

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AmTest Inc.

Professional
Analytical
Services

14603 N.E. 87th St.
Redmond, WA
98052

Fax: 206 883 3495
Tel: 206 885 1664

SOURCE

EMISSION

EVALUATION

OCTOBER 31, 1990

RECEIVED

Prepared For:

NOV 9 - 1990

**PUGET SOUND AIR POLLUTION
CONTROL AGENCY**

✓
**WOODWORTH & COMPANY, INC.
CEDARAPIDS DRUM MIX ASPHALT PLANT
VENTURI WET SCRUBBER SYSTEM
TACOMA, WASHINGTON
SEPTEMBER 6, 1990**

Submitted by:

Kris A. Hansen

**KRIS A. HANSEN
DIRECTOR, AIR QUALITY DIVISION**

James A. Guenthoer

**JAMES A. GUENTHOER
SR. PROJECT ENGINEER**

**AM TEST, INC.
AIR QUALITY DIVISION
REDMOND, WASHINGTON**

*We certify that the information contained herein is accurate
and complete to the best of our knowledge.*

TABLE OF CONTENTS

	<u>Pages</u>
INTRODUCTION	1-2
SUMMARY OF RESULTS	3-4
Methods 1-5 Summary of Results	4
SOURCE OPERATION	5
METHODOLOGY REFERENCES	6
SAMPLING PROCEDURES	7-8
SAMPLE TRAIN	9-10
SAMPLE CLEAN-UP AND ANALYSIS	11-13
QUALITY ASSURANCE PLAN	14-17
CALIBRATION PROCEDURES AND FREQUENCY	14-15
SAMPLE RECOVERY AND FIELD DOCUMENTATION	16
DATA REDUCTION, VALIDATION AND REPORTING	16-17
CALCULATION OF RESULTS	18
Method 5 Computer Printouts of Results	19-21
APPENDIX	22-46
Process Information	23
Figure 1. Location of sample ports and traverse points	24
Method 1 - Minimum Number of Traverse Points	25
Method 1 - Location of Traverse Points	26
Method 2 - Stack Gas Velocity	27
Method 3 - Molecular Weight & Excess Air Calc.	27
Method 4 - Stack Gas Moisture	28
Method 5 - Particulate Emission Conc. Calc.	29-30
Nomenclature - Method 5 Calculations	31-32
Sample Calculation Sheets	33-35
Figure 2. Particulate Sampling Train Schematic	36
Dry Gas Meter Calibration Information	37
Professional Resumes of Project Personnel	38-41
Am Test Laboratory - Information and Services	42-43
Field Data Sheets	44-46

INTRODUCTION

The purpose of this source emission evaluation performed at Woodworth & Company, Inc.'s Cedarapids drum mix asphalt plant located in Tacoma, Washington was to quantify the particulate matter emission concentration at the scrubber outlet. This drum mix asphalt plant was manufactured by Cedarapids and is equipped with a Cedarapids venturi wet scrubber system for controlling particulate matter emissions. According to plant personnel, the plant was producing approximately 290 tons per hour of mix on the test day. Three (3) particulate matter emission tests were performed on September 6, 1990. These tests were performed utilizing Environmental Protection Agency (EPA) procedures specified in the July 1, 1989 Title 40 Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A, Methods 1, 2, 3A, 4 and 5. Methods 1 and 2 were performed to determine the stack gas velocity, temperature and volumetric flow rate. Method 3A was performed to determine the stack gas molecular weight and composition of the stack gas (carbon monoxide, carbon dioxide, and oxygen content). Method 4 was performed to determine the moisture content of the stack gas. Method 5 was performed to determine the particulate matter emission concentration of the stack gas. Condensable matter present in the gas stream was quantified by performing an extraction of the Method 5 impinger liquid as specified in Regulation I of the Puget Sound Air Pollution Control Agency (PSAPCA) regulations.

Mr. James A. Guenthoer, Sr. Project Engineer with Am Test, Inc.'s Air Quality Division based in Redmond, Washington performed the field sampling. Laboratory analysis, data reduction and final report preparation was performed by Mr. Kris A. Hansen, Ms. Angela F. Blaisdell, and Ms. Jan M. Widmeyer of Am Test. This

**project was coordinated by Mr. John Greco of Woodworth & Company, Inc. Mr. R.
A. Suver was the plant operator for Woodworth & Company on the test day.**

SUMMARY OF RESULTS

The results of the three (3) Method 1-5 compliance tests for determining particulate matter emission concentration, collected at Woodworth & Company, Inc.'s drum mix asphalt plant located in Tacoma, Washington on September 6, 1990 are summarized in Table 1 below, and on page 4 on a computer printout titled "Methods 1-5 Summary of Results".

Table 1. Summary of particulate matter emission concentration results from samples collected September 6, 1990 at Woodworth and Company, Inc.'s drum mix asphalt plant located in Tacoma, Washington.

SAMPLE RUN #	AM TEST LAB #	TOTAL PARTIC. CONC. gr/dscf	TOTAL PARTIC. CONC. mg/dscm	MASS EMISSION RATE lb/hr	AIR FLOW dscf/min
1	00399	0.118	270.9	37.4	36900
2	00400	0.036	83.3	11.4	36467
3	00401	0.049	111.0	15.7	37716
AVERAGE RUNS 2 & 3		0.043	97.2	13.6	37092

The total particulate emission concentration is presented in units of grains per dry standard cubic foot (gr/dscf) and milligrams per dry standard cubic meter (mg/dscm). The particulate matter mass emission rate is presented in units of pounds per hour (lb/hr). Airflow is also presented in units of dry standard cubic feet per minute (dscf/min). A process upset occurred during run 1, therefore an average concentration for runs 2 and 3 is included in Table 1. Computer printouts which detail the complete results of runs 1-3 and may be found following the "Calculation of Results" section of this report on pages 19-21. Field data sheets and example calculations of results are included in the Appendix of this report.

METHODS 1-5 SUMMARY OF RESULTS
AM TEST, INC. - AIR QUALITY DIVISION

FILE NAME: 72\WOODSUM
CLIENT: WOODWORTH & CO., INC.
LOCATION: TACOMA, WA
SAMPLE SITE: SCRUBBER EXIT STACK
OPERATORS: J. GUENTHOER

	RUN #1	RUN #2	RUN #3	AVERAGE
LAB #:	00399	00400	00401	-----
DATE:	9/6/90	9/6/90	9/6/90	
START TIME:	06:34	09:36	12:32	
STOP TIME:	07:40	10:43	13:37	
SAMPLE TIME (minutes):	60.0	60.0	60.0	
VOLUME SAMPLED (cubic feet):	38.091	39.549	40.218	39.286
VOLUME SAMPLED (dry std. cubic feet):	38.093	39.446	39.375	38.971
VOLUME SAMPLED (dry std. cubic meters):	1.079	1.117	1.115	1.104
STACK GAS MOISTURE (percent):	22.50	25.79	22.61	23.63
BAROMETRIC PRESSURE (inches of Hg):	30.00	30.04	30.04	30.03
STATIC PRESSURE (inches of H2O):	0.02	0.02	0.02	0.02
STACK PRESSURE (inches of Hg):	30.00	30.04	30.04	30.03
STACK TEMPERATURE (degrees F.):	147.4	147.5	147.5	147.5
STACK TEMPERATURE (degrees R.):	607.4	607.5	607.5	607.5
CARBON DIOXIDE (percent):	6.0	6.0	5.9	6.0
OXYGEN (percent):	12.8	12.8	12.9	12.8
CARBON MONOXIDE (ppm):	209	209	207	208
MOLECULAR WEIGHT (dry, g/g-mole):	29.47	29.47	29.46	29.47
MOLECULAR WEIGHT (wet, g/g-mole):	26.89	26.51	26.87	26.76
AVERAGE VELOCITY HEAD (inches of H2O):	0.035	0.036	0.036	0.036
PITOT TUBE Cp:	0.838	0.838	0.838	
VELOCITY (feet/second):	11.59	11.95	11.85	11.80
STACK DIAMETER (inches):	120	120	120	
STACK AREA (square feet):	78.540	78.540	78.540	
AIRFLOW (dry std. cubic feet per min.):	36900.4	36467.3	37715.5	37027.7
AIRFLOW (actual cubic feet per min.):	54625.2	56305.4	55846.5	55592.4
NOZZLE DIAMETER (inches):	0.501	0.501	0.501	
ISOKINETICS (percent):	99	103	100	101
FRONT-HALF PARTIC. EMISS. CONC. (gr/dscf):	0.053	0.032	0.034	0.040
BACK-HALF PARTIC. EMISS. CONC. (gr/dscf):	0.065	0.004	0.014	0.028
TOTAL PARTIC. EMISS. CONC. (gr/dscf):	0.118	0.036	0.049	0.068
PARTICULATE EMISSION CONC. (mg/dscm):	270.9	83.3	111.0	155.1
PARTIC. MASS EMISSION RATE (lb/hr):	37.4	11.4	15.7	21.5

SOURCE OPERATION

Woodworth & Company, Inc.'s drum mix asphalt plant located in Tacoma, Washington was manufactured by Cedarapids. This plant (Model 10044ADM, identification #39084), constructed and installed in 1984, is equipped with a Cedarapids venturi wet scrubber system (Model 10044ADM) to control particulate matter emissions. The scrubber system was operated with a water pressure of 105 psi and 100% recycled scrubber water. The water inlet temperature was 70° F, and the outlet water temperature was 140° F. The pressure drop across the venturi was approximately 21 inches of water on the test day. According to plant personnel, the plant operated at an average production rate of 290 tons/hour with an asphalt discharge temperature of 290° F. Process and production conditions were considered to be representative during runs 2 and 3, according to Woodworth & Company, Inc.'s personnel. A process upset occurred during run 1. A process information sheet, completed by Mr. R. A. Suver is included in the Appendix of this report.

METHODOLOGY REFERENCES

Sampling procedures specified in the July 1, 1989 Title 40 Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A, Methods 1, 2, 3A, 4 and 5 were followed throughout this project. Sampling and analysis procedures specified in the Puget Sound Air Pollution Control Agency (PSAPCA) "Particulate Source Test Procedures" adopted by the PSAPCA Board of Directors, August 11, 1983, in accordance with section 9.09 of Regulation I, PSAPCA, were utilized in conjunction with the EPA Method 5 procedures for "backhalf" analysis for extracting condensable matter. Methodology suggested in the EPA's Air Pollution Training Institute "Course 450 - Source Sampling For Particulate Pollutants" and quality assurance procedures outlined in the EPA's reference manual titled Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 3, EPA-600/4-77-027b, along with current updates, were used with respect to quality assurance and testing protocol.

SAMPLING PROCEDURES

The 120 inch circular duct has four (4) sampling ports located at 90 degrees. The sample ports are located 10 feet upstream and 30 feet downstream from the nearest flow disturbance. Two (2) velocity and temperature traverses of twelve (12) points were performed during each Method 5 test. Figure 1 located in the Appendix of this report is a schematic of the stack and the point locations selected. Each point was sampled for 2.5 minutes, for a total sampling time for each Method 5 run of 60 minutes. The sample probe was marked with felt pen and heat resistant tape to indicate the proper point location.

