

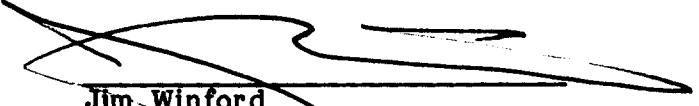
Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

RAMCON

ENVIRONMENTAL CORPORATION

RAMCON BUILDING


223 SCOTT STREET

MEMPHIS, TENNESSEE 38112

TELEPHONE 901 / 458-7000

800 / 458-4567

SOURCE SAMPLING
for
PARTICULATE EMISSIONS
WINFORD COMPANY
BOSSIER CITY, LOUISIANA
July 1, 1986

Jim Winford
Winford Company

G. Sumner Buck, III

President

J. Cameron Mitchell

Team Leader

RAMCON

ENVIRONMENTAL CORPORATION

RAMCON BUILDING

223 SCOTT STREET

MEMPHIS, TENNESSEE 38112

TELEPHONE 901 / 458-7000

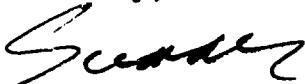
800 / 458-4567

July 10, 1986

Mr. Jim Winford
Winford Company
P.O. Box 599
Minden, LA 71058-0599

Subject: Particulate Emissions Test - Bossier City, LA

Dear Mr. Winford:


Enclosed are four copies of our report on particulate emissions. Based on our test results, your plant does pass both EPA New Source Performance Standards and those set by the State of Louisiana. The average grain loading of the three test runs was in compliance with State and Federal Standards.

You will need to sign the report covers and send two copies to:

Mr. Burns Doss
Northwest Regional Office
Louisiana Dept. of Environmental Quality
1525 Fairfield Avenue, Room 11
Shreveport, LA 71101-4388

You will need to keep one copy of the report at the plant. We certainly have enjoyed working with you and look forward to serving you again in the future.

Sincerely,

G. Sumner Buck, III
President

GSBIII:kr

Enclosures

TABLE OF CONTENTS

I.	INTRODUCTION	1
II.	TEST RESULTS	1
III.	TEST PROCEDURES	2
IV.	THE SOURCE	4
V.	EQUIPMENT USED	8
VI.	LABORATORY PROCEDURES & RESULTS	9
VII.	CALCULATIONS	13
VIII.	FIELD DATA	23
IX.	CALIBRATIONS	29
X.	RAMCON PERSONNEL	36

I. INTRODUCTION

On July 1, 1986, personnel from RAMCON Environmental Corporation (REC) conducted a source emissions test for particulate emissions compliance at Winford Company's Stansteel batch mix asphalt plant located in Bossier City, Louisiana. RAMCON personnel conducting the test were Cameron Mitchell, Team Leader and Shawn Greenwood. Kim Rea was responsible for the final laboratory analysis including taring the beakers and filters and recording final data in the laboratory record books. Custody of the samples was limited to Mr. Mitchell and Ms. Rea.

The purpose of the test was to determine if the rate of particulate emissions from the plant's baghouse and the total contaminants by weight (grain loading) are below EPA N.S.P.S. limits and those set by the State of Louisiana.

II. TEST RESULTS

Table I summarizes the test results. The grain loading limitation for EPA is specified in 39 FR 9314, March 8, 1974, 60.92 Standards for Particulate Matter (1), as amended. The maximum allowable particulate emissions for the State of Louisiana is .04 gr/DSCF.

Mr. Burns Doss of Louisiana's Department of Environmental Quality observed the testing conducted by RAMCON.

(2)
TABLE I

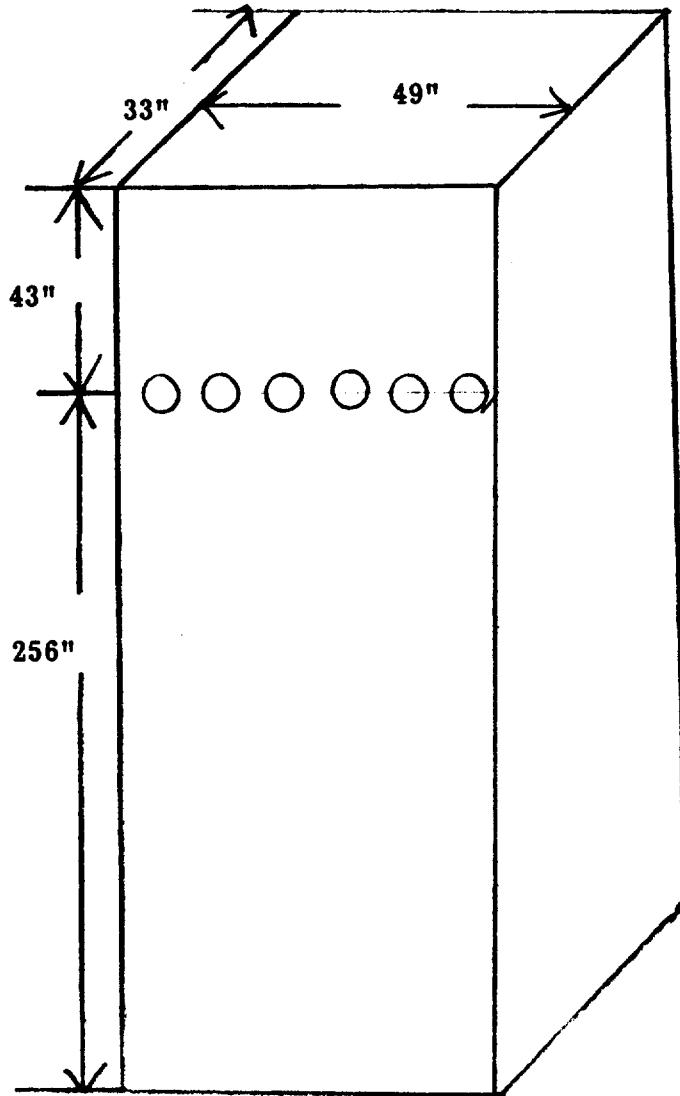
SUMMARY OF TEST RESULTS
July 1, 1986

<u>Test Run</u>	<u>Time</u>	<u>Grain Loading</u>	<u>Isokinetic Variation</u>	<u>Actual Emissions</u>
1	08:53 to 09:57	0.0043 gr/DSCF	90%	1.0 lbs/hr
2	10:29 to 12:06	0.0114 gr/DSCF	88%	2.5 lbs/hr
3	12:50 to 14:18	0.0063 gr/DSCF	92%	1.3 lbs/hr
Average:		0.0073 gr/DSCF		1.6 lbs/hr

On the basis of these test results, the average grain loading of the three test runs was below the .04 gr/DSCF emissions limitation set by EPA and the State of Louisiana. Therefore, the plant is operating in compliance with Federal and State Standards.

III. TEST PROCEDURES

A. Method Used: The source sampling was conducted in accordance with requirements of the U.S. Environmental Protection Agency as set forth in 39 FR 9314, March 8, 1974, 60.93, as amended.

