

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AP-42 Section 11.1
Reference
Report Sect. 4
Reference 35

**A COMPREHENSIVE EMISSION INVENTORY REPORT
AS REQUIRED UNDER THE AIR TOXICS "HOT SPOTS"
INFORMATION AND ASSESSMENT ACT OF 1987**

PREPARED FOR

**CALMAT CO.
FRESNO NO. II FACILITY
FRESNO, CALIFORNIA**

SEPTEMBER 14, 1990

SUBMITTED TO

**FRESNO COUNTY AIR POLLUTION CONTROL DISTRICT
1221 FULTON MALL
FRESNO, CALIFORNIA 93721**

PREPARED BY

**ENGINEERING-SCIENCE, INC.
75 North Fair Oaks Avenue
P.O. Box 7107
Pasadena, California 91109**

**ENGINEERING-SCIENCE
INC.**

FRESNO

INDUSTRIAL ASPHALT PLANT

EMISSION
YEAR
19 89

AIR TOXICS EMISSION DATA SYSTEM REVIEW & UPDATE REPORT
FACILITY DESCRIPTION

FORM
FAC

FACILITY DATA

COMPANY NAME

INDUSTRIAL ASPHALT

ADDRESS

11099101D1FIRIANTIRID.

CITY

FREISING

ZIP CODE

93710-111

CONTACT PERSON

DWIGHT BIEAVRIES

TELEPHONE

818-969-7951

FACILITY SIC

2951

NUMBER OF EMPLOYEES

5111

MAILING ADDRESS DATA

COMPANY NAME

INDUSTRIAL ASPHALT

ADDRESS

P.O. BOX 2263

CITY

IRVINDALE

STATE

CA

ZIP CODE

91706-1111

ATTENTION

DWIGHT BIEAVRIES

FOR OFFICE USE ONLY

COUNTY

LP

FACILITY ID

ACTION CODE

NA

DISTRICT

DP

AIR BASIN CODE

DP

CITY CODE
(OPTIONAL)

ACCR
(OPTIONAL)

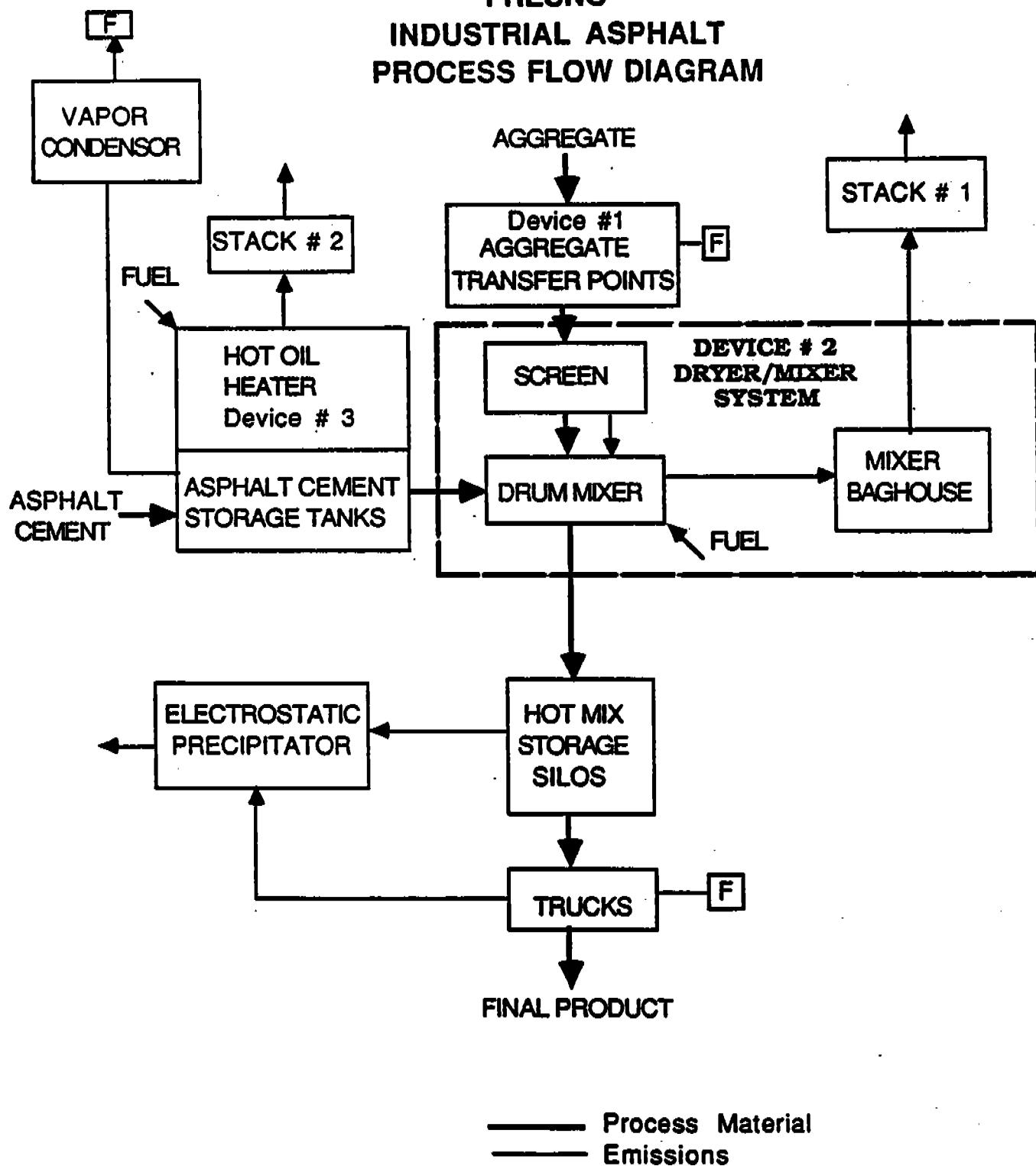
SUBCOUNTY ID

FAC1 (OPTIONAL)

