
003194	A	0713	082490	0	RI29	0400205	27788	02	ST.ID-2W 90-5	22.00
003195	A	0717	082490	0	R16	0400400	27592	04	ST.BIND 90-21	22.00
003196	A	0721	082490	0	MT112	0400700	27329	04	ST.BIND 90-21	21.95
003197	A	0725	082490	0	KT115	0400700	27329	04	ST.BIND 90-21	21.96
003198	A	0730	082490	0	MT114	0400700	27329	04	ST.BIND 90-21	22.04
003199	A	0734	082490	0	MT118	0400400	27592	04	ST.BIND 90-21	21.98
003200	A	0740	082490	0	G41	0400700	27329	04	ST.BIND 90-21	22.04
003201	A	0744	082490	0	MT116	0400400	27592	04	ST.BIND 90-21	22.01
003202	A	0748	082490	0	DC50	0400400	27592	04	ST.BIND 90-21	21.99
003203	A	0752	082490	0	DC65	0400400	27592	04	ST.BIND 90-21	22.01
003204	A	0758	082490	0	DN11	0400001	23634	02	ST.ID-2W 90-5	9.01
003205	A	0800	082490	0	DN11	0400001	23634	02	ST.ID-2W 90-5	9.04
003206	A	0802	082490	0	DN11	0400001	23634	02	ST.ID-2W 90-5	9.01
003207	A	0806	082490	0	MT119	0400400	27592	04	ST.BIND 90-21	21.97
003208	A	0811	082490	0	MT120	0400400	27592	04	ST.BIND 90-21	22.012
003209	A	0816	082490	0	RI109	0400400	27592	04	ST.BIND 90-21	22.007
003210	A	0820	082490	0	MT109	0403505	27743	17	103-W 90-10	21.92
003211	A	0825	082490	0	MT111	0403505	27743	17	103-W 90-10	22.00
003212	A	0829	082490	0	MT118	0403505	27743	17	103-W 90-10	21.98
003213	A	0833	082490	0	MT117	0403505	27743	17	103-W 90-10	21.98
003214	A	0838	082490	0	R16	0400400	27592	04	ST.BIND 90-21	22.03
003215	A	0843	082490	0	MT110	0400400	27592	04	ST.BIND 90-21	22.02
003216	A	0847	082490	0	DC65	0400400	27592	04	ST.BIND 90-21	22.01
003217	A	0851	082490	0	MT116	0400400	27592	04	ST.BIND 90-21	21.98
003218	A	0856	082490	0	DC60	0400400	27592	04	ST.BIND 90-21	21.99
003219	A	0900	082490	0	MT119	0400400	27592	04	ST.BIND 90-21	22.01
003220	A	0905	082490	0	MT120	0400400	27592	04	ST.BIND 90-21	22.00
003221	A	0911	082490	0	MT102	0403505	27743	17	103-W 90-10	21.98
003222	A	0914	082490	0	DN11	0403175	24183	02	ST.ID-2W 90-5	6.98
003223	A	0915	082490	0	DN11	0403175	24183	02	ST.ID-2W 90-5	6.96
003224	A	0922	082490	0	RI109	0400400	27592	04	ST.BIND 90-21	22.01
003225	A	0926	082490	0	43	0400700	27329	04	ST.BIND 90-21	21.98
003226	A	0930	082490	0	R16	0400400	27592	04	ST.BIND 90-21	21.96
003227	A	0936	082490	0	R19	0400700	27329	04	ST.BIND 90-21	22.02
003228	A	0940	082490	0	DC65	0400400	27592	04	ST.BIND 90-21	22.06
003229	A	0944	082490	0	MT103	0403505	27743	17	103-W 90-10	21.91

MATERIAL USES

PAINT

Raw Material

Agg Name			
AGG4	1334.625	Tons	
AGG61	0725.790	Tons	
AGG7	0049.305	Tons	
AGG2	0318.950	Tons	
AGG3	0061.195	Tons	
	0000.000	Tons	
	0000.000	Tons	
Agg Total	02489.865	Tons	

Geo Name

ASP1 0126.986 Tons
0000.000 Tons

Asp Total 00126.986 Tons

Grand Total 02616.851 Tons
Print .