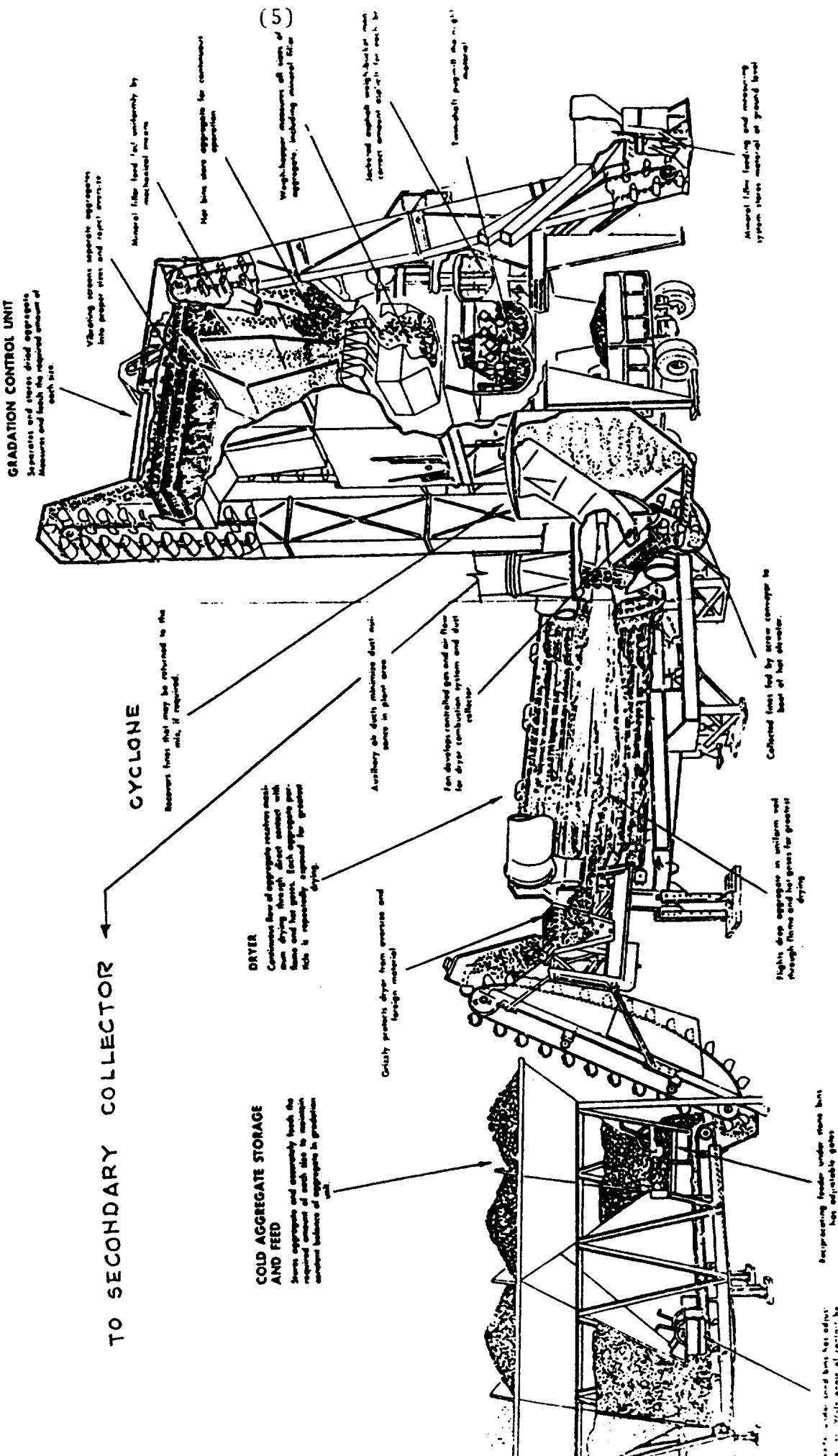

B. Problems Encountered: Test run two was sampled at an isokinetic rate slightly below the 90% limitation set by EPA. Since a low isokinetic rate tends to bias the test results against the source, and since all three test runs were well below the .04 gr/dscf emissions standard allowed, RAMCON Environmental recommends acceptance of all three test runs as demonstration of compliance with N.S.P.S. and the State of Louisiana.

(3)

C. Sampling Site: The emissions test was conducted after a baghouse on a rectangular stack measuring 49" x 33" with an equivalent diameter of 39.4". Six sampling ports were placed 43" down (1.1 diameters upstream) from the top of the stack and 256" up (6.5 diameters downstream) from the last flow disturbance. Thirty points were sampled, five through each port for two minutes each.

<u>Points on a Diameter</u>	<u>Probe Mark</u>
1	*5.3"
2	11.9"
3	18.5"
4	25.1"
5	31.7"

* Measurements include a 2.0" standoff.


IV. THE SOURCE

Winford Company employs a Stansteel batch mix asphalt plant which is used to manufacture hot mix asphalt for road pavement. The process consists of blending prescribed portions of cold feed materials (sand, gravel, screenings, chips, etc.) uniformly and adding sufficient hot asphalt oil to bind the mixture together. After the hot asphalt mix is manufactured at the plant, it is transported to the location where it is to be applied. The hot asphalt mix is spread evenly over the surface with a paver and then compacted with a heavy roller to produce the final product.

The following is a general description of the plant's manufacturing process: The cold feed materials (aggregate) are dumped into four separate bins which in turn feed a common continuous conveyor. The aggregate is dispensed from the bins in accordance with the desired formulation onto the cold feed system conveyor to an inclined weigh conveyor then to a rotating drum for continuous mixing and drying at approximately 300°F. The dried aggregate is pulled by a bucket elevator to the top of a gradation control unit which separates and stores the aggregate by size. The required amount of each aggregate is dispensed into a weigh-hopper and from there, into a pugmill where the hot liquid asphalt is mixed thoroughly with the aggregate. The hot asphalt mix is then discharged from the storage silo through a slide gate into waiting dump trucks, which transport the material to a final destination for spreading. The rated capacity of the plant will vary with each aggregate mix and moisture content with a 5% surface moisture removal.

The drum dryer uses a burner fired with coal and gas to heat air to dry the aggregate. The air is drawn into the system via an exhaust fan. After passing through the burner and the mixing drum, the air passes through a baghouse. The baghouse is manufactured by Astec. The exhaust gasses are drawn through the baghouse and discharged to the atmosphere through the stack. The design pressure drop across the tube sheet is 1 - 4 inches of water. The particulate matter, which is removed by the baghouse is reinjected into the pugmill. The following sketch shows a typical batch mix asphalt plant.

Figure 4-1
ASPHALT BATCH MIX PLANT - AN EXPLODED VIEW

DATA SUMMARYPlant

1. Manufacturer of plant Standard.
2. Designed maximum operating capacity 300 TPH @ 0 % moisture.
3. Actual operation rate 200 TPH @ 5 % moisture.
4. Startup date 7-1-86.
5. Type of fuel used in dryer Coal + Gas.
6. Quantity of fuel consumption 3000 lbs P.H..

Aggregate

7. Name/type of mix 1-W.C..
8. Percent asphalt in mix 4.5 %.
9. Temperature of asphalt 150.
10. Sieve/Screening analysis: % Passing; Private N-A

1"	<u>_____</u>	3/8"	<u>_____</u>	#	<u>_____</u>
3/4"	<u>_____</u>	#	<u>_____</u>	#	<u>_____</u>
1/2"	<u>_____</u>	#	<u>_____</u>	#200	<u>_____</u>

Baghouse

11. Manufacturer Astec.
12. No. of bags 900. Type of bags Nomex.
13. Air to cloth ratio 6-1. Designed ACFM 70,000.
14. Square feet of bags 11,616 sq ft.
15. Type of cleaning; pulse jet ✓, reverse air , plenum pulse , other .
16. Cleaning cycle time 5 sec..
17. Interval between cleaning cycle 8 sec..
18. Pressure drop across baghouse 3 psi.
19. Pulse pressure on cleaning cycle 80-90 psi.

COMPANY NAME Winford DATE 7-1-86

COMPANY REPRESENTATIVE Steve Roton

PLANT DATA⁷

COMPANY NAME Winford
COMPANY REP. Steve Rector DATE 7-1-84 PHONE # 746-2467
DATA SOURCE Computer
PLANT LOCATION Bossier City, La
PLANT MFG. Stansteel PLANT MODEL # R.M.-60A PLANT TYPE Batch
MIX SPECIFICATION # 1-W.C. OIL SPECIFICATION # 1-A

Time 24 Hour	Fuel Oil	Nat. Gas	Propane	Coal	Burner Setting	Liquid Asph Included Aggregate	Recycle	Liquid Asphalt	Mix Temp.	Venturi Baghouse Pressure Drop
	145 P.M.	90	TPH	TPH	TPH	°F	Inches Water			
4:45	60.216	56	200	0		340	3			
9:00	51.6	40	200	0		350	3			
9:15	53.9	45	200	0		326	4			
9:30	51.6	40	200	0		338	4			
9:45	51.6	40	200	0		330	3			
10:30	51.6	40	200	0		300	3			
10:45	43.0	50	200	0		250	4			
11:00	47.3	25	200	0		250	3			
11:15	47.3	15	200	0		275	3			
11:30	45.10	22	200	0		290	4			
12:45	47.3	25	200	0		250	3			
1:00	43.0	20	200	0		270	3			
1:15	47.0	25	200	0		290	4			
1:30	45.10	23	200	0		291	3			
1:45	48.2	26	200	0		240	3			
2:00	47.0	25	200	0		250	3			
2:15	47.0	25	200	0		250	3			

V. EQUIPMENT USED

V. EQUIPMENT USED

Equipment used on conducting the particulate emissions test was:

- A. The Lear Siegler PM-100 stack sampler with appropriate auxillary equipment and glassware. The train was set up according to the schematic on the nex page.
- B. An Airguide Instruments Model 211-B (uncorrected) aneroid barometer was used to check the barometric pressure.
- C. Weston dial thermometers are used to check meter tem-
peratures. An Analogic Model 2572 Digital Thermocouple is used for stack temperatures.
- D. A Hays 621 Analyzer was used to measure the oxygen, carbon dioxide and carbon monoxide content of the stack gases. For non-combustion sources, A Bacharach Instrument Company Fyrite is used for the gas analysis.
- E. Filters are mady by Schleicher and Schuell and are type 1-HV with a porosity of .03 microns.
- F. The acetone is reagent grade or ACS grade with a residue of $\leq .001$.