FAC2 (OPTIONAL)

STATE ZONE

UTM ZONE


UTM NORTH

NAME: Antoine Assioun

DATE: 5-25-90

Figure 1

FRESNO
INDUSTRIAL ASPHALT
PROCESS FLOW DIAGRAM

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW & UPDATE REPORT
STACK DATAFORM
STK

FOR OFFICE USE ONLY

COUNTY ID: 70

FACILITY ID: 462

DO NOT DELETE STACK IF IT SERVES OTHER DEVICES. SEE INSTRUCTIONS

DESC CODE	STACK/VENT CATEGORY	REQUIRED INFORMATION
<u>AMBIENT TEMP & LOW-VELOCITY EXHAUST (T W/IN 25 F OF AMBIENT & V LT 750 FPM)</u>		
1	RELEASE POINT(RP) AT GROUND-LEVEL	STACK ID & CODE ONLY
2	RELEASE FROM BLDG HVAC ONLY	STACK ID, CODE, & STACK HEIGHT
3	RP W/IN (2.5 X HB) ABOVE GROUND AND W/IN (5 X HB) SIDEWAYS TO NEAREST BLDG	STACK ID, CODE & STACK HEIGHT
4	OTHER STACK/VENT (LOW T.V.)	STACK ID, CODE & STACK HEIGHT
<u>OTHER TEMP & FLOW CONDITIONS</u>		
5	RP W/IN (2.5 X HB) ABOVE GROUND AND W/IN (5 X HB) SIDEWAYS TO NEAREST BLDG	ALL STACK INFORMATION
6	OTHER STACK/VENT (OTHER T.V.)	ALL STACK INFORMATION

WHERE HB = HEIGHT OF NEAREST BUILDING

AND HVAC = HEATING, VENTILATING AND AIR CONDITIONING

*OFC USE

ACTION
CODE:STACK
IDDESC HEIGHT ABOVE
CODE GROUND(FEET)DIAMETER
(FEET)

***** EXHAUST *****

GAS
FLOW RATE
(CFM)

*OFC USE ONLY

UTM EAST
KILOMETERUTM NORTH
KILOMETERUTM EAST
KILOMETERUTM NORTH
KILOMETERUTM EAST
KILOMETERUTM NORTH
KILOMETERUTM EAST
KILOMETERUTM NORTH
KILOMETERACTION
CODE:STACK
IDDESC HEIGHT ABOVE
CODE GROUND(FEET)DIAMETER
(FEET)GAS
TEMP (F)GAS FLOW RATE
(CFM)GAS VELOCITY
(FPM)GAS FLOW RATE
(CFM)GAS VELOCITY
(FPM)GAS FLOW RATE
(CFM)GAS VELOCITY
(FPM)ACTION
CODE:STACK
IDDESC HEIGHT ABOVE
CODE GROUND(FEET)DIAMETER
(FEET)GAS
TEMP (F)GAS FLOW RATE
(CFM)GAS VELOCITY
(FPM)GAS FLOW RATE
(CFM)GAS VELOCITY
(FPM)ACTION
CODE:STACK
IDDESC HEIGHT ABOVE
CODE GROUND(FEET)DIAMETER
(FEET)GAS
TEMP (F)GAS FLOW RATE
(CFM)GAS VELOCITY
(FPM)

NAME Antoine Assoun

DATE 5-25-70

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMITTERS DATAFORM
PRO
SIDE A

FOR OFFICE USE ONLY

PROCESS DESCRIPTION

TRANSFER POINT

SCC NO.

205025-03

COUNTY
ID: 10
AIR
BASIN: SJV

PROD1 (OPTIONAL)

PROD2 (OPTIONAL)

FACILITY ID:

ACTION
CODE: N

11111

11111

403

STOP FILL OUT ANY SUPPLEMENTAL PROCESS FORM(S) FOR THIS PROCESS FIRST. THEN FILL OUT THIS PAGE. SUBMITTING ONE FOR EACH EMITTING PROCESS IN YOUR FACILITY.

SECTION 1

PROCESS DATA

DEVICE
I.D. 1111

SIC

2951

CONFIDENTIAL (Y/N)
IF Y CHECK SMALL BOXES
AS APPROPRIATE N

PROCESS EQUIPMENT DESCRIPTION

AGG TRANSFER

FUEL TYPE / OTHER PROCESS INFO

NOTE USE 1 SPACE FOR EACH DECIMAL POINT

TOTAL YEARLY
PROCESS RATE (UNITS/YR)

1.19 E06

MAXIMUM HOURLY
PROCESS RATE (UNITS/HR)

15.75

PROCESS UNITS

P.T. 0.84

HRS/
DAY

8

DAYS/
WEEK

5

WKS/
YEAR

52

RELATIVE MONTHLY ACTIVITY (%)

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1.2	2.4	5.0	18.1	18.8	16.7	19.6	12.0	18.5	12.0	16.6	11.7

OFFICE USE ONLY

SECTION 2

EMITTER DATA

EMISSIONS

ACTION
CODE: N

EMITTER ID

1175

EST
METH

6

ACTUAL EMISSIONS
FACTOR(LBS/UNIT)

2.34 E-04

ANNUAL AVERAGE
EMISSIONS (LBS/YR)

279

ALLOWABLE EMISSIONS (LBS/YR)(OPTIONAL)

11111

CONTROL EQPT CODES
PRIMARY C
SECONDARY C

0.36

OVERALL
CONTROL
EFF(%)