Stack condition measurements were performed prior to testing, including measurements of pressure, temperature, velocity and a check for cyclonic flow. A sample nozzle was chosen and isokinetic operating parameters were established utilizing a Hewlett-Packard programmable calculator. The sampling nozzle, probe and prefilter connective glassware were all cleaned and rinsed prior to use. The sample train was assembled and determined to be leak free following the procedures outlined in Method 5. Before each test, a final check was made to assure that the plant was operating at the desired production rate and the desired operating parameters. A final check was made of the sample box and probe heat temperatures. Ice was added to the condenser section. The sample nozzle was positioned in the stack at the first sample point. The sample pump was then turned on and the gas sampling rate was adjusted for isokinetic sampling. Sampling proceeded isokinetically at each of the 4 traverse points in each port. Upon completion of the test, the sample probe was removed from the stack and a post-test leak check was performed according to Method 5 procedures. Care was taken to assure that the nozzle tip did not touch the port nipple.

Samples of the combustion gas were collected during each run to be analyzed in Am Test's laboratory. The integrated samples collected in multilayer bags were analyzed using an Infrared Industries Model 2200 oxygen (O₂) analyzer. An Infrared Industries non-dispersive infrared (NDIR) analyzer (Model 702D) was utilized to measure the percent carbon dioxide (CO₂). An Automated Custom Systems (ACS) Model 3300 non-dispersive infrared analyzer was used to measure the parts per million (ppm) carbon monoxide (CO). Oxygen was also measured in the field using an Infrared Industries Model 2200 oxygen (O₂) analyzer. These analyzers meet 40 CFR 60, Appendix B, Performance Specification 3 and 4 criteria. Appropriate calibration gases were utilized to check the calibration of the automatic analyzers. The measurements during each test period were used to calculate the molecular weight of the stack gas. The results of the gas analysis are presented on the computer printouts in the "Calculation of Results" section of this report.

SAMPLE TRAIN

The sample train used for collecting particulate matter samples was an EPA Method 5 design with modifications as shown in Figure 2 which is located in the Appendix of this report. The stainless steel button hook nozzle used during each test was measured on-site with inside calipers. A stainless steel probe with a heated stainless steel liner was used for these tests. The probe was equipped with "S" type pitot tubes and a thermocouple sensor. A thermocouple indicator was used to measure the stack gas temperature at each sample point. The Fluke digital thermocouple indicator has been re-certified by the manufacturer to be accurate within ± 1 degree Fahrenheit. A field check with 32 degree icewater was performed. A glass filter assembly containing a 125 millimeter Whatman 934-AH glass fiber filter was enclosed in a temperature-controlled heated sample box. The average box temperature was maintained at $248^\circ F \pm 25^\circ F$. The nozzle, probe liner, prefilter connective glassware and filter is often referred to as the "fronthalf" of the sample train. Following the filter is a condenser section which, by convention, is referred to as the "backhalf". The condenser section consisted of a modified Greenburg-Smith bubbler containing 100 milliliters (ml) of deionized water, an impinger also containing 100 ml of deionized water, an empty bubbler, and a bubbler containing indicating silica gel desiccant. The backhalf was maintained at a temperature below $68^\circ F$ by adding ice to the condenser section throughout sampling.

The sample train was connected to a control box by means of an umbilical cord which contains a vacuum hose, pitot lines, thermocouple wires and a 4-wire electrical cord. The control box (meter box) was used to monitor stack conditions and to facilitate isokinetic sampling. The control box consists of a diaphragm

pump which is used to pull the stack gas through the sample train, fine and coarse metering valves to control the sampling rate, a vacuum gauge which measures the pressure drop from the sampling nozzle to the metering valves, and a dry gas meter. The dry gas meter was calibrated using a spirometer at the Washington State Department of Ecology laboratory in Redmond, Washington. At the outlet of the dry gas meter is a calibrated orifice which is used to isokinetically control the flow of gas through the metering system. The pressure drop across the orifice was monitored with both low and high range magnehelic gauges. The pitot tubes utilized to measure stack gas velocity are connected to the control box via the umbilical cord. The control box contains low and high range magnehelic gauges which are used for the velocity measurement.

SAMPLE CLEAN-UP AND ANALYSIS

Following sample collection, the Method 5 sample box was transferred to a room free from air disturbances and airborne particulate matter. The filter was transferred to a petri dish labeled with the sample date, client name and run number. This filter portion of the particulate catch is referred to as the "A" section. Care was taken to assure that any loose particulate matter and filter mat were quantitatively transferred to the petri dish. The filters were then placed in an oven and baked at 103° C for 2 hours, then they were transferred to a desiccator containing indicating silica gel desiccant for at least 24 hours of desiccation prior to obtaining weights. The same baking and weighing procedure was followed to obtain the tare weights for the filters. The tare and final weights were made using a Mettler AE163 electronic balance set to a time integrating mode with a readability of 0.1 milligrams. The filters containing particulate matter were weighed to a constant weight of ± 0.5 milligrams. The interval between weighings was at least 6 hours. These weights were recorded in a bound laboratory notebook.

The contents of the nozzle, probe liner and prefilter connective glassware were quantitatively transferred to the "B" section storage container labeled with sample date, client name, and run number following each run. Several rinses of acetone, with simultaneous loosening of particulate matter using a clean nylon brush, were used for the front/half clean-up. An iodine flask with a female ball joint end was attached to the male ball joint end of the probe to assure that no particulate matter was lost during the rinsing and brushing of the probe. The contents of the iodine flask were quantitatively transferred to the "B" section storage container. The contents of this "B" section acetone rinse was transferred to a tared, graduated 150 milliliter beaker. The volume of acetone was recorded and the beakers were

placed in an evaporation chamber at slightly elevated ambient temperature and pressure. The acetone was evaporated at a temperature lower than the boiling point of acetone. A tared beaker with 100 milliliters of acetone from the same lot was handled in an identical fashion to the "B" section samples as a control. The tare and final weights of the beakers were obtained following at least 24 hours of desiccation. The samples and acetone blanks were weighed to a constant weight of ± 0.5 milligrams at 6 hour or greater intervals.

The bubblers and impingers utilized for the condenser section, or "backhalf" of the sample train were weighed with a readability of ± 0.1 grams before and after sampling on a Mettler electronic top loading balance. The difference between the initial and final weights of the condenser section constitute the amount of moisture gain during the run. The percent moisture was calculated and did not exceed the theoretical psychrometric chart value. The contents of the bubblers and impingers were then transferred to a 1000 ml graduated cylinder. The bubblers and impingers were rinsed with deionized water into the graduated cylinder and the liquid level was recorded. This liquid was then transferred to a separatory funnel and the contents were extracted with three (3) 50 ml portions of dichloromethane (CH_2Cl_2). The organic layer was transferred to a tared 150 ml beaker labeled the "Cx" section and this beaker's contents were allowed to evaporate at laboratory temperature and pressure until dry. The water layer was transferred to a tared 150 ml beaker labeled the "C" section and this beaker's contents were heated to 103° C until dry. The bubblers and impingers were given a final rinse with acetone into another tared, graduated beaker ("D" section) and its contents were allowed to evaporate at laboratory temperature and pressure until dry. Sample blanks containing deionized water, dichloromethane, and acetone were analyzed in an identical fashion as the representative "section". All beakers

were desiccated for at least 24 hours and weighed to constant weights of ± 0.5 milligrams after their contents had evaporated. The total particulate matter weight is the sum of the net weights of the particulate matter found on the filter, plus the net weights found in the B, C, Cx and D section beakers, minus the acetone, deionized water, and dichloromethane blank concentrations. The particulate weights are included on the "Methods 1, 2, 3A, 4 and 5 - Particulate Matter Emissions" computer printouts which immediately follow the "Calculation of Results" section of this report.

QUALITY ASSURANCE PLAN

The purpose of the quality assurance plan is to provide guidelines for achieving quality control in air pollution measurements. The detailed procedures which were utilized are included in the Environmental Protection Agency's (EPA's) reference manual titled Quality Assurance Handbook for Air Pollution Measurements Systems, Volume 3, EPA-600/4-77-027b. Procedures are followed throughout equipment preparation, field sampling, sample recovery, analysis, and data reduction. Am Test, Inc.'s Air Quality Division quality assurance procedures are discussed below.

CALIBRATION PROCEDURES AND FREQUENCY

Field equipment utilized for on-site measurements is calibrated at a frequency as recommended by the equipment manufacturer or industry practice. Prior to field use, each instrument is calibrated and the calibration value is reported in a calibration log. If any measuring or test device requiring calibration cannot immediately be removed from service, the Project Manager may extend the calibration cycle providing a review of the equipment's history warrants the issuance of an extension. No equipment will be extended more than twice a calibration cycle, nor will the extension exceed one-half the prescribed calibration cycle. Test equipment consistently found to be out of calibration will be repaired or replaced.

The sample nozzles used to collect isokinetic samples were calibrated on-site before sampling using digital inside calipers readable to 0.001 inch. The dry gas meters used to accurately measure sample volumes have been calibrated using a wet test meter or a spirometer. The S-type pitot tubes utilized for velocity determination

have been calibrated using a wind tunnel and standard P-type pitot tube, and are inspected regularly for wear. The Fluke^R digital thermocouple indicators used for temperature measurement have a readability of 1 degree Fahrenheit and have been certified by the manufacturer for their accuracy. Each thermocouple probe used to monitor temperature is checked quarterly at three (3) temperature settings. The Wallace and Tiernan absolute pressure gauge used to obtain pressure readings has a readability of 1 millimeter of mercury.

Support equipment is defined as all equipment, not previously discussed that is required for completing an environmental monitoring or measurement task. This equipment may include storage and transportation containers, sample recovery glassware, and communications gear. Support equipment is periodically inspected to maintain the performance standards necessary for proper and efficient execution of all tasks and responsibilities.

During the project, a systems audit was performed, consisting of an on-site qualitative inspection and review of the total measurement system. This inspection was conducted on a daily basis by the Project Leader. During the systems audit, the auditor observed the procedures and techniques of the field team in the following general areas:

- Setting up and leak testing the sampling train
- Isokinetic sampling check of the sampling train
- Final leak check of train
- Sample recovery

Visual inspections of pitot tubes, glassware, and other equipment were also made. The main purpose of a systems audit is to ensure that the measurement system will generate valid data, if operated properly.

SAMPLE RECOVERY AND FIELD DOCUMENTATION

Data relative to samples, collected during each test, are immediately inspected for completeness and placed under the custody of the Project Leader until custody is transferred when the samples are returned to the Air Quality Division laboratory. Sample recovery was carried out in a suitable area free from particulate matter contamination.

In the laboratory acetone, deionized water, dichloromethane and filter blanks were carried through the gravimetric analysis procedures. The samples were weighed to constant weights of ± 0.5 milligrams following desiccation in a Labconco "Autodry Cabinet" desiccator. This desiccator is an electronic dehumidifier which automatically maintains the humidity inside the desiccator. The dehumidifier automatically recharges the internal desiccant every 5.5 hours. An Airguide humidity indicator accurate to $\pm 1\%$ is used to check the humidity inside the desiccator when obtaining tare and final weights. A small container of indicating silica gel is placed in the desiccators to maintain the desired humidity. The Mettler AE163 electronic balance used to obtain weights was set to a time integrating mode (100,000 readings per minute) with a readability of 0.01 milligrams. The balance was calibrated prior to every weighing session. The calibration of Am Test's Mettler balances is checked by the manufacturer on a yearly basis.

DATA REDUCTION, VALIDATION AND REPORTING

Raw data is handled according to strict guidelines when they are being transposed into computer files or to other logs. The guidelines include document receipt control procedures, file review, and sign-off by a checker. Raw data was entered into the appropriate software package by a "processor", then the entered figures

were checked for accuracy by a "checker," different from the "processor". Any mistakes were corrected, and figures were rechecked and signed off by the "checker". In addition, by-hand calculation checks were made to validate the computer output. All data generated by each phase of a laboratory or field sampling program were reviewed by the senior reviewer. The data was signed off by the senior reviewer prior to releasing the data for report preparation.