VI. LABORATORY PROCEDURES & RESULTS

LABORATORY PROCEDURES FOR PARTICULATE SAMPLING

I. Field Preparation

A. FILTERS: Fiberglass 4" sampling filters are prepared as follows:

Filters are removed from their box and numbered on the back side with a felt pen. The numbering system is continuous from job to job. The filters are placed in a dessicator to dry for at least 24 hours. Clean plastic petri dishes, also numbered, top and bottom, are placed in the dessicator with the filters. After dessication, the filters are removed one at a time and weighed on the Sartorius analytical balance, then placed in the correspondingly numbered petri dish. Weights are then recorded in the lab record book. Three filters are used for each complete particulate source emissions test and there should be several extra filters included as spares.

B. SILICA GEL: Silica Gel used for the test is prepared as follows:

Approximately 200 g of silica gel is placed in a wide mouth "Mason" type jar and dried in an oven (175°C for two hours). The open jars are removed and placed in a dessicator until cool (2 hours) and then tightly sealed. The jars are then numbered and weighed on the triple beam balance to the closest tenth of a gram, and this weight is recorded for each sealed jar. The number of silica gel jars used is the same as the number of filters. Silica gel should be indicating type, 6-16 mesh.

II. Post-Testing Lab Analysis

A. FILTERS: The filters are returned to the lab in their sealed glass filter holder which was used in field sampling. In the lab these holders are opened. The filter is placed in its petri dish with the lid off and returned to the dessicator for at least 24 hours. The top half of the filter holder is washed into the corresponding probe wash bottle and the bottom half of the filter holder is washed into the corresponding impinger catch bottle. (See II, C and D). After dessication, the filters are reweighed. The final weight is recorded in the lab record book. The filter pick up weight is calculated and recorded also. This procedure is repeated for all filters used in the field.

Alternately, the test team may opt to oven dry the filters at 220°F for two to three hours, weigh the sample, and use this weight as a final weight.

B. SILICA GEL: The sealed silica gel jars should be reweighed on the triple-beam balance and their weights recorded as shown on previous page.

- C. PROBE RINSINGS: In all tests, a probe wash-out analysis will be necessary. These samples are returned in sealed Mason jars and consist of A.R. Acetone with an unknown solid content. Clean 250 ml beakers are used to make this analysis. These should be immaculately washed and rinsed with deionized water, then oven dried at 105°C for about one hour. The beakers should be moved to the dessicator to cool for ninety (90) minutes, then labeled with a pencil and weighed on the Sartorius analytical balance. Any variance from this procedure should be duplicated exactly when reweighing, as this procedure has been found to be quite sensitive. After preparing the necessary number of beakers (one for each probe wash and one blank) the Mason jars should be opened, poured into the beaker, and any material remaining on the jar walls rinsed with an acetone wash bottle into the beaker. The amount of liquid in the beaker should be noted on the analysis form. The acetone rinsings are evaporated on a warming plate. The liquid is kept swirled with an air sweep to prevent "bumping". When the acetone is evaporated the beakers are weighed as in Section II A.
- D. IMPINGER CATCH: In some testing cases, the liquid collected in the impingers must be analyzed for solids content. This involves a similar procedure to the probe wash solids determination, except that the liquid is deionized water.
- E. ACETONE: Conduct a blank analysis of acetone in the 1 gallon glass container. This acetone will be used in the field for rinsing the probe, nozzle, and top half of the filter holder. Performing such a blank analysis prior to testing will insure that the quality of the acetone to be used will not exceed the .001% residual purity standard.

SPECIAL NOTE

When sampling sources high in moisture content, (such as asphalt plants) the filter paper sometimes sticks to the filter holder. When removing the filter it may tear. In order to maintain control of any small pieces of filter paper which may be easily lost, they are washed with acetone into the probe washing. This makes the filter weight light (sometimes negative) and the probe wash correspondingly heavier. The net weight is the same and no particulate is lost. This laboratory procedure is taught by EPA in the Quality Assurance for Source Emissions Workshop at Research Triangle Park and is approved by EPA.

WEIGHING PROCEDURE - SARTORIUS ANALYTICAL BALANCE

The Sartorius balance is accurate to 0.1 mg and has a maximum capacity of 200 grams. The balance precision (standard deviation) is 0.05 mg. Before weighing an item, the balance should first be zeroed. This step should be taken before every series of weighings. To do this, the balance should have all weight adjustments at "zero" position. The beam arrest lever (on the lower left hand side toward the rear of the balance) is then slowly pressed downward to full release position. The lighted vernier scale on the front of the cabinet should align the "zero" with the mark on the cabinet. If it is not so aligned, the adjustment knob on the right hand side (near the rear of the cabinet) should be turned carefully until the marks align. Now return the beam arrest to horizontal arrest position. The balance is now "zeroed".

To weigh an item, it is first placed on the pan. And the sliding doors are closed to avoid air current disturbance. The weight adjustment knob on the right hand side must be at "zero". The beam arrest is then slowly turned upward. The lighted scale at the front of the cabinet will now indicate the weight of the item in grams. If the scale goes past the divided area, the item then exceeds 100 g weight (about 3-1/2 ounces) and it is necessary to arrest the balance (beam arrest lever) and move the lever for 100 g weight away from you. It is located on the left hand side of the cabinet near the front, and is the knob closest to the side of the cabinet. The balance will not weigh items greater than 200 grams in mass, and trying to do this might harm the balance. Remember -- this is a delicate precision instrument.

After the beam is arrested, in either weight range, the procedure is the same. When the weight of the item in grams is found, "dial in" that amount with the two knobs on the left hand side (near the 100 g lever) color coded yellow and green. As you dial the weight, the digits will appear on the front of the cabinet. When the proper amount is dialed, carefully move the arrest lever down with a slow, steady turn of the wrist. The lighted dial will appear, and the right hand side knob (front of cabinet) is turned to align the mark with the lower of the two lighted scale divisions which the mark appears between. When these marks are aligned, the two lighted digits along with the two indicated on the right hand window on the cabinet front are the fractional weight in grams (the decimal would appear before the lighted digits) and the whole number of grams weight is the amount "dialed in" on the left.

In general, be sure that the beam is in "arrest" position before placing weight on or taking weight off of the pan. Don't "dial in" weight unless the beam is arrested. The balance is sensitive to even a hand on the table near the balance, so be careful and painstaking in every movement while weighing.

SAMPLE ANALYTICAL DATA FORM

Plant Location Winiford Company Relative humidity in lab 49 %
 Sample Location Asphalt Plant Stack Density of Acetone (pa) .7853 mg/ml
 Blank volume (V_a) 200 ml

Date/Time wt. blank 7-2-86Gross wt. 95.8603 mgDate/Time wt. blank 7-3-86Gross wt. 95.8602 mgAve. Gross wt. 95.8603 mgTare wt. 95.8610 mgWeight of blank (m_{ab}) .0003 mgAcetone blank residue concentration (C_a) $(C_a) = (M_{ab}) / (V_a) (pa) = (.000002 \text{ mg/g})$ Weight of residue in acetone wash: $W_a = C_a V_{aw} pa = (.000002)(200)(.7853) = (.0003)$

Acetone rinse volume (V_{aw}) ml
 Date/Time of wt 7-2-86 Gross wt g
 Date/Time of wt 7-3-86 Gross wt g
 Average Gross wt g
 Tare wt g
 Less acetone blank wt (W_a) g
 Wt of particulate in acetone rinse (m_a) g

Run # 1	Run # 2	Run # 3
200	200	200
129.1916	136.4379	143.4353
129.1913	136.4374	143.4350
129.1915	136.4377	143.4352
129.1800	136.4084	143.4223
.0003	.0003	.0003
.0112	.0290	.0126

Filter Numbers #
 Date/Time of wt 7-2-86 Gross wt g
 Date/Time of wt 7-3-86 Gross wt g
 Average Gross wt g
 Tare wt g

SG-1485	SG-1486	SG-1484
.6647	.6679	.6652
.6645	.6677	.6651
.6646	.6678	.6652
.6628	.6668	.6618

Weight of particulate on filters(s) (m_f) g
 Weight of particulate in acetone rinse g
 Total weight of particulate (m_p) g

.0018	.0010	.0034
.0112	.0290	.0126
.0130	.0300	.0160

Note: In no case should a blank residue greater than 0.01 mg/g (or 0.001% of the blank weight) be subtracted from the sample weight.