90.0

FULL/
PART

F

HOURLY MAX EMISSIONS
(LBS/HOUR)

0.369

ACTION
CODE: N

EMITTER ID

11111

EST
METH

1

ACTUAL EMISSIONS
FACTOR(LBS/UNIT)

11111

ANNUAL AVERAGE
EMISSIONS (LBS/YR)

11111

ALLOWABLE EMISSIONS (LBS/YR)(OPTIONAL)

11111

CONTROL EQPT CODES
PRIMARY C
SECONDARY C

11111

OVERALL
CONTROL
EFF(%)

11111

FULL/
PART

11111

HOURLY MAX EMISSIONS
(LBS/HOUR)

11111

NAME Antoine Assioun

DATE 5-25-90

ARB/PRO/890327

EMISSION
YEAR
79 89AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMITTENTS DATA

FORM

PRO

PAGE 1

FOR OFFICE USE ONLY

PROCESS DESCRIPTION

ASPHALT DRYER

SCC NO

C 1-02-005-02

COUNTY
ID:

10

AIR
BASIN

SJV

PROC1 (OPTIONAL)

PROC2 (OPTIONAL)

FACILITY ID:

ACTION CODE

403

STOP FILL OUT ANY SUPPLEMENTAL PROCESS FORM(S) FOR THIS PROCESS FIRST, THEN FILL OUT THIS PAGE SUBMITTING ONE FOR EACH EMITTING PROCESS IN YOUR FACILITY.

SECTION 1

PROCESS DATA

DEVICE I.D. 2

SIC

2951

CONFIDENTIAL (Y/N)
(F CHECK SMALL BOXES AS APPROPRIATE)

N

PROCESS EQUIPMENT DESCRIPTION

DRYER / MIXER SYS

FUEL TYPE / OTHER PROCESS INFO

LPG

NOTE USE : SPACE FOR EACH DECIMAL POINT

TOTAL YEARLY
PROCESS RATE (UNITS/YR)MAXIMUM HOURLY
PROCESS RATE (UNITS/HR)

PROCESS UNITS

HRS/
DAYDAYS/
WEEKWKS/
YEAR

4.15E+05

550

PT084

C

C

C

8

5

52

RELATIVE MONTHLY ACTIVITY (%)

JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
1.2	2.4	5.0	8.8	6.7	9.6	12.0	11.8	5.1	12.0	6.6	11.7	5.5

OFFICE USE ONLY

SECTION 2

EMITTER DATA

EMISSIONS

ACTION CODE

EMITTER ID

EST
METHACTUAL EMISSIONS
FACTOR(LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

74403821

1

2.53E-07

0.105

ALLOWABLE EMISSIONS
(LBS/HR) OPTIONAL•CONTROL EQPT CODES•
PRIMARY C
SECONDARY COVERALL
CONTROL EFF%
CFULL/
PART
F CHOURLY MAX EMISSIONS
(LBS/HOUR)

1.39E-04

ACCIDENT
CODE

EMITTER ID

EST
METHACTUAL EMISSIONS
FACTOR(LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

74404171

1

N.D.

N.D.

ALLOWABLE EMISSIONS
(LBS/HR) OPTIONAL•CONTROL EQPT CODES•
PRIMARY C
SECONDARY COVERALL
CONTROL EFF%
CFULL/
PART
F CHOURLY MAX EMISSIONS
(LBS/HOUR)

N.D.

NAME Antoine Asselain

DATE 5-24-90

EMISSION
YEAR
7989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMMITTERS DATA
(ADDITIONAL EMMITTERS)FORM
PRO
SIDE BOFFICE USE ONLY
CO 40
FACID 403

DEVICE ID

2

ACTION
CODE

A

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

F-1111111

ACTION
CODE

M

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

F-1111111

ACTION
CODE

A

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

F-1111111

ACTION
CODE

COP

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

F-1111111

ACTION
CODE

LCK

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

F-1111111

EMITTER DATA				EMISSIONS	
EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)		ANNUAL AVERAGE EMISSIONS (LBS/YR)	
7440439	1 C	2.53 E-07	C	0.105	
•CONTROL EQPT CODES•	PRIMARY C	SECONDARY C	OVERALL CONTROL EFF%(%)	FULL/ PART C	HOURLY MAX EMISSIONS (LBS/HOUR)
012			C	F	1.39 E-04
EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)		ANNUAL AVERAGE EMISSIONS (LBS/YR)	
CHRO.MI.U.M.T.	1 C	N. D.	C	N. D.	
•CONTROL EQPT CODES•	PRIMARY C	SECONDARY C	OVERALL CONTROL EFF%(%)	FULL/ PART C	HOURLY MAX EMISSIONS (LBS/HOUR)
012			C	F	N. D.
EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)		ANNUAL AVERAGE EMISSIONS (LBS/YR)	
19540299	1 C	N. D.	C	N. D.	
•CONTROL EQPT CODES•	PRIMARY C	SECONDARY C	OVERALL CONTROL EFF%(%)	FULL/ PART C	HOURLY MAX EMISSIONS (LBS/HOUR)
012			C	F	N. D.
EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)		ANNUAL AVERAGE EMISSIONS (LBS/YR)	
74405108	1 C	N. D.	C	N. D.	
•CONTROL EQPT CODES•	PRIMARY C	SECONDARY C	OVERALL CONTROL EFF%(%)	FULL/ PART C	HOURLY MAX EMISSIONS (LBS/HOUR)
012			C	F	N. D.
EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)		ANNUAL AVERAGE EMISSIONS (LBS/YR)	
74399211	1 C	6.11 E-07	C	0.254	
•CONTROL EQPT CODES•	PRIMARY C	SECONDARY C	OVERALL CONTROL EFF%(%)	FULL/ PART C	HOURLY MAX EMISSIONS (LBS/HOUR)
012			C	F	3.36 E-04