CALCULATION OF RESULTS

The Method 1-5 test results were calculated in accordance with current EPA 40 CFR 60 Method 1-5 and Puget Sound Air Pollution Control Agency (PSAPCA) Regulation I criteria. Copies of the pertinent equations are included in the Appendix of this report. Final result calculations were performed using custom-written spreadsheet programs run on Hewlett-Packard Vectra computer systems. A sample "by-hand" calculation was completed for run 3 using a Hewlett-Packard 11C calculator, and may be found in the Appendix of this report.

METHODS 1, 2, 3A, 4 AND 5 - PARTICULATE MATTER EMISSIONS
 AM TEST, INC. - AIR QUALITY DIVISION

FILE NAME: 72\WOODM5R1 LAB #: 00399
 CLIENT: WOODWORTH & CO., INC. START TIME: 06:34 o'clock
 LOCATION: TACOMA, WA STOP TIME: 07:40 o'clock
 SAMPLE SITE: SCRUBBER EXIT STACK SAMPLE TIME: 60.0 minutes
 SAMPLE DATE: SEPTEMBER 6, 1990
 RUN #: 1-METHOD 5
 OPERATORS: J. GUENTHOER

IMPINGER WEIGHTS

FINAL grams	INITIAL grams	NET grams	PITOT TUBE Cp:	0.838
774.6	587.6	187.0	NOZZLE DIAMETER:	0.501 inches
625.1	591.2	33.9	NOZZLE AREA:	0.0014 sq. feet
463.6	460.7	2.9	STACK DIAMETER:	120 inches
778.0	767.2	10.8	STACK AREA:	78.560 sq. feet
TOTAL H2O GAIN: 234.6			METER TEMPERATURE:	66.5 degrees F
TOTAL VOLUME (SCF): 11.06			BAROMETRIC PRES.:	30.00 inches Hg
PERCENT MOISTURE: 22.50			STATIC PRESSURE:	0.02 inches H2O
Bws: 0.2250			STACK PRESSURE:	30.00 inches Hg
			ORIFICE PRESSURE:	0.636 inches H2O
			METER PRESSURE:	30.05 inches Hg

INIT. METER VOLUME:	847.651	AVERAGE CONC. CO2:	6.0 percent
FINAL METER VOLUME:	885.742	AVERAGE CONC. O2:	12.8 percent
VOLUME SAMPLED:	38.091	AVERAGE CONC. CO:	209 ppm
STD VOLUME (DSCF):	38.093	MOLECULAR WEIGHT:	29.47 g/g-mole-dry
STD VOLUME (DSCM):	1.079	MOLECULAR WEIGHT:	26.89 g/g-mole-wet
Y FACTOR:	0.993		

SAMPLE POINT	VELOCITY " OF H2O	TEMPERATURE DEGREES F.	SAMPLE POINT	VELOCITY " OF H2O	TEMPERATURE DEGREES F.
W 1	0.020	144	S 1	0.050	147
2	0.025	145	2	0.050	146
3	0.030	145	3	0.060	146
4	0.035	146	4	0.060	146
5	0.040	146	5	0.050	147
6	0.040	146	6	0.040	147
7	0.030	146	7	0.030	149
8	0.040	148	8	0.030	149
9	0.040	147	9	0.030	149
10	0.030	148	10	0.025	150
11	0.030	148	11	0.025	152
12	0.020	149	12	0.025	151

PERCENT ISOKINETICS:	99 %
STACK TEMPERATURE:	147.4 degrees F
AVERAGE VELOCITY HEAD:	0.035 " of H2O
STACK GAS VELOCITY:	11.59 ft/second
STACK GAS AIR FLOW:	54625.2 acf/min
PARTICULATE EMISSION CONCENTRATION (FRONT-HALF):	0.053 gr/dscf
PARTICULATE EMISSION CONCENTRATION (BACK-HALF):	0.065 gr/dscf
TOTAL PARTICULATE EMISSION CONC. (FRONT & BACK-HALF):	0.118 gr/dscf
TOTAL PARTICULATE EMISSION CONCENTRATION:	270.9 mg/dscm
PARTICULATE MATTER MASS EMISSION RATE:	37.4 lb/hr

FRONTHALF PARTICULATE MATTER MASS LOADING

FILTER NUMBER:	#125-117
TARE WEIGHT OF FILTER (grams):	1.0553
FINAL WEIGHT OF FILTER (grams):	1.1216
NET WEIGHT OF PARTICULATE MATTER (grams):	0.0663

BEAKER NUMBER:	#150-880
TARE WEIGHT OF BEAKER (grams):	68.1249
FINAL WEIGHT OF BEAKER (grams):	68.1897
NET WEIGHT OF PARTICULATE MATTER (grams):	0.0648
VOLUME OF ACETONE (milliliters):	245.0
WT./VOL. OF ACETONE BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO ACETONE (grams):	0.0005
TOTAL FRONTHALF PARTICULATE MATTER (grams):	0.1306

BACKHALF PARTICULATE MATTER MASS LOADING

"CN SECTION - CONDENSER PARTICULATE	#150-838
TARE WEIGHT OF BEAKER (grams):	80.0729
FINAL WEIGHT OF BEAKER (grams):	80.2222
NET WEIGHT OF PARTIC. MATTER (grams):	0.1493
TOTAL VOLUME OF WATER (milliliters):	420.0
VOLUME OF WATER CONDENSED (milliliters):	223.8
NET VOLUME OF WATER FOR BLANK (milliliters):	196.2
WT./VOL. OF WATER BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO WATER (grams):	0.0004

"Cx" SECTION - HYDROCARBON EXTRACTION	#150-917
TARE WEIGHT OF BEAKER (grams):	67.1785
FINAL WEIGHT OF BEAKER (grams):	67.1824
NET WEIGHT OF PARTIC. MATTER (grams):	0.0039
TOTAL VOLUME OF CH2Cl2 (milliliters):	150.0
WT./VOL. OF CH2Cl2 BLANK (milligrams):	0.000
NET WEIGHT OF PARTIC. DUE TO CH2Cl2 (grams):	0.0000

"Dn" SECTION - ACETONE RINSE OF CONDENSER	#150-883
TARE WEIGHT OF BEAKER (grams):	71.3813
FINAL WEIGHT OF BEAKER (grams):	71.3903
NET WEIGHT OF PARTIC. MATTER (grams):	0.0090
TOTAL VOLUME OF ACETONE (milliliters):	60.0
WT./VOL. OF ACETONE BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO ACETONE (grams):	0.0001

TOTAL BACKHALF PARTICULATE MATTER (grams):	0.1617
TOTAL WEIGHT OF PARTICULATE MATTER (grams):	0.2923

METHODS 1, 2, 3A, 4 AND 5 - PARTICULATE MATTER EMISSIONS
AM TEST, INC. - AIR QUALITY DIVISION

FILE NAME: 72\WOODMSR2 LAB #: 00400
CLIENT: WOODWORTH & CO., INC. START TIME: 09:36 o'clock
LOCATION: TACOMA, WA STOP TIME: 10:43 o'clock
SAMPLE SITE: SCRUBBER EXIT STACK SAMPLE TIME: 60.0 minutes
SAMPLE DATE: SEPTEMBER 6, 1990
RUN #: 2-METHOD 5
OPERATORS: J. GUENTHOER

IMPIINGER WEIGHTS

FINAL	INITIAL	NET	PITOT TUBE Cp:	0.838
grams	grams	grams	NOZZLE DIAMETER:	0.501 inches
-----	-----	-----	NOZZLE AREA:	0.0014 sq. feet
821.2	625.0	196.2	STACK DIAMETER:	120 inches
670.5	589.1	81.4	STACK AREA:	78.540 sq. feet
493.0	490.6	2.4	METER TEMPERATURE:	68.7 degrees F
776.2	765.5	10.7	BAROMETRIC PRES.:	30.04 inches Hg
TOTAL H2O GAIN:	290.7		STATIC PRESSURE:	0.02 inches H2O
TOTAL VOLUME (SCF):	13.71		STACK PRESSURE:	30.04 inches Hg
PERCENT MOISTURE:	25.79		ORIFICE PRESSURE:	0.709 inches H2O
Bws:	0.2579		METER PRESSURE:	30.09 inches Hg

INIT. METER VOLUME:	886.558	AVERAGE CONC. CO2:	6.0 percent
FINAL METER VOLUME:	926.107	AVERAGE CONC. O2:	12.8 percent
VOLUME SAMPLED:	39.549	AVERAGE CONC. CO:	209 ppm
STD VOLUME (DSCF):	39.446	MOLECULAR WEIGHT:	29.47 g/g-mole-dry
STD VOLUME (DSCM):	1.117	MOLECULAR WEIGHT:	26.51 g/g-mole-wet
Y FACTOR:	0.993		

SAMPLE POINT	VELOCITY " OF H2O	TEMPERATURE DEGREES F.	SAMPLE POINT	VELOCITY " OF H2O	TEMPERATURE DEGREES F.
S 1	0.060	144	W 1	0.025	145
2	0.060	144	2	0.025	146
3	0.075	142	3	0.030	147
4	0.075	145	4	0.030	148
5	0.060	147	5	0.030	147
6	0.040	148	6	0.030	147
7	0.040	148	7	0.040	149
8	0.030	148	8	0.040	149
9	0.025	148	9	0.040	150
10	0.025	149	10	0.030	151
11	0.020	149	11	0.030	150
12	0.020	148	12	0.030	150

PERCENT ISOKINETICS:	103 %
STACK TEMPERATURE:	147.5 degrees F
AVERAGE VELOCITY HEAD:	0.036 " of H2O
STACK GAS VELOCITY:	11.95 ft/second
STACK GAS AIR FLOW:	56305.4 acf/min
PARTICULATE EMISSION CONCENTRATION (FRONT-HALF):	36467.3 dscf/min
PARTICULATE EMISSION CONCENTRATION (BACK-HALF):	0.032 gr/dscf
TOTAL PARTICULATE EMISSION CONC. (FRONT & BACK-HALF):	0.004 gr/dscf
TOTAL PARTICULATE EMISSION CONCENTRATION:	0.036 gr/dscf
PARTICULATE MATTER MASS EMISSION RATE:	83.3 mg/dscm
	11.4 lb/hr

FRONTHALF PARTICULATE MATTER MASS LOADING

FILTER NUMBER:	#125-115
TARE WEIGHT OF FILTER (grams):	1.0475
FINAL WEIGHT OF FILTER (grams):	1.0988
NET WEIGHT OF PARTICULATE MATTER (grams):	0.0513

BEAKER NUMBER:	#150-881
TARE WEIGHT OF BEAKER (grams):	68.4059
FINAL WEIGHT OF BEAKER (grams):	68.4375
NET WEIGHT OF PARTICULATE MATTER (grams):	0.0316
VOLUME OF ACETONE (milliliters):	195.0
WT./VOL. OF ACETONE BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO ACETONE (grams):	0.0004
TOTAL FRONTHALF PARTICULATE MATTER (grams):	0.0825

BACKHALF PARTICULATE MATTER MASS LOADING

"C" SECTION - CONDENSER PARTICULATE	#150-839
TARE WEIGHT OF BEAKER (grams):	82.0321
FINAL WEIGHT OF BEAKER (grams):	82.0335
NET WEIGHT OF PARTIC. MATTER (grams):	0.0014
TOTAL VOLUME OF WATER (milliliters):	420.0
VOLUME OF WATER CONDENSED (milliliters):	280.0
NET VOLUME OF WATER FOR BLANK (milliliters):	140.0
WT./VOL. OF WATER BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO WATER (grams):	0.0003