Remarks _____

Signature of analyst Kim Pea Signature of reviewer St. Just

VII. CALCULATIONS

(13)

NAME: WINFORD COMPANY					
LOCATION: BOSSIER CITY, LOUISIANA		date	7/01/86	7/01/86	7/01/86
SUMMARY OF TEST DATA					
	SAMPLING TRAIN DATA	start	08:53	10:29	12:50
		finish	09:57	12:06	14:18
1	Sampling time, minutes	θ	60	60	60
2	Sampling nozzle diameter, in.	Dn	.250	.250	.250
3	Sampling nozzle cross-sectional area, ft. ²	An	.000342	.000342	.000342
4	Isokinetic variation	I	90	88	92
5	Sample gas volume - meter conditions, cf.	Vm	48.51	43.19	41.99
6	Average meter temperature, °R	Tm	559	566	568
7	Average orifice pressure drop, in.H ₂ O	ΔH	1.82	1.52	1.43
8	Total particulate collected mg.	Mn	13.0	30.0	16.0
VELOCITY TRAVERSE DATA					
9	Stack area, ft. ²	A	11.2	11.2	11.2
10	Absolute stack gas pressure, in. Hg.	Ps	30.12	30.12	30.12
11	Barometric pressure, in. Hg.	Pbar	30.12	30.12	30.12
12	Average absolute stack temperature, °R	Ts	685	661	666
13	Average "velocity head", (Cp= .82)	-\ΔP	.97	.87	.83
14	Average stack gas velocity ft. / sec.	Vs	61	54	52
STACK MOISTURE CONTENT					
15	Total water collected by train, ml.	Vic	136.0	137.0	157.0
16	Moisture in stack gas, %	Bws	12.1	13.8	15.8
EMISSIONS DATA:					
17	Stack gas flow rate, dscf/hr. (000's)	Qsd	1,684	1,513	1,409
18	Total particulate concentration, gr/dscf	Cs	.0043	.0114	.0063
19	Total particulate concentration, lbs/hr	E	1.0	2.5	1.3
20	Total particulate concentration, lbs/mbtu	E'	.0000	.0000	.0000
ORSAT DATA					
21	Percent CO ₂ by volume	CO ₂	2.3	2.3	2.8
22	Percent O ₂ by volume	O ₂	18.3	18.3	17.7
23	Percent CO by volume	CO	.0	.0	.0
24	Percent N ₂ by volume	N ₂	79.4	79.4	79.5

(14)

Dry Gas Volume :

$$V_{m(\text{std})} = V_m \left[\frac{T_{(\text{std})}}{T_m} \right] \left[\frac{P_{\text{bar}} + \Delta H}{13.6} \right] = 17.64 \frac{^{\circ}\text{R}}{\text{in. Hg.}} Y V_m \left[\frac{P_{\text{bar}} + \Delta H}{13.6} \right] \left[\frac{1}{T_m} \right]$$

Where:

$V_{m(\text{std})}$ = Dry Gas Volume through meter at standard conditions, cu.ft.
 V_m = Dry Gas Volume measured by meter, cu.ft.
 P_{bar} = Barometric pressure at orifice meter, in. Hg.
 P_{std} = Standard absolute pressure, (29.92 in. Hg.)
 T_m = Absolute temperature at meter $^{\circ}\text{R}$
 T_{std} = Standard absolute temperature (528 $^{\circ}\text{R}$)
 ΔH = Average pressure drop across orifice meter, in. H_2O
 Y = Dry gas meter calibration factor
13.6 = Inches water per inches Hg.

$$\text{Run # 1 } V_{m(\text{std})} = 17.64 (1.00)(48.51) \left[\frac{(30.12) + \frac{1.82}{13.6}}{559} \right] = 46.31 \text{ dsc}$$

$$\text{Run # 2 } V_{m(\text{std})} = 17.64 (1.00)(43.19) \left[\frac{(30.12) + \frac{1.52}{13.6}}{566} \right] = 40.70 \text{ dsc}$$

$$\text{Run # 3 } V_{m(\text{std})} = 17.64 (1.00)(41.99) \left[\frac{(30.12) + \frac{1.43}{13.6}}{568} \right] = 39.42 \text{ dsc}$$

(15)

Total contaminants by weight: 'GRAIN LOADING'

Particulate concentration C_s gr./dscf.

$$C_s = \left[\begin{array}{c|c} \hline & \hline \\ 0.0154 \frac{\text{gr}}{\text{mg}} & \frac{M_n}{V_{m(\text{std})}} \\ \hline & \hline \end{array} \right]$$

Where:

C_s = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, gr./dscf.

M_n = Total amount of particulate matter collected, mg.

$V_{m(\text{std})}$ = Dry gas volume through meter at standard conditions, cu.ft.

Run # 1: $C_s = \left[\begin{array}{c|c} \hline & \hline \\ 0.0154 \frac{\text{gr}}{\text{mg}} & \frac{13.0}{46.31} \\ \hline & \hline \end{array} \right] = .0043 \text{ gr./dscf.}$

Run # 2: $C_s = \left[\begin{array}{c|c} \hline & \hline \\ 0.0154 \frac{\text{gr}}{\text{mg}} & \frac{30.0}{40.70} \\ \hline & \hline \end{array} \right] = .0114 \text{ gr./dscf.}$

Run # 3: $C_s = \left[\begin{array}{c|c} \hline & \hline \\ 0.0154 \frac{\text{gr}}{\text{mg}} & \frac{16.0}{39.42} \\ \hline & \hline \end{array} \right] = .0063 \text{ gr./dscf.}$

Dry molecular weight:

$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N_2).$$

Where:

- M_d = Dry molecular weight, lb./lb.-mole.
- $\%CO_2$ = Percent carbon dioxide by volume (dry basis).
- $\%O_2$ = Percent oxygen by volume (dry basis).
- $\%N_2$ = Percent nitrogen by volume (dry basis).
- $\%CO$ = Percent carbon monoxide by volume (dry basis).
- 0.264 = Ratio of O_2 to N_2 in air, v/v.
- 0.28 = Molecular weight of N_2 or CO, divided by 100.
- 0.32 = Molecular weight of O_2 divided by 100.
- 0.44 = Molecular weight of CO_2 divided by 100.

Run # 1: $M_d = 0.44(2.3\%) + 0.32(18.3\%) + 0.28(.0\% + 79.4\%) = 29.1$
lb./lb.-mole

Run # 2: $M_d = 0.44(2.3\%) + 0.32(18.3\%) + 0.28(.0\% + 79.4\%) = 29.1$
lb./lb.-mole

Run # 3: $M_d = 0.44(2.8\%) + 0.32(17.7\%) + 0.28(.0\% + 79.5\%) = 29.2$
lb./lb.-mole

(17)

Water vapor condensed :

$$V_{wc_std} = \left[\frac{V_f - V_i}{\text{---}} \right] \left[\frac{\frac{P_w}{M_w} \frac{R}{P} \frac{T_{(std)}}{(std)}}{\text{---}} \right] = 0.04707 \left[\frac{V_f - V_i}{\text{---}} \right]$$

$$V_{wsg_std} = \left[\frac{W_f - W_i}{\text{---}} \right] \left[\frac{\frac{R}{M_w} \frac{T_{(std)}}{(std)}}{\text{---}} \right] = 0.04715 \left[\frac{W_f - W_i}{\text{---}} \right]$$

Where:

0.04707 = Conversion factor ft.³/ml.0.04715 = Conversion factor ft.³/g.V_{wc_{std}} = Volume of water vapor condensed (standard conditions) scf.V_{wsg_{std}} = Volume of water vapor collected in silica gel (standard conditions)V_f = Final volume of impinger contents, ml.V_i = Initial volume of impinger contents

P = Density of water, (0.002201 lb/ml).

R = Ideal gas constant, 21.85 (in.Hg.)(cu.ft.)/(lb.-mole)(°R)

M_w = Molecular weight of water vapor (18.0 lb/lb-mole).T_{std} = Absolute temperature at standard conditions, 528°R.P_{std} = Absolute pressure at standard conditions, 29.92 inches Hg.

Run # 1: V_{wc(std)} = (0.04707) (122.0) = 5.7 cu.ft
 V_{wsg(std)} = (0.04715) (14.0) = .7 cu.ft

Run # 2: V_{wc(std)} = (0.04707) (116.0) = 5.5 cu.ft
 V_{wsg(std)} = (0.04715) (21.0) = 1.0 cu.ft

Run # 3: V_{wc(std)} = (0.04707) (140.0) = 6.6 cu.ft
 V_{wsg(std)} = (0.04715) (17.0) = .8 cu.ft

(18)

$$\text{Moisture content of stack gases: } B_{ws} = \frac{V_{wc_std} + V_{wsq_std}}{V_{wc_std} + V_{wsq_std} + V_m} \times 100$$

Where:

B_{ws} = Proportion of water vapor, by volume, in the gas stream.

V_m = Dry gas volume measured by dry gas meter, (dcf).

V_{wc_std} = Volume of water vapor condensed corrected to standard conditions (scf).

V_{wsq_std} = Volume of water vapor collected in silica gel corrected to standard conditions (scf).

$$\text{Run # 1: } B_{ws} = \frac{5.7 + .7}{5.7 + .7 + 46.31} \times 100 = 12.1 \%$$

$$\text{Run # 2: } B_{ws} = \frac{5.5 + 1.0}{5.5 + 1.0 + 40.70} \times 100 = 13.8 \%$$

$$\text{Run # 3: } B_{ws} = \frac{6.6 + .8}{6.6 + .8 + 39.42} \times 100 = 15.8 \%$$

$$\text{Molecular weight of stack gases: } M_s = M_d (1 - B_{ws}) + 18 (B_{ws}).$$

Where:

M_s = Molecular weight of stack gas, wet basis, (lb./lb.-mole).