EMISSION
YEAR
1989

AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMMITTERS DATA
(ADDITIONAL EMMITTERS)

SCRM
PRO
SIZE 3

OFFICE USE ONLY
CC: 10
FACTD: 403

DEVICE ID 2

EMITTER DATA

EMISSIONS

EMITTER ID <i>Young Creek</i>	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7439965	C	1 □ 2.53 E-03 □	1049

**ALLOWABLE EMISSIONS
EBSA (OPTIONAL)**

•CONTROL EQPT CODES•		OVERALL CONTROL EFF% C	FULL PART C F	HOURLY MAX EMISSIONS (LBS/HOUR) 1.39
PRIMARY	SECONDARY			
1C	C			
012				

ALLOWABLE BRS

EMITTER ID	MONTH	EST METH	ACTUAL EMISSIONS FACTOR 'LBS/UNIT'	ANNUAL AVERAGE EMISSIONS 'LBS/YR'
7439976		1 C	7.4 E-09	3.44394

ALLOWABLE EHS PASSENGER/OPTIONAL

•CONTROL EQPT CODES•		OVERALL CONTROL EFF% C	FULL/ PART C	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 012	SECONDARY C	<input type="checkbox"/>	<input type="checkbox"/> F	41.05 5-06

**ACTION
CODE**

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTORYLBS/UNIT	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7440-020	1 C	W. D.	N. D.

**ANCHORABLE EMS
IS A TRUE OPTIONAL**

•CONTROL PRIMARY		EQPT CODES* SECONDARY	OVERALL CONTROL	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
0	1	C	C	C	N.D.

ALTERABLE ELEMENTS

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR "LBS/UNIT"	ANNUAL AVERAGE EMISSIONS "LBS/YR"
77824921	1 C	N.D.	N.D.

www.oriental.com

CONTROL PRIMARY	EQPT CODES SECONDARY	OVERALL CONTROL	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
0.1.2	C	C	F-C	N.D.

**ACTION
CODE**

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
744.066.6.1	1. C	3.16 E-105 C	13.1

ALLOWABLE EMISSIONS
LBS/HR=OPTIONAL

CONTROL EQPT CODES		OVERALL CONTROL	FULL/ PART	HOURLY MAX EMISSIONS
PRIMARY	SECONDARY	EFFICIENCY		(LBS/HOUR)
0.12		C	F	0.0,0.1,7.8

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMMITTERS DATA
(ADDITIONAL EMMITTERS)FORM
PRO
S-25-2OFFICE USE ONLY
CODE: 10
FACID: 403

DEVICE ID

2

EMITTER DATA

EMISSIONS

ACTION
CODE

EMITTER ID

PAH

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

1150

1

1.77 E-05

C

7.35

ALLOWABLE EMM.
LBS/YR (OPTIONAL)• CONTROL EQPT CODES •
PRIMARY SECONDARYOVERALL
CONTROL
EFF(%)FULL/
PARTHOURLY MAX EMISSIONS
(LBS/HOUR)

012

C

C

C

0.00773

FACID: 403

EMITTER ID

PAH

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

5655.3

1

N.D.

C

N.D.

ALLOWABLE EMM.
LBS/YR (OPTIONAL)• CONTROL EQPT CODES •
PRIMARY SECONDARYOVERALL
CONTROL
EFF(%)FULL/
PARTHOURLY MAX EMISSIONS
(LBS/HOUR)

012

C

C

C

N.D.

ACTION
CODE

EMITTER ID

B6F

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

2059.92

1

N.D.

C

N.D.

ALLOWABLE EMM.
LBS/YR (OPTIONAL)• CONTROL EQPT CODES •
PRIMARY SECONDARYOVERALL
CONTROL
EFF(%)FULL/
PARTHOURLY MAX EMISSIONS
(LBS/HOUR)

012

C

C

C

N.D.

ACTION
CODE

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

2070.89

1

N.D.

C

N.D.

ALLOWABLE EMM.
LBS/YR (OPTIONAL)• CONTROL EQPT CODES •
PRIMARY SECONDARYOVERALL
CONTROL
EFF(%)FULL/
PARTHOURLY MAX EMISSIONS
(LBS/HOUR)

012

C

C

C

N.D.

ACTION
CODE

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

503.28

1

N.D.

C

N.D.

ALLOWABLE EMM.
LBS/YR (OPTIONAL)• CONTROL EQPT CODES •
PRIMARY SECONDARYOVERALL
CONTROL
EFF(%)FULL/
PARTHOURLY MAX EMISSIONS
(LBS/HOUR)

012

C

C

C

N.D.

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMMITTERS DATA
(ADDITIONAL EMMITTERS)FORM
PRO
PAGE 3OFFICE USE ONLY
COM 70
FACID 403

DEVICE ID 2

EMMITTER DATA

EMISSIONS

ACTION
CODE
AALLOWABLE EMISSIONS
(LBS/HR) (OPTIONAL)

EMMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
71432	1 C	N.D.	N.D.

•CONTROL EQPT CODES•	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 012 <input type="checkbox"/>	SECONDARY C 012 <input type="checkbox"/>	OVERALL C 012 <input type="checkbox"/>	F <input type="checkbox"/> N.D.

ACTION
CODE
AALLOWABLE EMISSIONS
(LBS/HR) (OPTIONAL)

EMMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
108883	1 C	N.D.	N.D.

•CONTROL EQPT CODES•	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 012 <input type="checkbox"/>	SECONDARY C 012 <input type="checkbox"/>	OVERALL C 012 <input type="checkbox"/>	F <input type="checkbox"/> N.D.