"C" SECTION - HYDROCARBON EXTRACTION	#150-918
TARE WEIGHT OF BEAKER (grams):	69.2757
FINAL WEIGHT OF BEAKER (grams):	69.2818
NET WEIGHT OF PARTIC. MATTER (grams):	0.0061
TOTAL VOLUME OF CH2Cl2 (milliliters):	150.0
WT./VOL. OF CH2Cl2 BLANK (milligrams):	0.000
NET WEIGHT OF PARTIC. DUE TO CH2Cl2 (grams):	0.0000

"D" SECTION - ACETONE RINSE OF CONDENSER	#150-884
TARE WEIGHT OF BEAKER (grams):	67.4143
FINAL WEIGHT OF BEAKER (grams):	67.4178
NET WEIGHT OF PARTIC. MATTER (grams):	0.0035
TOTAL VOLUME OF ACETONE (milliliters):	60.0
WT./VOL. OF ACETONE BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO ACETONE (grams):	0.0001

TOTAL BACKHALF PARTICULATE MATTER (grams):	0.0106
TOTAL WEIGHT OF PARTICULATE MATTER (grams):	0.0931

METHODS 1, 2, 3A, 4 AND 5 - PARTICULATE MATTER EMISSIONS
 AM TEST, INC. - AIR QUALITY DIVISION

FILE NAME: 72\WOODMSR3 LAB #: 00401
 CLIENT: WOODWORTH & CO., INC. START TIME: 12:32 o'clock
 LOCATION: TACOMA, WA STOP TIME: 13:37 o'clock
 SAMPLE SITE: SCRUBBER EXIT STACK SAMPLE TIME: 60.0 minutes
 SAMPLE DATE: SEPTEMBER 6, 1990
 RUN #: 3-METHOD 5
 OPERATORS: J. GUNTHOER

IMPIINGER WEIGHTS

FINAL grams	INITIAL grams	NET grams	PITOT TUBE Cp:	0.838
794.2	593.5	200.7	NOZZLE DIAMETER:	0.501 inches
650.1	620.7	29.4	NOZZLE AREA:	0.0014 sq. feet
526.8	523.6	3.2	STACK DIAMETER:	120 inches
870.6	859.9	10.7	STACK AREA:	78.540 sq. feet
TOTAL H2O GAIN: 244.0			METER TEMPERATURE:	78.6 degrees F
TOTAL VOLUME (SCF): 11.50			BAROMETRIC PRES.:	30.04 inches Hg
PERCENT MOISTURE: 22.61			STATIC PRESSURE:	0.02 inches H2O
Bws: 0.2261			STACK PRESSURE:	30.04 inches Hg
			ORIFICE PRESSURE:	0.707 inches H2O
			METER PRESSURE:	30.09 inches Hg

INIT. METER VOLUME: 926.803

FINAL METER VOLUME: 967.021

VOLUME SAMPLED: 40.218

STD VOLUME (DSCF): 39.375

STD VOLUME (DSCM): 1.115

Y FACTOR: 0.993

AVERAGE CONC. CO2:	5.9 percent
AVERAGE CONC. O2:	12.9 percent
AVERAGE CONC. CO:	207 ppm
MOLECULAR WEIGHT:	29.46 g/g-mole-dry
MOLECULAR WEIGHT:	26.87 g/g-mole-wet

SAMPLE POINT	VELOCITY " OF H2O	TEMPERATURE DEGREES F.	SAMPLE POINT	VELOCITY " OF H2O	TEMPERATURE DEGREES F.
W 1	0.030	142	S 1	0.060	145
2	0.030	144	2	0.060	145
3	0.030	146	3	0.060	146
4	0.030	147	4	0.060	146
5	0.030	147	5	0.060	147
6	0.030	146	6	0.040	147
7	0.035	148	7	0.030	147
8	0.040	149	8	0.030	148
9	0.040	150	9	0.025	149
10	0.040	151	10	0.025	150
11	0.030	151	11	0.025	150
12	0.030	150	12	0.025	149

PERCENT ISOKINETICS:

100 %

STACK TEMPERATURE:

147.5 degrees F

607.5 degrees R

AVERAGE VELOCITY HEAD:

0.036 " of H2O

STACK GAS VELOCITY:

11.85 ft/second

STACK GAS AIR FLOW:

55846.5 acf/min

37715.5 dacf/min

PARTICULATE EMISSION CONCENTRATION (FRONT-HALF):

0.034 gr/dscf

PARTICULATE EMISSION CONCENTRATION (BACK-HALF):

0.014 gr/dscf

TOTAL PARTICULATE EMISSION CONC. (FRONT & BACK-HALF):

0.049 gr/dscf

TOTAL PARTICULATE EMISSION CONCENTRATION:

111.0 mg/dscm

PARTICULATE MATTER MASS EMISSION RATE:

15.7 lb/hr

FRONTHALF PARTICULATE MATTER MASS LOADING

FILTER NUMBER:	#125-116
TARE WEIGHT OF FILTER (grams):	1.0472
FINAL WEIGHT OF FILTER (grams):	1.1040
NET WEIGHT OF PARTICULATE MATTER (grams):	0.0568

BEAKER NUMBER:	#150-882
----------------	----------

TARE WEIGHT OF BEAKER (grams):	68.4811
FINAL WEIGHT OF BEAKER (grams):	68.5118
NET WEIGHT OF PARTICULATE MATTER (grams):	0.0307
VOLUME OF ACETONE (milliliters):	170.0
WT./VOL. OF ACETONE BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO ACETONE (grams):	0.0003

TOTAL FRONTHALF PARTICULATE MATTER (grams):	0.0872
---	--------

BACKHALF PARTICULATE MATTER MASS LOADING

"C" SECTION - CONDENSER PARTICULATE	#150-840
TARE WEIGHT OF BEAKER (grams):	79.9742
FINAL WEIGHT OF BEAKER (grams):	79.9965
NET WEIGHT OF PARTIC. MATTER (grams):	0.0223
TOTAL VOLUME OF WATER (milliliters):	410.0
VOLUME OF WATER CONDENSED (milliliters):	233.3
NET VOLUME OF WATER FOR BLANK (milliliters):	176.7
WT./VOL. OF WATER BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO WATER (grams):	0.0004

"Cx" SECTION - HYDROCARBON EXTRACTION	#150-919
TARE WEIGHT OF BEAKER (grams):	68.2464
FINAL WEIGHT OF BEAKER (grams):	68.2532
NET WEIGHT OF PARTIC. MATTER (grams):	0.0068
TOTAL VOLUME OF CH2Cl2 (milliliters):	150.0
WT./VOL. OF CH2Cl2 BLANK (milligrams):	0.000
NET WEIGHT OF PARTIC. DUE TO CH2Cl2 (grams):	0.0000

"D" SECTION - ACETONE RINSE OF CONDENSER	#150-885
TARE WEIGHT OF BEAKER (grams):	68.0342
FINAL WEIGHT OF BEAKER (grams):	68.0422
NET WEIGHT OF PARTIC. MATTER (grams):	0.0080
TOTAL VOLUME OF ACETONE (milliliters):	65.0
WT./VOL. OF ACETONE BLANK (milligrams/ml):	0.002
NET WEIGHT OF PARTIC. DUE TO ACETONE (grams):	0.0001

TOTAL BACKHALF PARTICULATE MATTER (grams):	0.0366
--	--------

TOTAL WEIGHT OF PARTICULATE MATTER (grams):	0.1238
---	--------

APPENDIX

SOURCE TEST OBSERVATION CHECKLIST
ASPHALT PLANTS WITH WET SCRUBBERS

23

Client Woodworth & Co. Date 9/5/90

Location Tacoma, WA

Process Information

Type of Plant Cedarapids Drum Mix

Manufacturer Cedarapids

Model 10044ADM Constructed/Installed 5-1-84

Identification No. 39084 Date Last Tested 7-2-87

Operation Personnel R. A. Suvor

Process Rate 290 ^{10% RAP (recycle)} Tons/Hr Discharge Temp 290 °F

Type of Fuel # 2 Diesel Firing Rate 1.45 Gal/^{ton}

A/C Injection Location 2/3's from burner

Fines In Gravel (-200 mesh) ~5%

Gravel Moisture ~4.5% Asphalt Type AR 4000

Density _____ #/Gal Flash Point _____ °F

Control Equipment

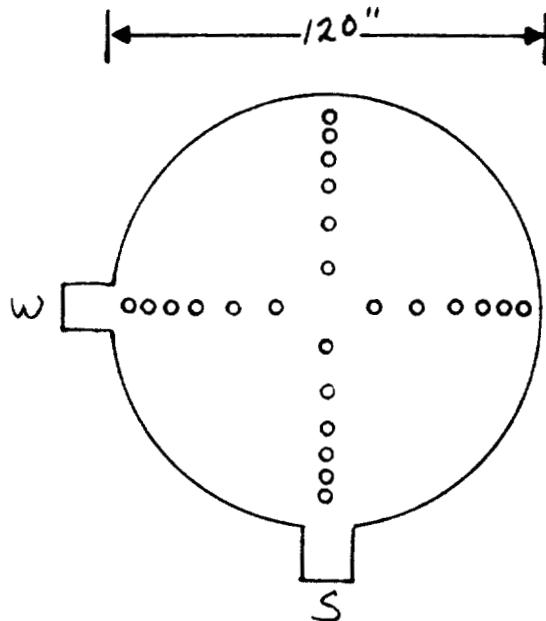
Manufacturer Cedarapids Model 10044ADM

Water Press 105 PSI Rate _____ Gal/Min

Recycled Water 100 Saturated Stack No

Venturi Press $\Delta P =$ 21 "H₂O Static Pressure = — "H₂O Influent Pond Temp 70 °F Effluent Pond Temp 140 °F

Venturi Damper Position _____ # Ponds _____

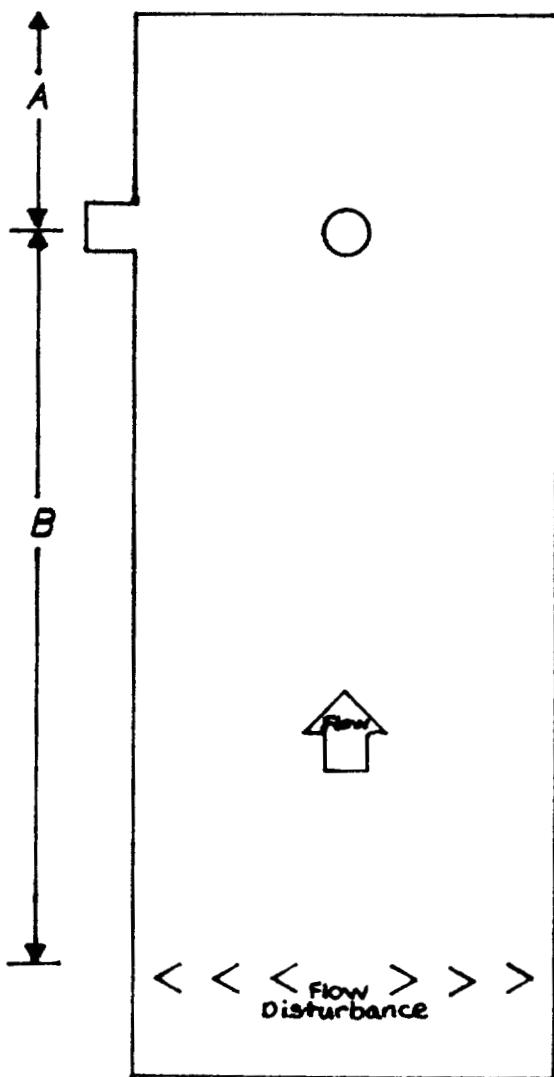

Size of Ponds _____ Type Liner _____

Additional Information Sketch of Pond System

L. A. Newkirk
Authorized Signature

CROSS SECTIONAL AREA

Traverse Point	Distance (inches)
1	2.52
2	8.04
3	14.16
4	21.24
5	30.00
6	42.72
7	77.28
8	90.00
9	98.76
10	105.84
11	111.96
12	117.48


STACK DIMENSIONS

120 inch diameter circular stack

2 ports at 90 degrees

A = 10 feet

B = 30 feet

Figure 1. Location of sampling ports and traverse points at the outlet stack.