M_d = Molecular weight of stack gas, dry basis, (lb./lb.-mole).

$$\text{Run # 1: } M_s = 29.1 (1 - .121) + 18 (.121) = 27.8 \text{ (lb./lb.-mole).}$$

$$\text{Run # 2: } M_s = 29.1 (1 - .138) + 18 (.138) = 27.6 \text{ (lb./lb.-mole).}$$

$$\text{Run # 3: } M_s = 29.2 (1 - .158) + 18 (.158) = 27.4 \text{ (lb./lb.-mole).}$$

(19)

Stack gas velocity:

$$V_s = K_p C_p \left[\frac{\Delta P}{\frac{T_s(\text{avg.})}{P_s M_s}} \right] \text{ avg.}$$

Where:

V_s = Average velocity of gas stream in stack, ft./sec.

K_p = 85.49 ft/sec $\left[\frac{(\text{g/g-mole}) - (\text{mm Hg}) / (\text{°K})(\text{mm H}_2\text{O})}{2} \right]^{1/2}$

C_p = Pitot tube coefficient, (dimensionless).

ΔP = Velocity head of stack gas, in. H_2O .

P_{bar} = Barometric pressure at measurement site, (in.Hg).

P_g = Stack static pressure (in.Hg).

P_s = Absolute stack gas pressure, (in.Hg) = $P_{\text{bar}} + P_g$

P_{std} = Standard absolute pressure, (29.92 in.Hg).

t_s = Stack temperature, (°f).

T_s = Absolute stack temperature, (°R). = 460 + t_s .

M_s = Molecular weight of stack gas, wet basis, (lb/lb-mole).

Run # 1: $V = (85.49) (.82) (.97) \left[\frac{685}{(30.12)(27.76)} \right] = 61.25 \text{ ft/sec}$

Run # 2: $V = (85.49) (.82) (.87) \left[\frac{661}{(30.12)(27.57)} \right] = 54.15 \text{ ft/sec}$

Run # 3: $V = (85.49) (.82) (.83) \left[\frac{666}{(30.12)(27.43)} \right] = 51.99 \text{ ft/sec}$

(20)

Stack gas flow rate:

$$Q_{sd} = 3600 \left| \frac{1-B_{wc}}{---} \right| V_s A \left| \frac{T_{std}}{T_{stk}} \right| \left| \frac{P_s}{P_{std}} \right|$$

Where:

Q_{sd} = Dry volumetric stack gas flow rate corrected to standard conditions, (dscf/hr).
 A = Cross sectional area of stack (ft.)².
 3600 = Conversion factor, sec./hr.
 t_s = Stack temperature (°f).
 T_s = Absolute stack temperature, (°R).
 T_{std} = Standard absolute temperature, (528°R).
 P_{bar} = Barometric pressure at measurement site, (in.Hg.).
 P_g = Stack static pressure, (in.Hg.).
 P_s = Absolute stack gas pressure, (in.Hg.); = $P_{bar} + P_g$
 P_{std} = Standard absolute pressure, (29.92 in.Hg.)

Run # 1:

$$Q_{sd} = 3600 (1-.121) (61.25) (11.2) \left| \frac{528}{685} \right| \left| \frac{30.12}{29.92} \right| = 1684427 \text{ dscf/h}$$

Run # 2:

$$Q_{sd} = 3600 (1-.138) (54.15) (11.2) \left| \frac{528}{661} \right| \left| \frac{30.12}{29.92} \right| = 1513394 \text{ dscf/h}$$

Run # 3:

$$Q_{sd} = 3600 (1-.158) (51.99) (11.2) \left| \frac{528}{666} \right| \left| \frac{30.12}{29.92} \right| = 1408658 \text{ dscf/h}$$

(21)

Emissions rate from stack:

$$E = \frac{(C_s)(Q_{sd})}{7000 \text{ gr./lb.}} = \text{lb. / hr.}$$

Where:

E = Emissions rate, lb./hr.

C = Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions (gr/dscf).

Q = Dry volumetric stack gas flow rate corrected to standard conditions, (dscf/hr.).

Run # 1: $E = \frac{(.0043)(1684427)}{7000} = 1.0 \text{ lb. / hr.}$

Run # 2: $E = \frac{(.0114)(1513394)}{7000} = 2.5 \text{ lb. / hr.}$

Run # 3: $E = \frac{(.0063)(1408658)}{7000} = 1.3 \text{ lb. / hr.}$

(22)

Isokinetic variation : $I = 100 T_s$

$$\frac{0.002669 V_{ic} + (V_m/T_m)(P_{bar} + \Delta H/13.6)}{60 \ 0 \ V_s \ P_s \ A_n}$$

Where:

I = Percent isokinetic sampling.
 100 = Conversion to percent.
 T_s = Absolute average stack gas temperature, $^{\circ}$ R.
 0.002669 = Conversion factor, Hg - ft^3/ml - $^{\circ}$ R.
 V_{ic} = Total volume of liquid collected in impingers and silica gel, m
 T_m = Absolute average dry gas meter temperature, $^{\circ}$ R.
 P_{bar} = Barometric pressure at sampling site, (in.Hg).
 ΔH = Average pressure differential across the orifice meter, (in. H_2O).
 13.6 = Specific gravity of mercury.
 60 = Conversion seconds to minutes
 0 = Total sampling time, minutes.
 V_s = Stack gas velocity, ft./sec.
 P_s = Absolute stack gas pressure, in.Hg.
 A_n = Cross sectional area of nozzle, ft^2 .

$$\begin{aligned}
 \text{Run # 1:} \quad & \frac{48.5}{(0.002669)(136.0) + 559} \left| \frac{30.12 + \frac{1.82}{13.6}}{60 (60) (61.25) (30.12) (.000342)} \right| = 90 \% \\
 \text{Run # 2:} \quad & \frac{43.2}{(0.002669)(137.0) + 566} \left| \frac{30.12 + \frac{1.52}{13.6}}{60 (60) (54.15) (30.12) (.000342)} \right| = 88 \% \\
 \text{Run # 3:} \quad & \frac{42.0}{(0.002669)(157.0) + 568} \left| \frac{30.12 + \frac{1.43}{13.6}}{60 (60) (51.99) (30.12) (.000342)} \right| = 92 %
 \end{aligned}$$

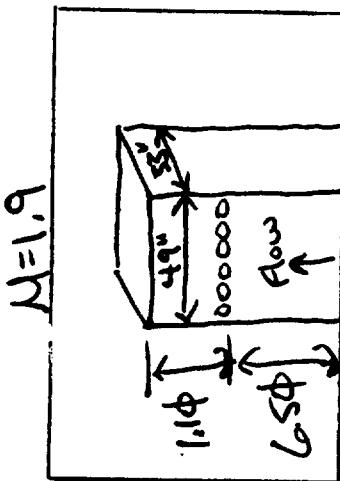
VIII. FIELD DATA

Plant Winford Co.

Location Bossier City, La.

Operator C. Matthews

Date 7-1-84


Run No. 1

Sample Box No. C232

Meter Box No. 1.47

C Factor 1.0004

Pitot Tube Coefficient Cp 0.816

							SLUGAGE WEIGHT.
Ambient Temperature	84 °F						
Barometric Pressure	30.12	FINAL	322	5.2			
Assumed Moisture, %	20	INITIAL	200	4.98			
Probe Length, in (ft)	34.4	DIFFERENCE	122	14			
Nozzle Identification No.	0.0003412						
Avg. Calibrated Nozzle Dia., (in.)	0.025/0.0251/0.251						
Probe Heater Setting	4						
Leak Rate, m³/min. (cfm)	20.02						
Probe Liner Material	316 stainless						
Static Pressure, mm Hg (in. Hg)	+0.02/13.6						
Filter No.	SC-1495						