ACTION
CODE
AALLOWABLE EMISSIONS
(LBS/HR) (OPTIONAL)

EMMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
1210	1 C	N.D.	N.D.

•CONTROL EQPT CODES•	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 012 <input type="checkbox"/>	SECONDARY C 012 <input type="checkbox"/>	OVERALL C 012 <input type="checkbox"/>	F <input type="checkbox"/> N.D.

ACTION
CODE
AALLOWABLE EMISSIONS
(LBS/HR) (OPTIONAL)

EMMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
71556	1 C	N.D.	N.D.

•CONTROL EQPT CODES•	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 012 <input type="checkbox"/>	SECONDARY C 012 <input type="checkbox"/>	OVERALL C 012 <input type="checkbox"/>	F <input type="checkbox"/> N.D.

ACTION
CODE
AALLOWABLE EMISSIONS
(LBS/HR) (OPTIONAL)

EMMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
1175	1 C	1.43 E-103	5.95

•CONTROL EQPT CODES•	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 012 <input type="checkbox"/>	SECONDARY C 012 <input type="checkbox"/>	OVERALL C 012 <input type="checkbox"/>	F <input type="checkbox"/> 0.788

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMITTERS DATA
(ADDITIONAL EMITTERS)FORM
PRO
SIDE BOFFICE USE ONLY
CO: 10
FACID 403DEVICE ID 2-11

ARB REFERENCE METAL

EMITTER DATA

EMISSIONS

ACTION
CODE
 A

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
<u>ARB METAL</u>	<input type="checkbox"/> C	<u>2.95 E-08</u>	<input type="checkbox"/> C <u>0.0121</u>

ALLOWABLE EMIS.
LBS/YR (OPTIONAL)

CONTROL EQPT CODES		OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	<input type="checkbox"/> C	<input type="checkbox"/> F C	<u>1.62 E-05</u>

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
<u> </u>	<input type="checkbox"/> C	<u> </u>	<input type="checkbox"/> C <u> </u>

ALLOWABLE EMIS.
LBS/YR (OPTIONAL)

CONTROL EQPT CODES		OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	<input type="checkbox"/> C	<input type="checkbox"/> C	<u> </u>

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
<u> </u>	<input type="checkbox"/> C	<u> </u>	<input type="checkbox"/> C <u> </u>

ALLOWABLE EMIS.
LBS/YR (OPTIONAL)

CONTROL EQPT CODES		OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	<input type="checkbox"/> C	<input type="checkbox"/> C	<u> </u>

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
<u> </u>	<input type="checkbox"/> C	<u> </u>	<input type="checkbox"/> C <u> </u>

ALLOWABLE EMIS.
LBS/YR (OPTIONAL)

CONTROL EQPT CODES		OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	<input type="checkbox"/> C	<input type="checkbox"/> C	<u> </u>

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
<u> </u>	<input type="checkbox"/> C	<u> </u>	<input type="checkbox"/> C <u> </u>

ALLOWABLE EMIS.
LBS/YR (OPTIONAL)

CONTROL EQPT CODES		OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	<input type="checkbox"/> C	<input type="checkbox"/> C	<u> </u>

NAME Antonio Assisum DATE 5-25-90

ARB/PROB/8903176

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMITTENTS DATAFORM
PRO
SIDE A

FOR OFFICE USE ONLY

PROCESS DESCRIPTION

HOT OIL HEATER

SCC NO

3-05-002-08

COUNTY
ID

10

AIR
BASIN

55V

ACTION
CODE

PROD1 (OPTIONAL)

PROD2 (OPTIONAL)

FACILITY ID

403

STOP FILL OUT ANY SUPPLEMENTAL PROCESS FORM(S) FOR THIS PROCESS FIRST, THEN FILL OUT THIS PAGE, SUBMITTING ONE FOR EACH EMITTING PROCESS IN YOUR FACILITY.

SECTION 1

PROCESS DATA

DEVICE I.D. 3-111

SIC

2951

CONFIDENTIAL (Y/N)
IF Y CHECK SMALL BOXES AS APPROPRIATE

N

PROCESS EQUIPMENT DESCRIPTION

HOT OIL HEATER

FUEL TYPE / OTHER PROCESS INFO

DIESEL

NOTE USE 1 SPACE FOR EACH DECIMAL POINT

TOTAL YEARLY
PROCESS RATE (UNITS/YR)

25,000

MAXIMUM HOURLY
PROCESS RATE (UNITS/HR)

4.5

PROCESS UNITS

P10.60

HRS/
DAY

15

DAYS/
WEEK

7

WKS/
YEAR

52

RELATIVE MONTHLY ACTIVITY (%)											
JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
8.33	8.33	8.33	8.33	8.33	8.33	8.33	8.33	8.33	8.33	8.33	8.33

OFFICE USE ONLY

SECTION 2

EMITTER DATA

EMISSIONS

ACTION
CODE

EMITTER ID

EST
METHACTUAL EMISSIONS
FACTOR(LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

11501111

1.1

2.52 E-05

0.63

ALLOWABLE EMIS-
SNS (LBS/YR OPTIONAL)*CONTROL EQPT CODES*
PRIMARY C SECONDARY C

0.0

OVERALL
CONTROL
EFF(%)

0.100

FULL/
PART

C

HOURLY MAX EMISSIONS
(LBS/HOUR)

1.13 E-04

ACTION
CODE

EMITTER ID

EST
METHACTUAL EMISSIONS
FACTOR(LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

56551311

1.1

N.D.

N.D.