Product Totals

Fri Aug 24/90 17:39:23 Libra Systems

Notes: Highest tons Per Hour 308 during fest #1
8:11 - 9:11

$$g: U \rightarrow \mathcal{G}(U)$$

FABRIC FILTER DATA SHEET -- PARAMETERS
OF DESIGN AND OPERATION AFFECTING PERFORMANCE

Facility Springfield Pipe Asphalt Boiler No. 10

Monitor Name Asphalt plant Test No. 1-5

Design Efficiency 95% Test Date 8/24/90

Sampling Time (minutes)	Recording Interval Clock Time (24 hr. clock)	Pressure Drop Across Baghouse (in. H ₂ O)	Pressure Drop Across Compartment (in. H ₂ O)				
			1	2	3	4	5
10:10 AM		2.0 "					
10:20 AM		2.0 "					
10:30 AM		2.1 "					
10:40 AM		2.0 "					
10:50 AM		2.0 "					
11:00 AM		2.0 "					
11:10 AM		2.0 "					
11:20 AM		2.0 "					
11:30 AM		2.0 "					
11:40 AM		2.0 "					
11:50 AM		2.0 "					
12:00 PM		2.0 "					
12:10 PM		2.0 "					
12:20 PM		2.0 "					
12:30 PM		2.0 "					
12:40 PM		2.0 "					
12:50 PM		2.0 "					
1:00 PM		2.0 "					
1:10 PM		2.0 "					
1:20 PM		2.0 "					
1:30 PM		2.0 "					
1:40 PM		2.0 "					
1:50 PM		2.0 "					
2:00 PM		2.0 "					
2:10 PM		2.0 "					
2:20 PM		2.0 "					
2:30 PM		2.0 "					
2:40 PM		2.0 "					
2:50 PM		2.0 "					
3:00 PM		2.0 "					
3:10 PM		2.0 "					
3:20 PM		2.0 "					
3:30 PM		2.0 "					
3:40 PM		2.0 "					
3:50 PM		2.0 "					
4:00 PM		2.0 "					
4:10 PM		2.0 "					
4:20 PM		2.0 "					
4:30 PM		2.0 "					
4:40 PM		2.0 "					
4:50 PM		2.0 "					
5:00 PM		2.0 "					
5:10 PM		2.0 "					
5:20 PM		2.0 "					
5:30 PM		2.0 "					
5:40 PM		2.0 "					
5:50 PM		2.0 "					
6:00 PM		2.0 "					
6:10 PM		2.0 "					
6:20 PM		2.0 "					
6:30 PM		2.0 "					
6:40 PM		2.0 "					
6:50 PM		2.0 "					
7:00 PM		2.0 "					
7:10 PM		2.0 "					
7:20 PM		2.0 "					
7:30 PM		2.0 "					
7:40 PM		2.0 "					
7:50 PM		2.0 "					
8:00 PM		2.0 "					
8:10 PM		2.0 "					
8:20 PM		2.0 "					
8:30 PM		2.0 "					
8:40 PM		2.0 "					
8:50 PM		2.0 "					
9:00 PM		2.0 "					
9:10 PM		2.0 "					
9:20 PM		2.0 "					
9:30 PM		2.0 "					
9:40 PM		2.0 "					
9:50 PM		2.0 "					
10:00 PM		2.0 "					
10:10 PM		2.0 "					
10:20 PM		2.0 "					
10:30 PM		2.0 "					
10:40 PM		2.0 "					
10:50 PM		2.0 "					
11:00 PM		2.0 "					
11:10 PM		2.0 "					
11:20 PM		2.0 "					
11:30 PM		2.0 "					
11:40 PM		2.0 "					
11:50 PM		2.0 "					
12:00 AM		2.0 "					
12:10 AM		2.0 "					
12:20 AM		2.0 "					
12:30 AM		2.0 "					
12:40 AM		2.0 "					
12:50 AM		2.0 "					
1:00 AM		2.0 "					
1:10 AM		2.0 "					
1:20 AM		2.0 "					
1:30 AM		2.0 "					
1:40 AM		2.0 "					
1:50 AM		2.0 "					
2:00 AM		2.0 "					
2:10 AM		2.0 "					
2:20 AM		2.0 "					
2:30 AM		2.0 "					
2:40 AM		2.0 "					
2:50 AM		2.0 "					
3:00 AM		2.0 "					
3:10 AM		2.0 "					
3:20 AM		2.0 "					
3:30 AM		2.0 "					
3:40 AM		2.0 "					
3:50 AM		2.0 "					
4:00 AM		2.0 "					
4:10 AM		2.0 "					
4:20 AM		2.0 "					
4:30 AM		2.0 "					
4:40 AM		2.0 "					
4:50 AM		2.0 "					
5:00 AM		2.0 "					
5:10 AM		2.0 "					
5:20 AM		2.0 "					
5:30 AM		2.0 "					
5:40 AM		2.0 "					
5:50 AM		2.0 "					
6:00 AM		2.0 "					
6:10 AM		2.0 "					
6:20 AM		2.0 "					
6:30 AM		2.0 "					
6:40 AM		2.0 "					
6:50 AM		2.0 "					
7:00 AM		2.0 "					
7:10 AM		2.0 "					
7:20 AM		2.0 "					
7:30 AM		2.0 "					
7:40 AM		2.0 "					
7:50 AM		2.0 "					
8:00 AM		2.0 "					
8:10 AM		2.0 "					
8:20 AM		2.0 "					
8:30 AM		2.0 "					
8:40 AM		2.0 "					
8:50 AM		2.0 "					
9:00 AM		2.0 "					
9:10 AM		2.0 "					
9:20 AM		2.0 "					
9:30 AM		2.0 "					
9:40 AM		2.0 "					
9:50 AM		2.0 "					
10:00 AM		2.0 "					
10:10 AM		2.0 "					
10:20 AM		2.0 "					
10:30 AM		2.0 "					
10:40 AM		2.0 "					
10:50 AM		2.0 "					
11:00 AM		2.0 "					
11:10 AM		2.0 "					
11:20 AM		2.0 "					
11:30 AM		2.0 "					
11:40 AM		2.0 "					
11:50 AM		2.0 "					
12:00 PM		2.0 "					
12:10 PM		2.0 "					
12:20 PM		2.0 "					
12:30 PM		2.0 "					
12:40 PM		2.0 "					
12:50 PM		2.0 "					
1:00 PM		2.0 "					
1:10 PM		2.0 "					
1:20 PM		2.0 "					
1:30 PM		2.0 "					
1:40 PM		2.0 "					
1:50 PM		2.0 "					
2:00 PM		2.0 "					
2:10 PM		2.0 "					
2:20 PM		2.0 "					
2:30 PM		2.0 "					
2:40 PM		2.0 "					
2:50 PM		2.0 "					
3:00 PM		2.0 "					
3:10 PM		2.0 "					
3:20 PM		2.0 "					
3:30 PM		2.0 "					
3:40 PM		2.0 "					
3:50 PM		2.0 "					
4:00 PM		2.0 "					
4:10 PM		2.0 "					
4:20 PM		2.0 "					
4:30 PM		2.0 "					
4:40 PM		2.0 "					
4:50 PM		2.0 "					
5:00 PM		2.0 "					
5:10 PM		2.0 "					
5:20 PM		2.0 "					
5:30 PM		2.0 "					
5:40 PM		2.0 "					
5:50 PM		2.0 "					
6:00 PM		2.0 "					
6:10 PM		2.0 "					
6:20 PM		2.0 "					
6:30 PM		2.0 "					
6:40 PM		2.0 "					
6:50 PM		2.0 "					
7:00 PM		2.0 "					
7:10 PM		2.0 "					
7:20 PM		2.0 "					
7:30 PM		2.0 "					
7:40 PM		2.0 "					
7:50 PM		2.0 "					
8:00 PM		2.0 "					
8:10 PM		2.0 "					
8:20 PM		2.0 "					
8:30 PM		2.0 "					
8:40 PM		2.0 "					
8:50 PM		2.0 "					
9:00 PM		2.0 "					
9:10 PM		2.0 "					
9:20 PM		2.0 "					
9:30 PM		2.0 "					
9:40 PM		2.0 "					
9:50 PM		2.0 "					
10:00 PM		2.0 "					
10:10 PM		2.0 "					
10:20 PM		2.0 "					
10:30 PM		2.0 "					
10:40 PM		2.0 "					
10:50 PM		2.0 "					
11:00 PM		2.0 "					
11:10 PM		2.0 "					
11:20 PM		2.0 "					
11:30 PM		2.0 "					
11:40 PM		2.0 "					
11:50 PM		2.0 "					
12:00 AM		2.0 "					
12:10 AM		2.0 "					