METHOD 1 - LOCATION OF TRAVERSE POINTS

Circular Stacks

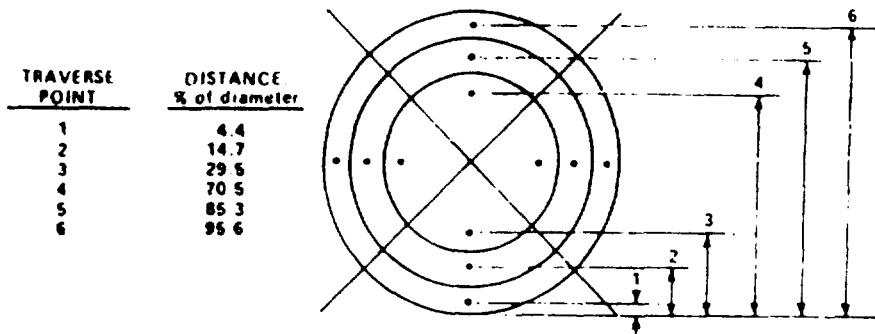


Figure 1-3. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points indicated.

TABLE 1-2. LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

(Percent of stack diameter from inside wall to traverse point)

Traverse point number on a diameter	Number of traverse points on a diameter—											
	2	4	6	8	10	12	14	16	18	20	22	24
1	14.8	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	85.4	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3			75.0	28.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0
4				63.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7
5					85.4	87.7	34.2	25.0	20.1	16.9	14.6	12.9
6						95.6	80.6	65.0	35.6	26.9	22.0	18.8
7							80.5	77.4	64.4	36.6	28.3	23.6
8								85.4	75.0	63.4	37.5	29.6
9									91.8	82.3	73.1	62.5
10										97.4	88.2	79.9
11											93.3	85.4
12												87.9
13												
14												
15												
16												
17												
18												

Rectangular Stacks

For a rectangular cross section, an equivalent diameter (D_e) shall be calculated from the following equation, to determine the upstream and downstream distances:

$$D_e = \frac{2LW}{(L+W)}$$

where L = length and W = width.

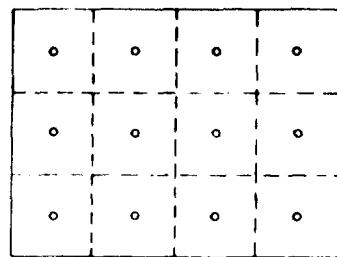


Figure 1-4. Example showing rectangular stack cross section divided into 12 equal areas, with a traverse point at centroid of each area.

METHOD 1 - MINIMUM NUMBER OF TRAVERSE POINTS

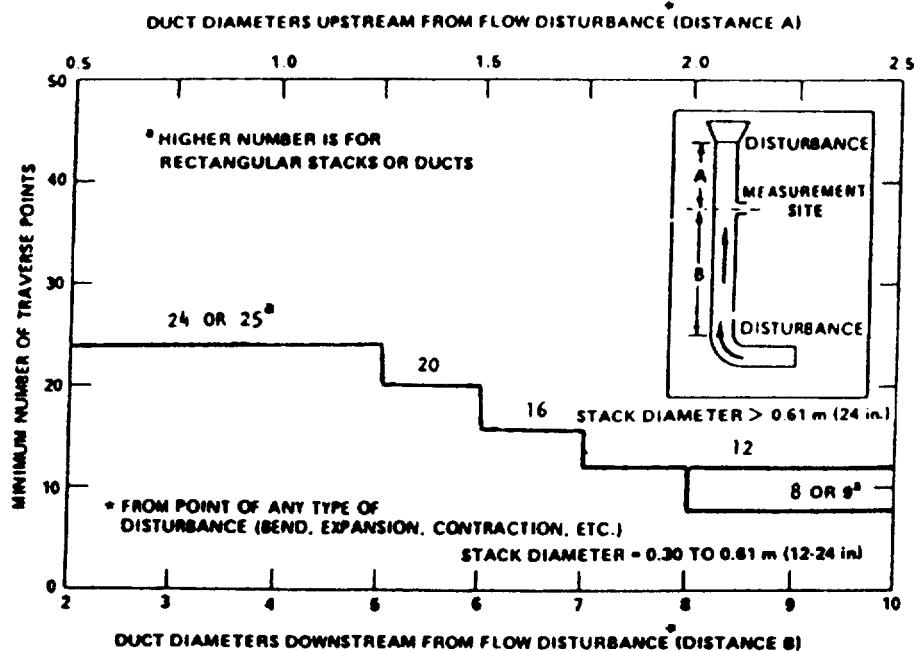


Figure 1-1. Minimum number of traverse points for particulate traverses.

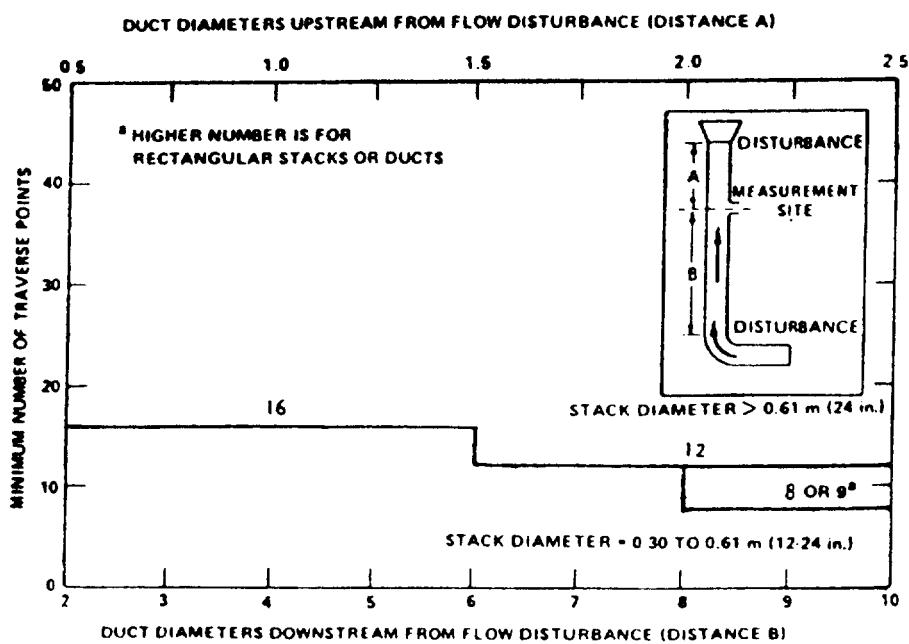


Figure 1-2. Minimum number of traverse points for velocity (nonparticulate) traverses

METHOD 2 - STACK GAS VELOCITY AND VOLUMETRIC FLOW CALCULATIONS

5.1 Nomenclature.

A = Cross-sectional area of stack, m^2 (ft^2).
 B_w = Water vapor in the gas stream (from Method 5 or Reference Method 4), proportion by volume.
 C_p = Pitot tube coefficient, dimensionless.
 K_p = Pitot tube constant,

$$34.97 \frac{\text{m}}{\text{sec}} \left[\frac{(\text{g/g-mole})(\text{mm Hg})}{(\text{°K})(\text{mm H}_2\text{O})} \right]^{1/2}$$

for the metric system and

$$85.49 \frac{\text{ft}}{\text{sec}} \left[\frac{(\text{lb/lb-mole})(\text{in. Hg})}{(\text{°R})(\text{in. H}_2\text{O})} \right]^{1/2}$$

for the English system.

M_d = Molecular weight of stack gas, dry basis (see Section 3.6) g/g-mole (lb/lb-mole).
 M_w = Molecular weight of stack gas, wet basis, g/g-mole (lb/lb-mole).
 $= M_d (1 - B_w) + 18.0 B_w$

Eq. 2-5

P_{bar} = Barometric pressure at measurement site, mm Hg (in. Hg).
 P_s = Stack static pressure, mm Hg (in. Hg).
 P_t = Absolute stack gas pressure, mm Hg (in. Hg).
 $= P_{bar} + P_s$

Eq. 2-6

Eq. 2-6

P_{std} = Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
 Q_{std} = Dry volumetric stack gas flow rate corrected to standard conditions, dasm/hr (dscf/hr).

L = Stack temperature, $^{\circ}\text{C}$ ($^{\circ}\text{F}$).
 T_s = Absolute stack temperature, $^{\circ}\text{K}$, ($^{\circ}\text{R}$).
 $= 273 + L$ for metric.

Eq. 2-7

$= 460 + L$ for English.

Eq. 2-8

T_{std} = Standard absolute temperature, 293 $^{\circ}\text{K}$ (528 $^{\circ}\text{R}$).

v_t = Average stack gas velocity, m/sec (ft/sec).
 Δp = Velocity head of stack gas, mm H_2O (in. H_2O).
 $= 3,600$ = Conversion factor, sec/hr .
 18.0 = Molecular weight of water, g/g-mole (lb/lb-mole).

5.2 Average Stack Gas Velocity.

$$v_t = K_p C_p (\sqrt{\Delta p})_{avg} \sqrt{\frac{T_{stack}}{P_s M_w}}$$

Equation 2-9

5.3 Average Stack Gas Dry Volumetric Flow Rate.

$$Q_{std} = 3,600(1 - B_{w,avg}) v_t A \left(\frac{T_{std}}{T_{stack,avg}} \right) \left(\frac{P_t}{P_{std}} \right)$$

Eq. 2-10

METHOD 3 - MOLECULAR WEIGHT AND EXCESS AIR CALCULATIONS

% EA =

6.1 Nomenclature.

M_d = Dry molecular weight, g/g-mole (lb/lb-mole).
 $\%EA$ = Percent excess air.
 $\%CO$ = Percent CO, by volume (dry basis).
 $\%O_2$ = Percent O_2 , by volume (dry basis).
 $\%CO$ = Percent CO by volume (dry basis).
 $\%N_2$ = Percent N_2 , by volume (dry basis).
 0.264 = Ratio of O_2 to N_2 in air, v/v.
 0.280 = Molecular weight of N_2 or CO, divided by 100.
 0.320 = Molecular weight of O_2 , divided by 100.
 0.440 = Molecular weight of CO, divided by 100.

6.2 Percent Excess Air. Calculate the percent excess air (if applicable), by substituting the appropriate values of percent O_2 , CO , and N_2 (obtained from Section 4.1.3 or 4.2.4) into Equation 3-1.

$$\frac{\%O_2 - 0.5\% CO}{0.264\% N_2 (\%O_2 - 0.5\% CO)} \times 100$$

Eq. 3-1

NOTE: The equation above assumes that ambient air is used as the source of O_2 , and that the fuel does not contain appreciable amounts of N_2 (as do coke oven or blast furnace gases). For those cases when appreciable amounts of N_2 are present (coal, oil, and natural gas do not contain appreciable amounts of N_2) or when oxygen enrichment is used, alternate methods, subject to approval of the Administrator, are required.