ALLOWABLE EMIS-
SNS (LBS/YR OPTIONAL)*CONTROL EQPT CODES*
PRIMARY C SECONDARY C

0.0

OVERALL
CONTROL
EFF(%)

0.100

FULL/
PART

C

HOURLY MAX EMISSIONS
(LBS/HOUR)

N.D.

NAME Antoine Assioun DATE 5-25-90

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMITTERS DATA
(ADDITIONAL EMITTERS)FORM
PRO
SIDE BOFFICE USE ONLY
CO: 1C
FACID: 403

DEVICE ID 3

EMITTER DATA

EMISSIONS

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
91203	1 C	1.68 E-05	0.42

ALLOWABLE EMISSIONS
(LBS/YR) (OPTIONAL)

• CONTROL PRIMARY	EQPT CODES SECONDARY	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
000	..	0.00	C	7.5 E-05

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
1086	1 C	N.D.	N.D.

ALLOWABLE EMISSIONS
(LBS/YR) (OPTIONAL)

• CONTROL PRIMARY	EQPT CODES SECONDARY	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
000	..	0.82	C	N.D.

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
1080	1 C	N.D.	N.D.

ALLOWABLE EMISSIONS
(LBS/YR) (OPTIONAL)

• CONTROL PRIMARY	EQPT CODES SECONDARY	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
000	..	0.00	C	N.D.

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
50000	1 C	0.0272	680

ALLOWABLE EMISSIONS
(LBS/YR) (OPTIONAL)

• CONTROL PRIMARY	EQPT CODES SECONDARY	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
0.00	..	0.00	C	0.122

ACTION
CODE

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
71432	1 C	N.D.	N.D.

ALLOWABLE EMISSIONS
(LBS/YR) (OPTIONAL)

• CONTROL PRIMARY	EQPT CODES SECONDARY	OVERALL CONTROL EFF(%)	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
0.010	..	0.00	C	N.D.

NAME Antoine Assiam

DATE 5-25-90

AR8/PROB/8803176

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMISSIONS DATA
(ADDITIONAL EMISSIONS)FORM
PRO
SIDE BOFFICE USE ONLY
CO: 10
FACID: 143

DEVICE ID

3

ACTION
CODE:

A

ALLOWABLE EMISSIONS
LBS/HR (OPTIONAL)

Emissions

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

7782505

2

C

N.D.

C

N.D.

*CONTROL EQPT CODES:
PRIMARY SECONDARYC
000C
111OVERALL
CONTROL EFF(%)C
0.00FULL/
PARTC
66HOURLY MAX EMISSIONS
(LBS/HOUR)

N.D.

ACTION
CODE:

A

ALLOWABLE EMISSIONS
LBS/HR (OPTIONAL)

Emissions

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

7440382

2

C

N.D.

C

N.D.

*CONTROL EQPT CODES:
PRIMARY SECONDARYC
000C
111OVERALL
CONTROL EFF(%)C
0.00FULL/
PARTC
66HOURLY MAX EMISSIONS
(LBS/HOUR)

N.D.

ACTION
CODE:

A

ALLOWABLE EMISSIONS
LBS/HR (OPTIONAL)

Emissions

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

7440417

2

C

N.D.

C

N.D.

*CONTROL EQPT CODES:
PRIMARY SECONDARYC
000C
111OVERALL
CONTROL EFF(%)C
0.00FULL/
PARTC
66HOURLY MAX EMISSIONS
(LBS/HOUR)

N.D.

ACTION
CODE:

A

ALLOWABLE EMISSIONS
LBS/HR (OPTIONAL)

Emissions

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

7440439

2

C

2.92 E-06

C

0.073

*CONTROL EQPT CODES:
PRIMARY SECONDARYC
0.00C
111OVERALL
CONTROL EFF(%)C
5.00FULL/
PARTC
66HOURLY MAX EMISSIONS
(LBS/HOUR)

1.31 E-05

ACTION
CODE:

A

ALLOWABLE EMISSIONS
LBS/HR (OPTIONAL)

Emissions

EMITTER ID

✓

EST
METHACTUAL EMISSIONS
FACTOR (LBS/UNIT)ANNUAL AVERAGE
EMISSIONS (LBS/YR)

CHROMIUM

2

C

5.00 E-06

C

0.125

*CONTROL EQPT CODES:
PRIMARY SECONDARYC
0.00C
111OVERALL
CONTROL EFF(%)C
0.10FULL/
PARTC
66HOURLY MAX EMISSIONS
(LBS/HOUR)

2.125 E-05

NAME: Antone Assioun

DATE: 5-25-90

R - 5

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMITTERS DATA
(ADDITIONAL EMITTERS)FORM
PRO
SIDE BOFFICE USE ONLY
CO: 10
FACID: 403

DEVICE ID 3

EMITTER DATA

EMISSIONS

ACTION
CODE: N

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7440666.1	2 C	2.79 E-04 C	6.97

ALLOWABLE EMISSIONS (LBS/YR) OPTIONAL

CONTROL EQPT CODES:		OVERALL CONTROL EFF%	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	C	C	0.00125
0.00	0.00	0.00	C	

ACTION
CODE: N

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7440508.1	2 C	1.34 E-05 C	0.334

ALLOWABLE EMISSIONS (LBS/YR) OPTIONAL

CONTROL EQPT CODES:		OVERALL CONTROL EFF%	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	C	C	6.01 E-05
0.00	0.00	0.00	C	

ACTION
CODE: N

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7439921.1	2 C	2.42 E-05 C	0.605

ALLOWABLE EMISSIONS (LBS/YR) OPTIONAL

CONTROL EQPT CODES:		OVERALL CONTROL EFF%	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	C	C	1.07 E-04
0.00	0.00	0.00	C	

ACTION
CODE: N

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7439965.1	2 C	2.50 E-06 C	0.0626