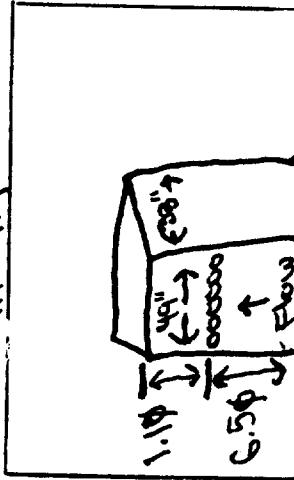
Schematic of Stack Cross Section

TRAV. PT NO.	SAMPLING TIME (θ) min:SS	VACUUM in. Hg	STACK TEMP (T _s) °F	VELOCITY HEAD (P _s) in H ₂ O	PRESSURE DIFF. ORF. MTR in H ₂ O	SAMPLE VOLUME ft ³	GAS SAMPLE TEMP. AT DRY GAS METER °F		FILTER HOLDER TEMP °F	GAS TEMP LVG CONDENSER OR LAST IMPINGER °F
							Inlet	Outlet		
A) 1	8:45:55	4	179.3	12.016	1.3	59.45 59.35	85	80	260	45
2	8:57	4	205	0.62	1.2	592.60	95	80	260	45
3	8:59	4	230	0.37	0.70	593.51	95	80	265	45
4	9:01	4	230	0.45	0.86	595.22	100	80	265	45
5	9:03	7	235	0.87	1.7	595.83	105	80	265	45
B) 1	9:05:06	4	205	0.50	0.95	597.34	100	85	270	45
2	9:08	5	225	0.70	1.3	600.05	105	85	240	45
3	9:10	7	240	1.1	2.1	600.85	105	85	235	45
4	9:12	7	240	1.0	1.9	601.94	110	85	255	50
5	9:14	7	240	1.0	1.9	603.43	110	85	255	50
C) 1	9:15:17	7	205	1.1	2.1	605.65	110	85	265	50
2	9:19	4	230	0.95	1.8	607.75	110	90	265	50
3	9:21	7	235	1.1	2.1	609.30	110	90	265	50

$$CO_2 = 2.5\% \text{ n/o}$$

RAMCON

emissions test log sheet, cont. DATE: 7-1-86 LOCATION: Bossier City TEST NO. 1


TRaverse Point	Sampling Time • (min.)	Vacuum mm. Hg (in. Hg)	Stack Temp T _s (°F)	Velocity Head ΔP _s (in. H ₂ O)	Office Diff. Pressure ΔH (in. H ₂ O)	Gas Volume V _m (11.3)	Gas Sample Temp. (°F)	Sample Box Temp. (°F)	Impinger Temp (°F)
4	9:23	8	235	1.3	2.5	611.50	115	90	265
5	9:25	7	235	1.3	2.5	612.65	115	90	265
D-1	9:26 ^{1/2}	4	215	0.65	1.2	614.40	115	90	270
2	9:30	5	225	0.90	1.7	615.95	115	90	270
3	9:32	6	235	1.2	2.3	617.61	115	90	270
4	9:34	7	235	1.2	2.3	619.52	115	90	250
5	9:36	7	235	1.2	2.3	621.00	120	90	240
E-1	9:37 ^{1/2}	4	200	0.70	1.3	622.90	110	90	270
2	9:41	6	225	1.1	2.1	624.61	115	90	270
3	9:43	6	230	1.0	1.9	626.00	120	90	245
4	9:45	6	230	1.0	1.9	628.40	120	90	240
5	9:47	7	230	1.3	2.5	630.00	120	90	255
F-1	9:47 ^{1/2} 9:49 ^{1/2}	6	195	1.0	1.9	631.70	120	90	255
2	9:51 ³⁰	6	220	1.1	2.1	633.30	120	90	255
3	9:53 ³⁰	6	225	1.1	2.1	634.80	120	90	255
4	9:55 ³⁰	6	225	1.0	1.9	636.63	120	90	240
5	9:57 ³⁰	6	225	1.1	2.1	637.94	120	90	240

Plant Winfred Co.

62

Location Des Moines City Operator Des Moines Date 7/26/86

Run No. 2 Sample Box No. 2 Meter Box No. 2 Meter H @ 5.7 C Factor 1.000 Pitot Tube Coefficient Cp 0.888

Schematic of Stack Cross Section

TRAV. PT NO.	SAMPLING TIME (θ) min.	VACUUM in. Hg	STACK TEMP (T _S) °F	VELOCITY HEAD (P _s) in H ₂ O	PRESSURE DIFF. ORF. MTR in H ₂ O	GAS SAMPLE VOLUME ft ³	GAS SAMPLE TEMP. AT DRY GAS METER		FILTER HOLDER TEMP. °F	GAS TEMP LVG CONDENSER OR LAST IMPINGER °F
							Inlet	Outlet		
1	10.23	4	195	0.75	1.4	238.21	100	95	65	45
2	10.25	9	190	1.0	1.9	241.90	110	95	65	45
3	10.27	9	190	1.1	1.1	242.38	110	95	65	45
4	10.29	9	200	1.1	1.1	245.27	110	95	60	45
5	10.31	9	205	1.0	1.0	246.44	110	95	65	45
6	10.33	5	205	0.95	1.5	247.65	110	95	55	50
7	10.35	5	205	0.95	1.8	250.73	115	95	60	50
8	10.37	5	205	1.1	1.1	252.90	115	95	65	55
9	10.39	5	205	1.1	1.1	254.95	100	95	65	55
10	10.41	5	205	1.0	1.0	256.90	115	95	60	55
11	10.43	5	210	1.0	1.0	258.97	120	95	60	55
12	10.45	3	210	1.2	1.2	261.23	120	95	65	55

Form #REC-05

ପାତ୍ର - ୧୦୧

RAMCON emissions test log sheet, cont. DATE 7/11/68 LOCATION Dossin Steel TEST NO. 2

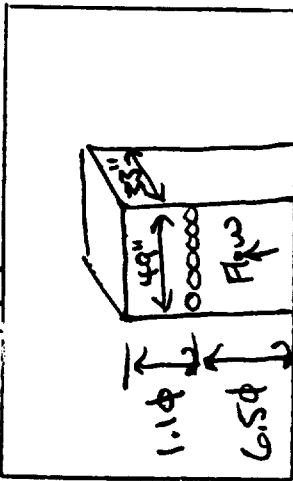
TRAVERSE POINT	SAMPLING TIME • (min.)	VACUUM mm Hg (in. Hg)	STACK TEMP T _s ('F)	VELOCITY HEAD ΔP _s (in. H ₂ O)	ORIFICE DIFF. PRESSURE ΔH (in. H ₂ O)	GAS VOLUME V _m (ft. ³)	GAS SAMPLE TEMP. ('F)		SAMPLE TEMP. (°F)	BOX TEMP. (°F)	IMPINGER TEMP. (°F)
							in	out			
1	10.59	7	2610	1.4	0.3	992.12	760	85	255	50	50
5	11.01	7	2610	1.4	0.3	953.82	761	85	260	50	50
6	11.01	3	1915	0.7	0.76	995.27	761	85	250	50	50
7	11.06	3	2000	0.7	1.3	999.99	761	85	255	50	50
8	11.08	5	2110	0.7	1.0	998.78	761	85	250	55	55
9	11.10	5	2110	0.7	1.1	970.18	761	85	255	55	55
10	11.11	5	2110	0.7	1.0	971.26	761	85	250	55	55
11	11.11	5	2110	0.7	1.0	973.90	761	85	250	50	50
12	11.11	5	2110	0.7	1.0	971.95	761	85	250	50	50
13	11.11	5	2110	0.7	1.1	970.21	761	85	255	55	55
14	11.11	5	2110	0.7	1.1	971.785	761	85	260	55	55
15	11.11	5	2110	0.7	1.1	978.55	761	85	260	55	55
16	11.11	5	2110	0.7	1.1	979.11	761	85	260	55	55
17	11.11	5	2110	0.7	1.1	979.75	761	85	260	55	55
18	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
19	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
20	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
21	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
22	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
23	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
24	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
25	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
26	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
27	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
28	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
29	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
30	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
31	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
32	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
33	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
34	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
35	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
36	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
37	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
38	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
39	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
40	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
41	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
42	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
43	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
44	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
45	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
46	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
47	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
48	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
49	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
50	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
51	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
52	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
53	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
54	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
55	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
56	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
57	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
58	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
59	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
60	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
61	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
62	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
63	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
64	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
65	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
66	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
67	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
68	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
69	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
70	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
71	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
72	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
73	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
74	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
75	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
76	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
77	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
78	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
79	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
80	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
81	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
82	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
83	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
84	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
85	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
86	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
87	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
88	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
89	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
90	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
91	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
92	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
93	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
94	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
95	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
96	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
97	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
98	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
99	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
100	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
101	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
102	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
103	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
104	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
105	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
106	11.11	5	2110	0.7	1.1	981.75	761	85	260	55	55
107	11.11	5	2110	0.7	1.1	981.75	761	85	260		

Plant Winford Co.