6.3 Dry Molecular Weight. Use Equation 3-2 to calculate the dry molecular weight of the stack gas

$$M_d = 0.440(\%CO) + 0.320(\%O_2) + 0.280(\%N_2 + \%CO)$$

Eq. 3-2

METHOD 4 - STACK GAS MOISTURE CALCULATIONS

2.3.1 Nomenclature.

B_{vv} = Proportion of water vapor, by volume, in the gas stream.
 M_w = Molecular weight of water, 18.0 g/g-mole (16.0 lb/lb-mole).
 P_m = Absolute pressure (for this method, same as barometric pressure) at the dry gas meter, mm Hg (in. Hg).
 P_{std} = Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
 R = Ideal gas constant, 0.08236 (mm Hg) (m³)/(g-mole) ('K) for metric units and 21.85 (in. Hg) (ft³)/(lb-mole) ('R) for English units.
 T_m = Absolute temperature at meter, 'K ('R).
 T_{std} = Standard absolute temperature, 293 K (52.8'R).
 V_m = Dry gas volume measured by dry gas meter, dcm (dcf).
 ΔV_m = Incremental dry gas volume measured by dry gas meter at each traverse point, dcm (dcf).
 $V_{m,corr}$ = Dry gas volume measured by the dry gas meter, corrected to standard conditions, dscm (dcfc).
 $V_{v,corr}$ = Volume of water vapor condensed corrected to standard conditions, scm (scf).
 $V_{v,measured}$ = Volume of water vapor collected in silica gel corrected to standard conditions, scm (scf).
 V_f = Final volume of condenser water, ml.
 V_i = Initial volume, if any, of condenser water, ml.
 W_f = Final weight of silica gel or silica gel plus impinger, g.
 W_i = Initial weight of silica gel or silica gel plus impinger, g.
 Y = Dry gas meter calibration factor.
 ρ_w = Density of water, 0.9982 g/ml (0.002201 lb/ml).
 2.3.2 Volume of Water Vapor Condensed.

$$V_{v,measured} = \frac{(V_f - V_i) \rho_w R T_{std}}{P_{std} M_w}$$

$$= K_1 (V_f - V_i)$$

Eq. 4-1

$K_1 = 0.001333 \text{ m}^3/\text{ml}$ for metric units
 $= 0.04707 \text{ ft}^3/\text{ml}$ for English units

2.3.3 Volume of Water Vapor Collected in Silica Gel.

$$V_{v,measured} = \frac{(W_f - W_i) R T_{std}}{P_{std} M_w}$$

$$= K_2 (W_f - W_i)$$

Eq. 4-2

Where:

$K_2 = 0.001335 \text{ m}^3/\text{g}$ for metric units
 $= 0.04715 \text{ ft}^3/\text{g}$ for English units

2.3.4 Sample Gas Volume.

$$V_{m,corr} = V_m Y \frac{(P_m)(T_{std})}{(P_{std})(T_m)}$$

$$= K_3 Y \frac{V_m P_m}{T_m}$$

Eq. 4-3

Where:

$K_3 = 0.3858 \text{ 'K/mm Hg}$ for metric units
 $= 17.64 \text{ 'R/in. Hg}$ for English units

NOTE: If the post-test leak rate (Section 2.2.6) exceeds the allowable rate, correct the value of V_m in Equation 4-3, as described in Section 6.3 of Method 5.

2.3.5 Moisture Content.

$$B_{vv} = \frac{V_{v,measured} + V_{v,measured}}{V_{v,measured} + V_{v,measured} + V_{m,corr}}$$

Eq. 4-4

NOTE: In saturated or moisture droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one using a value based upon the saturated conditions (see Section 1.2), and another based upon the results of the impinger analysis. The lower of these two values of B_{vv} shall be considered correct.

METHOD 5 - PARTICULATE EMISSION CALCULATIONS - (1)

6.1 Nomenclature.

A_n = Cross-sectional area of nozzle, m^2 (ft^2).
 B_n = Water vapor in the gas stream, proportion by volume.
 C_b = Acetone blank residue concentration, mg/g.
 C = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, g/dscm (g/dscf).
 I = Percent of isokinetic sampling.
 L_n = Maximum acceptable leakage rate for either a pretest leak check or for a leak check following a component change; equal to $0.0057 \text{ m}^3/\text{min}$ (0.02 cfm) or 4 percent of the average sampling rate, whichever is less.
 L_i = Individual leakage rate observed during the leak check conducted prior to the "i" component change ($i = 1, 2, 3, \dots, n$), m^3/min (cfm).
 L_p = Leakage rate observed during the post-test leak check, m^3/min (cfm).
 m_a = Mass of residue of acetone after evaporation, mg.
 m_t = Total amount of particulate matter collected, mg.
 M_w = Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-mole).
 P_{bs} = Barometric pressure at the sampling site, mm Hg (in. Hg).
 P_s = Absolute stack gas pressure, mm Hg (in. Hg).
 P_{std} = Standard absolute pressure, 760 mm Hg (29.92 in. Hg).
 R = Ideal gas constant, $0.06236 \text{ mm Hg} \cdot \text{m}^3/\text{K} \cdot \text{g-mole}$ ($21.85 \text{ in. Hg} \cdot \text{ft}^3/\text{R-lb-mole}$).
 T_m = Absolute average dry gas meter temperature (see Figure 5-2), °K (°R).
 T_s = Absolute average stack gas temperature (see Figure 5-2), °K (°R).
 T_{std} = Standard absolute temperature, 293° K (52° R).
 V_b = Volume of acetone blank, ml.
 V_w = Volume of acetone used in wash, ml.
 V_r = Total volume of liquid collected in impingers and silica gel (see Figure 5-3), ml.
 V_m = Volume of gas sample as measured by dry gas meter, dcm (dscf).
 $V_{m, std}$ = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscm (dscf).
 $V_{w, std}$ = Volume of water vapor in the gas sample, corrected to standard conditions, scm (scf).
 v = Stack gas velocity, calculated by Method 2, Equation 2-8, using data obtained from Method 5, m/sec (ft/sec).
 W_r = Weight of residue in acetone wash, mg.
 Y = Dry gas meter calibration factor.
 ΔH = Average pressure differential across the orifice meter (see Figure 5-2), mm H₂O (in. H₂O).
 ρ_a = Density of acetone, mg/ml (see label on bottle).

ρ_w = Density of water, 0.9982 g/ml (0.002201 lb/ml).

θ = Total sampling time, min.

θ_i = Sampling time interval, from the beginning of a run until the first component change, min.

θ_{i-1} = Sampling time interval, between two successive component changes, beginning with the interval between the first and second changes, min.

θ_n = Sampling time interval, from the final (n^{th}) component change until the end of the sampling run, min.

13.6 = Specific gravity of mercury.

60 = Sec/min.

100 = Conversion to percent.

6.2 Average Dry Gas Meter Temperature and Average Orifice Pressure Drop. See data sheet (Figure 5-2).

6.3 Dry Gas Volume. Correct the sample volume measured by the dry gas meter to standard conditions (20° C, 760 mm Hg or 68° F, 29.92 in. Hg) by using Equation 5-1.

$$\begin{aligned}
 V_{m, std} &= V_m Y \left(\frac{T_{std}}{T_m} \right) \left[\frac{P_{bs} + \frac{\Delta H}{13.6}}{P_{std}} \right] \\
 &= K_1 V_m Y \frac{P_{bs} + (\Delta H/13.6)}{T_m}
 \end{aligned}
 \quad \text{Equation 5-1}$$

Where:

$K_1 = 0.3858 \text{ }^{\circ}\text{K}/\text{mm Hg}$ for metric units
 $= 17.64 \text{ }^{\circ}\text{R}/\text{in. Hg}$ for English units

NOTE: Equation 5-1 can be used as written unless the leakage rate observed during any of the mandatory leak checks (i.e., the post-test leak check or leak checks conducted prior to component changes) exceeds L_n . If L_p or L_i exceeds L_n , Equation 5-1 must be modified as follows:

(a) Case I. No component changes made during sampling run. In this case, replace V_m in Equation 5-1 with the expression:

$$[V_m - (L_p - L_n)\theta]$$

(b) Case II. One or more component changes made during the sampling run. In this case, replace V_m in Equation 5-1 by the expression:

$$\begin{aligned}
 &[V_m - (L_1 - L_n)\theta_1 \\
 &- \sum_{i=2}^n (L_i - L_n)\theta_i - (L_p - L_n)\theta_p]
 \end{aligned}$$

and substitute only for those leakage rates (L_i or L_p) which exceed L_n .

6.4 Volume of Water Vapor.

METHOD 5 - PARTICULATE EMISSION CALCULATIONS - (2)

$$V_{n(\text{std})} = V_{1c} \left(\frac{\rho_{\text{a}}}{M_{\text{a}}} \right) \left(\frac{RT_{\text{std}}}{P_{\text{std}}} \right) = K_1 V_{1c} \quad \text{Equation 5-2}$$

Where:

$K_1 = 0.001333 \text{ m}^3/\text{ml}$ for metric units
 $= 0.04707 \text{ ft}^3/\text{ml}$ for English units.

6.5 Moisture Content.

$$B_{\text{st}} = \frac{V_{\text{a (std)}}}{V_{\text{m (std)}} + V_{\text{a (std)}}} \quad \text{Eq. 5-3}$$

NOTE: In saturated or water droplet-laden gas streams, two calculations of the moisture content of the stack gas shall be made, one from the impinger analysis (Equation 5-3), and a second from the assumption of saturated conditions. The lower of the two values of B_{st} shall be considered correct. The procedure for determining the moisture content based upon assumption of saturated conditions is given in the Note of Section 1.2 of Method 4. For the purposes of this method, the average stack gas temperature from Figure 5-2 may be used to make this determination, provided that the accuracy of the in-stack temperature sensor is $\pm 1^\circ \text{C}$ (2°F).

6.6 Acetone Blank Concentration.

$$C_{\text{b}} = \frac{m_{\text{b}}}{V_{\text{a}} \rho_{\text{a}}} \quad \text{Eq. 5-4}$$

6.7 Acetone Wash Blank.

$$W_{\text{b}} = C_{\text{b}} V_{\text{a}} \rho_{\text{a}} \quad \text{Eq. 5-5}$$

6.8 Total Particulate Weight. Determine the total particulate catch from the sum of the weights obtained from Containers 1 and 2 less the acetone blank (see Figure 5-3).

NOTE: Refer to Section 4.1.5 to assist in calculation of results involving two or more filter assemblies or two or more sampling trains.

6.9 Particulate Concentration.

$$C_{\text{p}} = (0.001 \text{ g/mg}) (m_{\text{p}} / V_{\text{a (std)}}) \quad \text{Eq. 5-6}$$

6.10 Conversion Factors:

From	To	Multiply by
acrl.	m^3	0.02632
g/ft^3	g/ft^3	15.43
g/ft^3	lb/ft^3	2.205×10^{-3}
g/ft^3	g/m^3	35.31

6.11 Isokinetic Variation.

6.11.1 Calculation From Raw Data

$$I = \frac{100 T_{\text{a}} (K_1 V_{\text{a}} + (P_{\text{m}} / T_{\text{m}})(P_{\text{bar}} + \Delta H / 13.6))}{600 V_{\text{a}} P_{\text{a}} A_{\text{a}}} \quad \text{Eq. 5-7}$$

Where:

$K_1 = 0.003454 \text{ mm Hg} \cdot \text{m}^3/\text{ml} \cdot ^\circ\text{K}$ for metric units.
 $= 0.002669 \cdot \text{in. Hg} \cdot \text{ft}^3/\text{ml} \cdot ^\circ\text{R}$ for English units.