ALLOWABLE EMISSIONS (LBS/YR) OPTIONAL

CONTROL EQPT CODES:		OVERALL CONTROL EFF%	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	C	C	1.13 E-05
0.00	0.00	0.00	C	

ACTION
CODE: N

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7439976.1	2 C	5.01 E-08 C	0.00125

ALLOWABLE EMISSIONS (LBS/YR) OPTIONAL

CONTROL EQPT CODES:		OVERALL CONTROL EFF%	FULL/ PART	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY	SECONDARY	C	C	2.25 E-07
0.00	0.00	0.00	C	

NAME Antoine Assioum

DATE 5-25-90
R-5

AFB/PROB/4903-1-6

EMISSION
YEAR
1989AIR TOXICS EMISSION DATA SYSTEM REVIEW AND UPDATE REPORT
PROCESS AND EMISSIONS DATA
(ADDITIONAL EMISSIONS)FORM
PRO
SIDE B

OFFICE USE ONLY

CO FACID

DEVICE ID

3

EMITTER DATA

EMISSIONS

ACTION
CODE

A

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7440020	2 C	N.D.	N.D.

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

N.D.

• CONTROL EQPT CODES	OVERALL CONTROL EFF(%)	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 000	SECONDARY C 000	0.00 C N.D.

ACTION
CODE

A

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
7782492	2 C	N.D.	N.D.

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

N.D.

• CONTROL EQPT CODES	OVERALL CONTROL EFF(%)	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 000	SECONDARY C 000	0.00 C N.D.

ACTION
CODE

A

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)
1165	2 C	N.D.	N.D.

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

N.D.

• CONTROL EQPT CODES	OVERALL CONTROL EFF(%)	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 000	SECONDARY C 000	0.00 C N.D.

ACTION
CODE

A

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

N.D.

• CONTROL EQPT CODES	OVERALL CONTROL EFF(%)	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 000	SECONDARY C 000	0.00 C N.D.

ACTION
CODE

A

EMITTER ID	EST METH	ACTUAL EMISSIONS FACTOR (LBS/UNIT)	ANNUAL AVERAGE EMISSIONS (LBS/YR)

ALLOWABLE EMISSIONS
LBS/YR (OPTIONAL)

N.D.

• CONTROL EQPT CODES	OVERALL CONTROL EFF(%)	HOURLY MAX EMISSIONS (LBS/HOUR)
PRIMARY C 000	SECONDARY C 000	0.00 C N.D.

NAME Antoine AssiounDATE 5-25-90

R - 5

AAB/PROB/4903176

EMISSION
YEAR
1982AIR TOXICS EMISSION DATA SYSTEM REVIEW & UPDATE REPORT
SUPPLEMENTAL PROCESS PARAMETER FORM
SUBSTANCES USED, PRODUCED, OR OTHERWISE PRESENTFORM
S-UP

FACILITY NAME

FRENS INDUSTRIAL ASPHALT

FOR OFFICE USE ONLY

CO: 100

AB: 500

FACID:

100

PLEASE COPY THIS FORM AS MANY TIMES AS NECESSARY FOR YOUR FACILITY.
PLEASE READ THE INSTRUCTIONS BEFORE COMPLETING THIS FORM.USE THIS FORM TO REPORT SUBSTANCES IN APPENDIX A-II WHICH ARE
USED, PRODUCED, OR OTHERWISE PRESENT.PLEASE INDICATE (Y/N) UNDER THE APPROPRIATE CATEGORIES USE, PRODUCTION, OR OTHER PRESENCE WITHIN YOUR FACILITY
OF ANY SUBSTANCE(S) LISTED IN APPENDIX A-II. "USED" REFERS TO SUBSTANCES WHICH ARE INGREDIENTS IN ANY
ACTIVITY OR PROCESS AT YOUR FACILITY. "PRODUCED" REFERS TO SUBSTANCES WHICH ARE THE RESULT OF ANY ACTIVITY
OR PROCESS TAKING PLACE IN YOUR FACILITY. "OTHERWISE PRESENT" REFERS TO SUBSTANCES PRESENT IN ANY OTHER
WAY IN AN ACTIVITY OR PROCESS, SUCH AS BY-PRODUCTS OR REACTION INTERMEDIATES WHICH APPEAR TEMPORARILY
DURING PROCESSING. PLEASE SPECIFY THE NATURE OF THE PRESENCE OF THE SUBSTANCE.ALSO USE THIS FORM TO REPORT SUBSTANCES IN APPENDIX A-I WHICH ARE PRESENT BELOW THE
APPLICABLE DEGREE OF ACCURACY.

LISTED SUBSTANCE	USED	PRODUCED	OTHERWISE PRESENT (SPECIFY)
12/0	(Y)	(N)	(N) ASPHALT STORAGE AND ASPHALTIC CONCRETE LOADING TO SILOS AND TRUCKS.
71556	(Y)	(N)	(N) =
56553	(Y)	(N)	(N) =
205-922	(Y)	(N)	(N) =
207089	(Y)	(N)	(N) =
50328	(Y)	(N)	(N) =
53703	(Y)	(Y)	(N) =
193395	(Y)	(N)	(N) "
91203	(Y)	(N)	(N) =
	()	()	()
	()	()	()
	()	()	()
	()	()	()
	()	()	()
	()	()	()

NAME:

Antoine Assisian

ARB/S-UP/89089

DOCUMENTATION SUPPORTING THE EMISSIONS CALCULATIONS

The attached documentation consists of printouts from the Lotus 123 spreadsheet program used to calculate emissions from this facility. The printouts are comprehensive in that they show the exact equations used, the input parameter values, as well as the calculated output values for each reported process.