Location Bessemer City, NC

Operator C. Master

Date 7-1-84


Run No. 3

Sample Box No. C282

Meter H @ 1,471

C Factor 1.0004

Pitot Tube Coefficient 0.814

 $\lambda = 1.9$

Ambient Temperature	92 °F	IMPINGER VOLUME ml	SILICA GEL WEIGHT.
Barometric Pressure	30.12 FINAL	340	512
Assumed Moisture, %	20	20	493
Probe Length, m(ft)	3.44	INITIAL	11
Nozzle Identification No.	0.0003418	DIFFERENCE	140
Avg. Calibrated Nozzle Dia. (in.)	0.250/0.250/0.250		
Probe Heater Setting	4		
Leak Rate, m³/min. (cfm)	40.02		
Probe Liner Material	Stainless Steel		
Static Pressure, mm Hg (in. Hg)	10.02 / 13.4		
Filter No.	SC - 1484		

Schematic of Stack Cross Section

TRAV. PT NO.	SAMPLING TIME (θ) min.	VACUUM in. Hg	STACK TEMP (T _S) °F	VELOCITY HEAD (P _s) in H ₂ O	PRESSURE DIFF. ORF. in H ₂ O	SAMPLE VOLUME ft ³	GAS SAMPLE TEMP. AT DRY GAS METER °F		FILTER HOLDER TEMP °F	GAS TEMP LVG CONDENSER OR LAST IMPINGER °F
							Inlet	Outlet		
A) 1	12:50	0	155	0.12	0.23	0.217382.36	100	100	220	45
2	12:54	0	155	0.15	0.28	0.2315	110	100	210	45
3	12:56	2	175	0.25	0.48	0.24415	110	100	200	45
4	12:58	2	185	0.35	0.66	0.25510	115	95	200	45
5	13:00	3	185	0.38	0.72	0.255.85	115	95	200	45
B) 1	13:01:05	2	150	0.75	0.48	0.28710	115	95	200	45
2	13:05	2	165	0.27	0.51	0.297.90	115	95	240	45
3	13:07	2	190	0.35	0.66	0.299.02	115	95	240	45
5	13:32:32	5	200	1.0	1.9	0.31.45	105	100	245	55
C) 1	13:35:31	3	195	0.50	0.95	0.292.95	110	100	245	55
2	13:39:30	3	195	0.50	0.95	0.294.20	115	100	265	45
3	13:41:30	4	225	0.60	1.1	0.295.65	120	100	265	45

$$CO_2 = 1.5\% \text{ at } 45^\circ\text{C}$$

* Plant down

RAMCON emissions test log sheet, cont. DATE 7-1-86 LOCATION Bossier City TEST NO. 3

TRaverse Point	Sampling Time • (min.)	Vacuum mm Hg (in. Hg)	Stack Temp. T _s (°F)	Velocity Head ΔP (in. H2O)	Office Diff. Pressure ΔH (in. H2O)	Gas Volume V _m (11.3)	Gas Sample Temp. (°F) in out	Sample Box Temp. (°F)	Impinger Temp. (°F)
4	13:43 ³⁰	5	230	0.72	1.4	697.10	120 100	270	45
5	13:45 ³⁰	6	230	0.95	1.8	698.19	120 100	270	45
D1	13:46 ³⁰	4	215	0.67	1.3	699.82	120 100	280	45
2	13:50 ³⁰	4	210	0.67	1.3	701.70	120 100	280	45
3	13:52 ³⁰	5	230	0.95	1.8	702.91	120 100	240	55
4	13:54 ³⁰	6	235	1.0	1.9	704.85	120 100	240	55
5	13:56 ³⁰	7	235	1.2	2.3	706.11	120 100	250	50
E1	13:58 ³⁰	6	225	1.0	1.9	708.20	120 100	250	45
2	14:01	6	230	1.1	2.1	709.75	120 95	240	45
3	14:03	6	230	1.1	2.1	711.61	120 95	240	55
4	14:05	7	235	1.3	2.5	713.55	125 100	240	55
5	14:07	6	235	1.1	2.1	715.01	125 100	240	55
A1	14:08 ⁴⁰	6	200	1.0	1.9	716.86	120 100	240	55
2	14:12	6	190	1.0	1.9	718.80	125 100	240	55
3	14:14	7	220	1.2	2.3	720.53	125 100	240	55
4	14:16	7	225	1.2	2.3	722.85	125 100	240	55
5	14:18	6	225	1.1	2.1	723.72	125 100	240	55

IX. CALIBRATIONS

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

Test number	7-3-06	Meter box number	C282	Plant
Barometric pressure, P_b	30.10 in. Hg	Dry gas meter number	700205	
Orifice manometer setting, (ΔH) , in. H_2O		Pretest Y	1.47	
Gas volume	Dry gas meter	Wet test meter	Dry gas meter	
Wet test meter setting, (V_w) , ft ³	(V_d) , ft ³	Inlet (t_{d_i}) , °F	Outlet (t_d) , °F	Average (t_d) , °F
1.0	10	10.32	79	108
1.0	10	10.31	79	109
1.0	10	10.33	79	108
				84
				91
				94
				96
				98
				100
				102
				104
				106
				108
				110
				112
				114
				116
				118
				120
				122
				124
				126
				128
				130
				132
				134
				136
				138
				140
				142
				144
				146
				148
				150
				152
				154
				156
				158
				160
				162
				164
				166
				168
				170
				172
				174
				176
				178
				180
				182
				184
				186
				188
				190
				192
				194
				196
				198
				200
				202
				204
				206
				208
				210
				212
				214
				216
				218
				220
				222
				224
				226
				228
				230
				232
				234
				236
				238
				240
				242
				244
				246
				248
				250
				252
				254
				256
				258
				260
				262
				264
				266
				268
				270
				272
				274
				276
				278
				280
				282
				284
				286
				288
				290
				292
				294
				296
				298
				300
				302
				304
				306
				308
				310
				312
				314
				316
				318
				320
				322
				324
				326
				328
				330
				332
				334
				336
				338
				340
				342
				344
				346
				348
				350
				352
				354
				356
				358
				360
				362
				364
				366
				368
				370
				372
				374
				376
				378
				380
				382
				384
				386
				388
				390
				392
				394
				396
				398
				400
				402
				404
				406
				408
				410
				412
				414
				416
				418
				420
				422
				424
				426
				428
				430
				432
				434
				436
				438
				440
				442
				444
				446
				448
				450
				452
				454
				456
				458
				460
				462
				464
				466
				468
				470
				472
				474
				476
				478
				480
				482
				484
				486
				488
				490
				492
				494
				496
				498
				500
				502
				504
				506
				508
				510
				512
				514
				516
				518
				520
				522
				524
				526
				528
				530
				532
				534
				536
				538
				540
				542
				544
				546
				548
				550
				552
				554
				556
				558
				560
				562
				564
				566
				568
				570
				572
				574
				576
				578
				580
				582
				584
				586
				588
				590
				592
				594
				596
				598
				600
				602
				604
				606
				608
				610
				612
				614
				616
				618
				620
				622
				624
				626
				628
				630
				632
				634
				636
				638
				640
				642
				644
				646
				648
				650
				652
				654
				656
				658
				660
				662
				664
				666
				668
				670
				672
				674
				676
				678
				680
				682
				684
				686
				688
				690
				692
				694
				696
				698
				700
				702
				704
				706
				708
				710
				712
				714
				716
				718
				720
				722
				724
				726
				728
				730
				732
				734
				736
				738
				740
				742
				744
				746
				748
				750
				752
				754
				756
				758
				760
				762
				764
				766
				768
				770
				772
				774
				776
				778
				780
				782
				784
				786
				788
				790
				792
				794
				796
				798
				800

(29)

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d where

V_w = Gas volume passing through the wet test meter, ft³.
 V_d = Gas volume passing through the dry gas meter, ft³.
 t_w = Temperature of the gas in the wet test meter, °F.
 t_{d_i} = Temperature of the inlet gas of the dry gas meter, °F.
 t_{d_o} = Temperature of the outlet gas of the dry gas meter, °F.

t_d = Average temperature of the gas in the dry gas meter, obtained by the average of t_{d_i} and t_{d_o} , °F.
 ΔH = Pressure differential across orifice, in. H_2O .
 Y_i = Ratio of accuracy of wet test meter to dry gas meter for each run.
 Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs;
 P_b = Barometric pressure, in. Hg.
 θ = Time of calibration run, min.

Quality Assurance Handbook M4-2.4A

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Date 6/29/86Meter box number 700205Barometric pressure, $P_b = 30.04$ in. Hg Calibrated by John R. Biggs

Orifice manometer setting (ΔH), in. H_2O	Gas volume		Temperature				Time (θ), min	Y_i	$\Delta H@_i$ in. H_2O			
	Wet test meter (V_w), ft ³	Dry gas meter (V_d), ft ³	Wet test meter (t_w), °F	Dry gas meter								
				Inlet (t_{d_i}), °F	Outlet (t_{d_o}), °F	Avg ^a (t_d), °F						
0.5	5	562.825 566.000	77	105	84	94.75	11.588	0.9950	1.4732			
1.0	5	572.400 577.556	78	107	84	96.0	8.158	0.9994	1.4624			
1.5	10	578.800 587.040	78	108	84	96.75	43.340	1.0069	1.4644			
2.0	10											
3.0	10											
4.0	10											
							Avg	1.0004	1.4667			

ΔH , in. H_2O	$\frac{\Delta H}{13.6}$	$Y_i = \frac{V_w P_b (t_d + 460)}{V_d (P_b + \frac{\Delta H}{13.6}) (t + 460)}$	$\Delta H@_i = \frac{0.0317 \Delta H}{P_b (t_d + 460)} \left[\frac{(t_w + 460) \theta}{V_w} \right]^2$
0.5	0.0368		
1.0	0.0737		
1.5	0.110		
2.0	0.147		
3.0	0.221		
4.0	0.294		

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d .