E. LABORATORY DATA

ANALYTICAL DATA

Test No.	SA-1	SA-2	SA-3
Test Date	8/24/90	8/24/90	8/24/90
Filter No.	100022	100020	100036
Filter Tare, mg	623.5	626.6	616.5
Filter Final, mg	629.3	633.5	621.4
Filter Net, mg	5.8	6.9 ✓	4.9
Probe Acetone, mg	14.3	14.9 ✓	14.7
Probe Water	1.1	0.7 ✓	3.2
Impinger Sol., mg	18.3	19.3	9.0
Impinger Insol., mg	10.0	10.3 ✓	10.5
Impinger Acetone, mg	2.2	2.1	40.1
Acetone Blank mg*	0.2		
Water Blank mg*	0.4		
Total particulate, mg	33.4	34.9	40.1

*Data not corrected for blank values.

Analyst Kris Kennedy
Reviewer Patricia O'Donnell

F. V. E. CERTIFICATION

VISIBLE EMISSIONS EVALUATOR

This is to certify that

Visible Emissions

met the specifications of Federal Reference Method 9 and qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates of Raleigh, North Carolina. This certificate is valid for six months from date of issue.

John Doe

President

John Doe

Vice President

Certificate Number

Location

Date of Issue

John Doe

Program Manager