6.11.2 Calculation From Intermediate Values.

$$I = \frac{T_{\text{a}} V_{\text{m (std)}} P_{\text{std}} 100}{T_{\text{std}} v_{\text{a}} \theta A_{\text{a}} P_{\text{a}} 60 (1 - B_{\text{st}})} \\ = K_1 \frac{T_{\text{a}} V_{\text{m (std)}}}{P_{\text{a}} V_{\text{a}} A_{\text{a}} \theta (1 - B_{\text{st}})} \quad \text{Equation 5-8}$$

where:

$K_1 = 4.320$ for metric units
 $= 0.09450$ for English units.

6.12 Acceptable Results. If 90 percent $< I < 110$ percent, the results are acceptable. If the particulate results are low in comparison to the standard, and I is over 110 percent or less than 90 percent, the Administrator may accept the results.

NOMENCLATURE
METHOD 5 CALCULATIONS

$V_{m_{std}}$ = Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscm (dscf).
 Y = Dry gas meter calibration factor
 P_b = Barometric pressure at the sampling site, mm Hg (in. Hg)
 H = Average pressure differential across the orifice meter, mm H_2O (in. H_2O)
 T_m = Absolute average dry gas meter temperature, $^{\circ}K$ ($^{\circ}R$)
dscm = Dry standard cubic meters
dscf = Dry standard cubic feet
 W_a = Weight of residue in acetone wash
 M_a = Mass of residue of acetone after evaporation, mg
 C_a = Acetone blank residue concentration, mg/g
 V_a = Volume of acetone blank
 V_{aw} = Volume of acetone used in wash, ml
 M_n = Total amount of particulate matter collected, mg
 C_s = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, mg/dscm (gr/dscf)
gr/dscf = grains per dry standard cubic foot
 $V_{w_{std}}$ = Volume of water vapor in the gas sample, corrected to standard conditions, scm (scf)
 B_{ws} = Water vapor in the gas stream, proportion by volume
 M_d = Molecular weight of stack gas, g/g-mole on dry basis
 M_w = Molecular weight of stack gas, g/g-mole on wet basis
 V_s = Stack gas velocity, calculated by Method 2, Equation 2-9, using data obtained from Method 5, m/sec (ft/sec)
 C_p = Pitot tube coefficient, dimensionless
 Δ_p = Velocity head of stack gas, mm H_2O (in. H_2O)
 P_s = Absolute stack gas pressure, mm Hg (in. Hg)

NOMENCLATURE (continued)
METHOD 5 CALCULATIONS

Q_{std} = Dry volumetric stack gas flow rate corrected to standard conditions, dscm/hr (dscf/hr)

dscf/min = dry standard cubic feet per minute (also identified as dcfm or scfm)

acf m = actual cubic feet per minute

I = Percent of isokinetic sampling

A_n = Cross-sectional area of nozzle, m^2 (ft^2)

SAMPLE CALCULATION SHEET
METHODS 1-5

CLIENT: Woodworth & Co.

DATE OF TEST: 9/6/90

LOCATION: Tacoma, WA

RUN #: 3

Particulate Matter Emission Concentration - Equation 5-1

$$V_{m_{std}} = 17.647^{\circ}R / "Hg * 40.218 \text{ ft}^3 * 993 * (30.04^{\circ}\text{Hg} + (.707^{\circ}\text{H}_2\text{O}/13.6)) / (460 + 78.6^{\circ}\text{F})$$

$$= 39.375 \text{ dscf}$$

$$dscm = 39.375 \text{ dscf} / 35.31 \text{ ft}^3/\text{m}^3$$

$$= 1.115 \text{ dscm}$$

Substitution of Equation 5-4 into 5-5

$$W_a = .2 \text{ mg} * 170 \text{ ml} / 100 \text{ ml}$$

$$= .34 \text{ mg}$$

$$M_n = (\text{net weight filter catch}) + (\text{net weight "B" section}) - W_a + \text{Back-half}$$

$$= 123.8 \text{ mg} = 56.8 \text{ mg} + 30.7 \text{ mg} - 0.34 \text{ mg} + 36.6 \text{ mg}$$

$$C_s = (0.001 \text{ g/mg}) * (15.43 \text{ grains/gram}) * 123.8 \text{ mg} / 39.375 \text{ dscf}$$

$$= .049 \text{ gr/dscf} \quad (\text{Equation 5-6})$$

$$\text{gr/dscf } @ 7\% \text{ O}_2 = \text{gr/dscf} * (20.9\% - 7\% \text{ O}_2) / (20.9\% - \text{O}_2)$$

$$= \text{gr/dscf } @ 7\% \text{ O}_2$$

$$\text{gr/dscf } @ 12\% \text{ CO}_2 = \text{gr/dscf} * 12\% / \text{CO}_2$$

$$= \text{gr/dscf } @ 12\% \text{ CO}_2$$

$$\text{mg/dscm} = 123.8 \text{ mg} / 1.115 \text{ dscm}$$

$$= 111.0 \text{ mg/dscm}$$

Particulate Matter Emission Rate

$$\text{pounds/hour} = .049 \text{ gr/dscf} * 377.55 \text{ dscf/min} * 60 \text{ min/hr} * 1 \text{ lb/7000 grains}$$

$$= 15.7 \text{ lb/hr}$$

Moisture - Equation 5-2 and 5-3

$$V_{w_{std}} = 0.04715 \text{ ft}^3/\text{g} * 244.0 \text{ grams of H}_2\text{O collected in impingers}$$

$$= 11.50 \text{ scf}$$

SAMPLE CALCULATION SHEET (continued)
METHODS 1-5

$$B_{ws} = (11.5 \text{ scf}) / (11.5 \text{ scf} + 39.375 \text{ dscf}) \\ = 0.2261$$

$$\% \text{Moisture} = 0.2261 * 100 \\ = 22.61 \%$$

Molecular weight - Equation 3-2

$$M_d = 0.440 * (5.9 \% \text{CO}_2) + 0.320 * (12.9 \% \text{O}_2) + 0.280 * (81.2 \% \text{CO} + \% \text{N}_2)$$

$$M_d = 29.46 \text{ g/g-mole (dry)}$$

$$M_s = 29.46 \text{ g/g-mole} * (1 - 0.2261) + 18.0 * 0.2261$$

$$M_s = 26.87 \text{ g/g-mole (wet)}$$

Stack gas velocity and volumetric flow rate - Equation 2-9 and 2-10

$$v_s = 85.49 * 0.838 * 1907 * \sqrt{6075^\circ \text{R} / 26.87 \text{ g/g-mole} / 30.04 \text{ "Hg}}$$

$$v_s = 11.85 \text{ ft/sec (std)}$$

$$Q_{sd} = 3600 * (1 - 0.2261) * 11.85 \text{ ft/sec} * 78.54 \text{ ft}^2 * (528^\circ \text{R} / 6075^\circ \text{R}) * \\ (30.04 \text{ "Hg} / 29.92 \text{ "Hg})$$

$$= 2262935 \text{ dscf/hr} / 60 \text{ min/hr}$$

$$= 37715.5 \text{ dscf/min (dry standard cubic feet per minute)}$$

$$acf m = 11.85 \text{ ft/sec} * 78.54 \text{ ft}^2 * 60 \text{ sec/min}$$

$$= 55846.5 \text{ acfm (actual cubic feet per minute)}$$

Isokinetic variation - Equation 5-8

$$I = 0.09450 * 39.375 \text{ dscf} * 6075^\circ \text{R} / (30.04 \text{ "Hg} * 11.85 \text{ ft/sec} * 60 \text{ min} * \\ 0.013690 \text{ ft}^2 * (1 - 0.2261))$$

$$I = 100 \%$$

All of the above numbered equations are from the 40 CFR 60 and assume English units.

Backhalf particulate

35

"C" Section22.3 mg particulate in "C" Section beaker410.0 ml of water in condensers, including rinses233.3 ml of condensation in 1st, 2nd and 3rd bubblers (final weight - initial weight, assumes 1g/ml water density)176.7 ml of deionized, distilled water used in bubblers including rinses.002 mg/ml blank partic. = (.2 mg H₂O blank / 100 ml H₂O).35 mg of blank particulate= 21.9 mg of "C" partic. = 22.3 mg of partic. in "C" - .35 mg of blank"Cx" Section6.8 mg of particulate in "Cx" Section beaker0.0 mg/ml of blank partic. = (0.0 mg CH₂Cl₂ blank / 100 ml CH₂Cl₂)0.0 mg of blank particulate = (150 ml * 0.0 mg/ml)= 6.8 mg of "Cx" partic. = 6.8 mg of partic in "Cx" - 0.0 mg of blank"D" Section8.0 mg of particulate in "D" Section beaker.002 mg/ml of blank particulate (same as "B" Section)0.13 mg of blank particulate = (105 ml * .002 mg/ml)= 7.87 mg of "D" partic. = 8.0 mg of partic. in "D" - .13 mg of blankTotal Backhalf Particulate+ 21.9 mg of "C" Section particulate+ 6.8 mg of "Cx" Section particulate+ 7.9 mg of "D" Section particulate+ NA mg of Backhalf filter (if applicable)= 36.6 mg of Backhalf particulate