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 5-20-86 Thermocouple number 32
 Ambient temperature 23.9 °C Barometric pressure 30.12 in. Hg
 Calibrator WTA Reference: mercury-in-glass ✓
 other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, % ^b
A	ice water	32	32	0.0%
B	Boiling water	212	212	0.0%
C	Boiling oil	410.5	412.8	1.5%
D	Ambient 7-1-86	84°F	84°F	0%

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%.$$

RAMCON ENVIRONMENTAL CORPORATION

Lear Siegler Stack SamplerNozzle Diameter Calibration

Date _____ Signature _____

Nozzle No.	Average Diameter	Nozzle No.	Average Diameter
1		7	
2		8	
3		9	
4		10	
5		11	
6		12	

Pitot Tube Calibration (S Type)Pitot Tube Identification No. 32 (3ft) Date 5-13-86Calibrated by: C. Mitchell"A" SIDE CALIBRATION

Run No.	Δp std cm H ₂ O (in. H ₂ O)	Δp (s) cm H ₂ O (in. H ₂ O)	C_p (s)	DEVIATION $C_p(s) - \bar{C}_p(A)$
1	1.00	1.50	0.816	0
2	0.80	1.20	0.816	0
3	0.60	0.90	0.816	0
\bar{C}_p (SIDE A)			0.816	

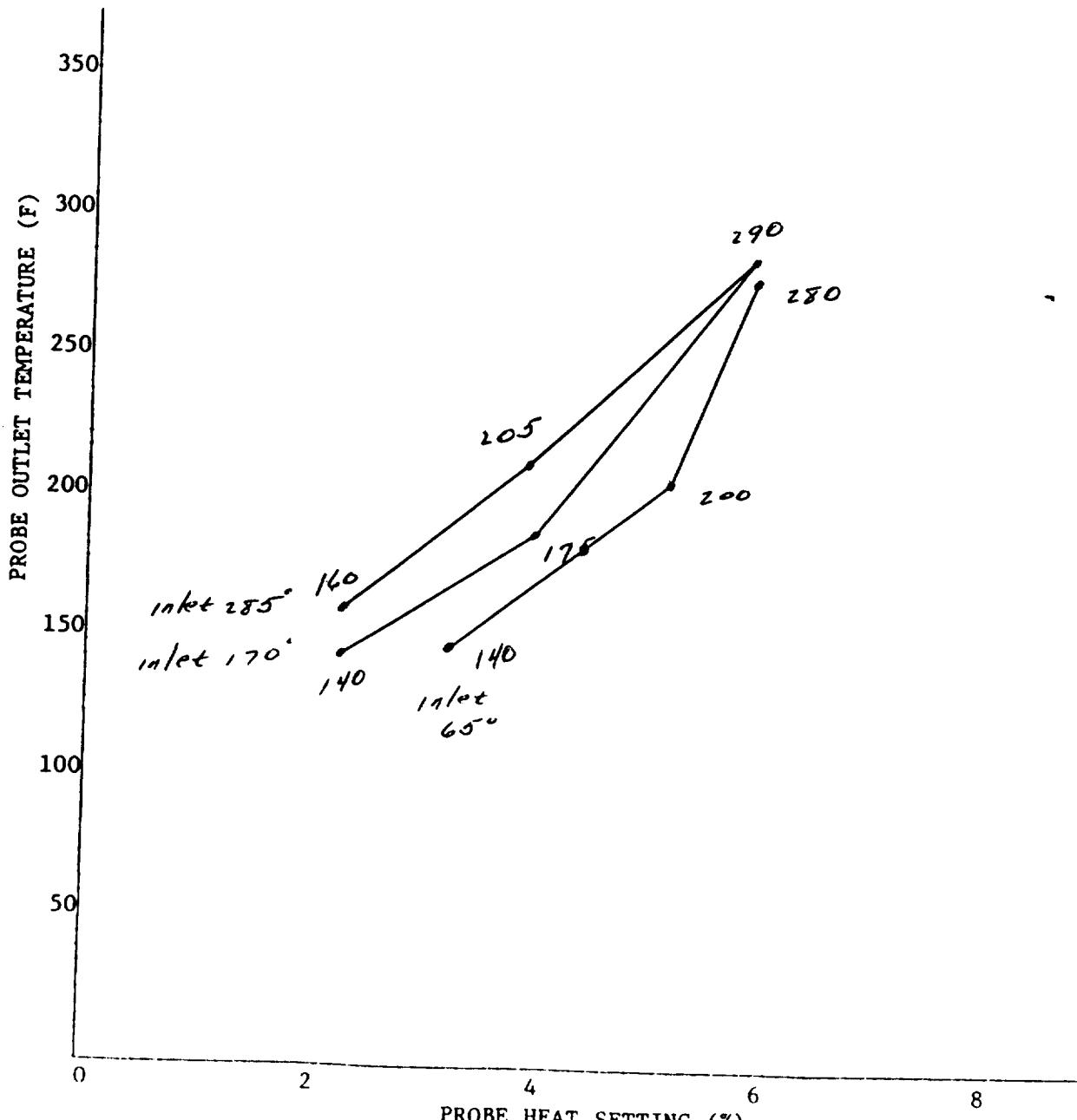
"B" SIDE CALIBRATION

Run No.	Δp std cm H ₂ O (in. H ₂ O)	Δp (s) cm H ₂ O (in. H ₂ O)	C_p (s)	DEVIATION $C_p(s) - \bar{C}_p(B)$
1	1.0	1.50	0.816	0
2	0.80	1.20	0.816	0
3	0.60	0.90	0.816	0
\bar{C}_p (SIDE B)			0.816	

$$\text{AVERAGE DEVIATION} = \sigma(A \text{ OR } B) = \frac{1}{3} \sum |C_p(s) - \bar{C}_p(A \text{ OR } B)| \quad \leftarrow \text{MUST BE} \leq 0.01$$

$$|\bar{C}_p(\text{SIDE A}) - \bar{C}_p(\text{SIDE B})| \quad \leftarrow \text{MUST BE} \leq 0.01$$

$$C_p(s) = C_p(\text{std}) \sqrt{\frac{\Delta p \text{ std}}{\Delta p_s}}$$


RAMCON

Lear Siegler Stack Sampler

Heating Probe CalibrationProbe No. 32Probe Length 3'Date of Calibration 5-20-86Signature K. B. Allmand

Name of Company to be tested _____

Note: 3 ft. probe - 5 min. warmup
 6 ft. probe - 15 min. warmup
 10 ft. probe - 30 min. warmup
 Calibration flow rate = .75 CFM

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 5-20-86 Thermocouple number 11/1st/002/1st
 Ambient temperature 23.9 °C Barometric pressure 30.12 in. Hg
 Calibrator 1/1st Reference: mercury-in-glass ✓
 other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, % ^b
A	11/1st Ambient	75°F	75°F	0.0%
B	outlet Ambient	75°F	75°F	0.0%
C	Ambient 7-1-86	84°F	84°F	0%

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%.$$

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 5-20-86 Thermocouple number Hot box
 Ambient temperature 23 °C Barometric pressure 30.12 in. Hg
 Calibrator 1/4A Reference: mercury-in-glass ✓
 other _____

Reference point number	Source ^a (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference, % ^b
A	Boiling water	100 °C	100 °C	0%
B	Ambient	23 °C	22.8 °C	<.1%
	7-1-86	64°F	64°F	0%

^aType of calibration system used.

^b
$$\left[\frac{(\text{ref temp, } ^\circ\text{C} + 273) - (\text{test thermom temp, } ^\circ\text{C} + 273)}{\text{ref temp, } ^\circ\text{C} + 273} \right] 100 \leq 1.5\%.$$

X. RAMCON PERSONNEL

RAMCON Environmental Stack Test Team**Sumner Buck - President**

Sumner Buck is the President of RAMCON Environmental. He is a graduate of the EPA 450 "Source Sampling for Particulate Pollutants" course and the 474 "Continuous Emissions Monitoring" course all given at RTP. Mr. Buck is a qualified V.E. reader with current certification. Mr. Buck has personally sampled over 300 stacks including over 100 asphalt plants. He is 43 years old and a graduate of the University of Mississippi with graduate studies at Memphis State University and State Technical Institute of Memphis.

J. Cameron Mitchell - Team Leader

Cameron Mitchell has been employed by RAMCON for several years. He has undergone extensive training in Methods 1 through 9. He is qualified as a team leader and has personally sampled over 150 stacks including over 100 asphalt plants. He is currently certified as a V.E. reader. He is enrolled in Memphis State University with a major in Civil Engineering and a minor in Mathematics.