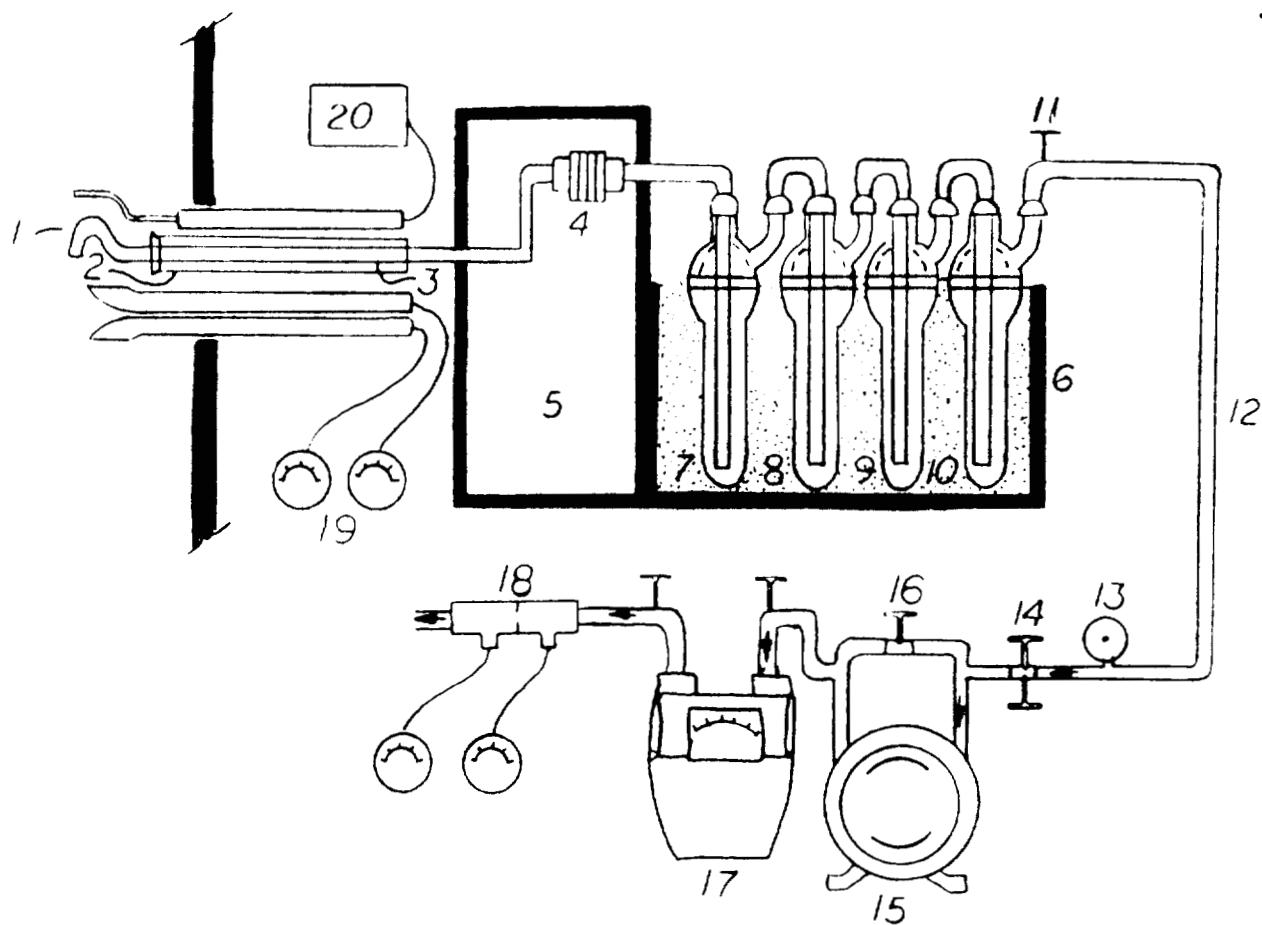


Figure 2. Method 5 Sample Train.

1. Sampling nozzle
2. Sampling probe sheath
3. Heated sample probe liner
4. Out of stack filter assembly
5. Heated filter compartment maintained at $248^{\circ}\text{F} \pm 25^{\circ}\text{F}$
(or temperature specified in 40 CFR subpart)
6. Impinger case - contains ice during sampling
7. First impinger containing 100 ml H_2O
8. Modified Greenburg-Smith impinger containing 100 ml H_2O
9. Third impinger - empty
10. Fourth impinger containing indicating silica gel desiccant
11. Impinger exit gas temperature sensor
12. Umbilical cord - vacuum line
13. Vacuum gauge
14. Fine and coarse adjustment valves
15. Leak free pump
16. By-pass valve
17. Dry gas meter with inlet and outlet temperature sensors
18. Orifice meter with magnehelic gauges
19. S-type pitot tube with magnehelic gauges
20. Fluke multi-channel digital thermocouple indicator

AMTEST

DRY GAS METER CALIBRATION
AM TEST, INC. - AIR QUALITY DIVISION

METER BOX #: JAG RED #1
CALIBRATION DATE: FEBRUARY 23, 1989
LOCATION: STATE OF WASHINGTON DEPARTMENT OF ECOLOGY
METHOD OF CALIB.: SPIROMETER

TOTAL TIME min	DELTA H "H2O	METER VOL V1 cf	METER VOL V2 cf	TEMP OUT deg F	TEMP IN deg F	BARO. PRES. "Hg	VOLUME METER dscf	SPIRO H1 cm	SPIRO H2 cm	SPIRO TEMP deg C	VOLUME SPIRO dscf	Y FACTOR	KM^2	DELTA H2	
4.0	1.0	408.200	411.341	80.0	76.0	29.84	3.090	80.0	13.5	22	3.111	0.993	0.99	0.927	
4.0	1.0	412.300	415.425	81.5	76.5	29.84	3.069	80.0	14.0	22	3.088	0.994	0.98	0.938	
5.0	0.5	415.800	418.552	80.5	77.0	29.84	2.700	80.0	21.8	22	2.723	0.992	0.97	0.946	
3.5	1.5	419.200	422.505	79.5	77.0	29.84	3.254	80.0	10.1	22	3.270	0.995	0.96	0.961	
AVERAGE													0.993	0.98	0.943

73

AT

44

Lab # 00399

TRAVERSE SAMPLING DATA

Page 1 of

Client Woodworth-Tacoma
 Date 9-6-70
 Sample Location Scrubber
Exit Stack
 Operators JMG
 Sample Box # Pad-1
 Run# 1-45 W/1511

SCHEMATIC TRAVERSE LAYOUT

Start Time 0634
 Stop Time 0740
 Barometric 30.00"
 Pressure "Hg 762 mm
 Static Pres "H₂O + .02
 Production Rate _____

EQUIPMENT CHECKS

Initial/Final

Leak Rate Cfm 2.04,008Leak Test Vac 20/20

Pitots, Pretest

Pitots, Posttest

Orsat Sampling System

Tedlar Bag

Thermocouple @ _____ °F

Stack Diameter 120"
 Distance Upstream 30'
 Distance Downstream 10'

Filter	#125-117	tare	mgs
Final Wt.	Initial Wt.	Net Wt.	
#1 Bubbler	774.6	- 587.6	-
#2 Impinger	787.1	- 591.2	-
#3 Bubbler	463.6	- 460.7	-
#4 Silica Gel	778.0	- 767.2	-
TOTAL WATER VOLUME <u>234.6</u>			

NOMOGRAPH SETUP

% Moisture _____

Meter Temp. _____

Stack Temp. _____

ΔH .743 Y .973Pitot# 11' Side# ACp .838Nozzle Diameter .50"

K Factor _____

Reference ΔP _____

 $CO_2 = 6.0, CO = 218 \text{ ppm}$

Sample Point	Elap Time Min.	Dry Gas Meter Reading	Pitot Reading (ΔP),	Orifice Setting (ΔH),	Gas Meter Temp °F	Pump Vacuum	Filter Box Temp °F	Imp. Exit Temp °F	Stack Temp °F	O_2
		Cu. Ft.	In. H ₂ O	In H ₂ O	Ideal Actual	In Out	In. Hg Gauge	°F		
W 1 0	847.651	.02	.34	.34	61 61	2	266	55	144	
2		.025	.45	.45	61 61	2	257	49	45	
2 5		.03	.53	.55	62 61	2 1/2	251	48	45	
1		.035	.62	.62	63 61	2 1/2	246	48	46	
3 10		.04	.71	.71	64 62	3	257	47	46	
1		.04	.71	.71	65 62	3	251	48	46	
2 15		.03	.53	.53	67 62	2 1/2	245	50	46	
8		.04	.71	.71	67 62	2 1/2	245	50	46	
9 20		.04	.71	.71	69 62	3	270	51	48	
10		.03	.52	.52	69 63	2 1/2	267	51	46	
11 25		.03	.53	.53	70 64	2 1/2	270	52	48	
12		.02	.34	.34	70 64	2	268	52	49	
3 130		.05	.90	.90	67 65	3	257	58	47	
2		.05	.90	.90	67 65	2	244	56	46	
3 35		.06	1.08	1.08	70 65	3 1/2	250	53	46	
4		.06	1.08	1.08	71 66	3 1/2	245	54	46	
5 40		.07	.90	.90	71 66	3 1/2	244	54	47	
6		.04	.72	.72	66 65	3	261	55	47	
2 45		.03	.44	.44	73 67	1	271	55	47	
3		.03	.54	.54	73 67	1	262	56	47	
7 50		.03	.44	.44	72 67	1	265	53	47	
8		.03	.54	.54	72 67	1	262	56	47	
9 55		.03	.44	.44	72 67	1	265	53	47	
10		.03	.44	.44	72 67	1	265	53	47	
11 55		.025	.16	.44	71 68	1	270	55	52	
12		.025	.16	.44	71 68	1	267	54	51	
LCL 1885.742		38.091	$(\sqrt{AP})^2$		$\frac{0.634}{\Delta H \cdot V} \frac{66.5}{T_m}$			147.4	12.8%	

AT

45

Lab # 00400

TRAVERSE SAMPLING DATA

Page 1 of _____

Client Woodworth
 Date 9-6-90
 Sample Location Squib Hill
100 ft
 Operators JAM
 Sample Box # Red-2
 Run# 2-mg

SCHEMATIC TRAVERSE LAYOUT

Start Time 0936
 Stop Time 1043
 Barometric 30.04
 Pressure "Hg 76
 Static Pres "H₂O 0
 Production Rate 0

EQUIPMENT CHECKS

Initial/Final
 Leak Rate Cfm 1.00

Leak Test Vac 20 / 20

Pitots, Pretest

Pitots, Posttest

Orsat Sampling System

Tedlar Bag

Thermocouple @ °F

Stack Diameter

Distance Upstream

Distance Downstream

Filter #125-115 tare mgs

Final Wt. Initial Wt. Net Wt.

#1 Bubbler 821.2 - 625.0 =

#2 Impinger 620.5 - 589.1 =

#3 Bubbler 493.0 - 490.6 =

#4 Silica Gel 736.2 - 765.5 =

TOTAL WATER VOLUME 290.7

NOMOGRAPH SETUP

% Moisture

Meter Temp.

Stack Temp.

ΔH@.943 Y .993

Pitot# Side#

Cp .830

Nozzle Diameter .501

K Factor

Reference ΔP

CO₂ = 10%; CO = 218 ppm

Sample Point	Elap Time Min.	Dry Gas Meter Reading Cu. Ft.	Pitot Reading (ΔP), In H ₂ O	Orifice Setting (ΔH), In H ₂ O	Gas Meter Temp °F	Pump Vacuum In. Hg	Filter Box Temp °F	Imp. Exit Temp °F	Stack Temp °F	O ₂
				Ideal Actual	In Out	Gauge				
1	0	886.538	.06	1.12	1.12	62.62	3	243	58	144
2		106	1.12	1.12	63.63	3	250	53	144	13.0
3	5	103	1.40	1.40	25.63	4	245	30	12	13.0
4		105	1.40	1.40	27.63	4	247	51	142	12.8
5	10	.06	1.12	1.12	69.63	3.2	241	54	147	12.8
6		1.09	1.75	.75	70.64	3	239	52	143	12.7
7	45	.04	2	2	70.64	3	241	53	140	12.7
8		.03	.56	.56	71.65	2.4	244	57	148	12.7
9	20	.015	.17	.47	71.65	2.2	253	59	146	12.8
10		.025	.47	.47	71.65	2.4	260	53	144	12.8
11	25	.02	.37	.37	71.66	2	263	55	149	12.9
12		.02	.37	.37	71.66	2	265	55	143	12.7
W	30	.025	.47	.47	68.68	2.4	266	53	145	
2		.025	.47	.47	69.68	2.2	263	51	146	12.9
3	35	.03	.51	.51	71.68	2.4	262	56	147	12.9
4		.03	.52	.52	72.68	2.4	261	50	148	12.8
5	40	.03	.52	.52	72.68	2.4	260	50	147	12.7
6		.02	.51	.51	73.69	2.4	263	50	147	12.7
7	45	.04	.56	.56	70.69	2.2	260	49	149	12.7
8		.04	.25	.25	75.70	3	254	49	149	12.7
9	50	.04	.25	.25	76.71	3	247	50	150	12.8
10		.03	.53	.53	76.71	3	264	51	151	12.8
11	55	.03	.16	.16	76.70	2.2	260	51	150	12.8
12		.03	.53	.53	77.71	2.2	258	52	150	12.7
6.0		926.107	34.547		0.709	68.7		147.5		12.8
					$\frac{V}{(\sqrt{\Delta P})^2}$					