Device #1: Aggregate Transfer Points

No. of Devices: 3

Control Equipment: Wet Supression

~~~~~  
Estimation Method: Emission Factor

Gnrl Subst Quantfd: Particulates

Yearly Emis Est Equatn:  $Ay*Ef*(1-Ce)*Sf/1,000,000$ Hourly Emis Est Equatn:  $Am*Ef*(1-Ce)*Sf/1,000,000$ Max Hr Agg Rate Equatn:  $Am = Ay*(Pm/Py)$ 

## Parameter Symbols/Names

## Values

|                                                    |                     |
|----------------------------------------------------|---------------------|
| Ay = Total Aggregate Material Annual Process Rate  | 1.19E+06 tons/yr    |
| Hd = Hours per Day                                 | 8 hrs/day           |
| Dw = Days per Week                                 | 5 days/wk           |
| Wy = Weeks per Year                                | 52 wks/yr           |
| Ah = Aggregate Average Hourly Process Rate         | 571.8908653 tons/hr |
| Am = Aggregate Maximum Hourly Process Rate         | 1575.089017 tons/hr |
| Py = Total Yrly Asphaltic Concrete Production Rate | 415367 tons/yr      |
| Pm = Max Hrly Asphaltic Concrete Production Rate   | 550 tons/hr         |
| Ef = Gnrl Subs PM10 Emis Factor (uncontrolled)*    | 0.015 lb/ton        |
| Ce = Control Efficiency                            | 90%                 |
| Sf = Speciation Factor                             | (see below) ppm     |

\* Note: Based on EPA AP-42 p.8.19.1-3 & EPA Particle Size Distribution  
Interim Report (July '86) p.C.2-10.

| Emittent Species Name | Speciation Factor (ppm) | Emission Factor (lbs/ton) | Annual Emissions (lbs/yr) | Avg Hourly Emissions (lbs/hr) | Max Emissions (lbs/hr) |
|-----------------------|-------------------------|---------------------------|---------------------------|-------------------------------|------------------------|
| Crystalline Silica    | 156175                  | 0.0002342625              | 278.6629744               | 0.368984290                   |                        |
| Total Particulates    | 1,000,000               | 0.0015                    | 1784.2995                 | 2.362633525                   |                        |

\*\*\*\*\*

2-Sep-90

## Fresno Asphalt Plant / FCAPCD

## \*\*\*\*\* Device #2: Dryer/Mixer System \*\*\*\*\*

No. of Devices: 1

Control Equipment: Baghouse

Estimation Method: Source Test

Yearly Emis Est Equatn: Py\*Ef

Hourly Emis Est Equatn: Pm\*Ef

Emission Factor: Ef = Et/Pt

## Parameter Symbols/Names

## Values

|                                                      |                     |
|------------------------------------------------------|---------------------|
| Py = Total Yearly Asphaltic Concrete Production Rate | 4.15E+05 tons/yr    |
| Pm = Max Hrly Asphaltic Concrete Production Rate     | 550 tons/hr         |
| Ef = Et/Pt = Emission Factor                         | (see below) lbs/ton |
| Pt = Hourly Production Rate during Source Test       | 475 tons/hr         |
| Et = Tested Emission Rate                            | (see below) lbs/hr  |
| Gt = Tested Actual Gas Flow Rate of Stack            | 55706 cfm           |
| Gn = Gt*P/(Pt*H) = Normal Actual Gas Flow Rate       | 23419.58048 cfm     |
| T = Tested Stack Gas Temperature                     | 316 degree F        |

| Emittent Species Name  | Tested Emis Rate ("Et")<br>(lbs/hr) | Emission Factor<br>(lbs/ton) | Annual Avg Emissions<br>(lbs/yr) | Hourly Max Emissions<br>(lbs/hr) |
|------------------------|-------------------------------------|------------------------------|----------------------------------|----------------------------------|
| <b>Heavy Metals:</b>   |                                     |                              |                                  |                                  |
| Arsenic                | 1.200E-04                           | 0.0000002526                 | 0.104935326                      | 0.000138947                      |
| Beryllium              | N.D.                                | 0                            | 0                                | 0                                |
| Cadmium                | 1.200E-04                           | 0.0000002526                 | 0.104935326                      | 0.000138947                      |
| Chromium (total)       | N.D.                                | 0                            | 0                                | 0                                |
| Chromium (hexavalent)  | N.D.                                | 0                            | 0                                | 0                                |
| Copper                 | N.D.                                | 0                            | 0                                | 0                                |
| Lead                   | 2.900E-04                           | 0.0000006105                 | 0.253593705                      | 0.000335789                      |
| Manganese              | 1.200E+00                           | 0.0025263158                 | 1049.353263                      | 1.389473684                      |
| Mercury                | 3.500E-06                           | 0.0000000074                 | 0.003060613                      | 0.000004052                      |
| Nickel                 | N.D.                                | 0                            | 0                                | 0                                |
| Selenium               | N.D.                                | 0                            | 0                                | 0                                |
| Zinc                   | 1.500E-02                           | 0.0000315789                 | 13.11691578                      | 0.017368421                      |
| <b>PAHs:</b>           |                                     |                              |                                  |                                  |
| Total                  | 8.400E-03                           | 0.0000176842                 | 7.345472842                      | 0.009726315                      |
| Benz[a]anthracene      | N.D.                                | 0                            | 0                                | 0                                |
| Benz[b]fluranthene     | N.D.                                | 0                            | 0                                | 0                                |
| Benz[k]fluoranthene    | N.D.                                | 0                            | 0                                | 0                                |
| Benz[a]pyrene          | N.D.                                | 0                            | 0                                | 0                                |
| Dibenz[a,h]anthracene  | N.D.                                | 0                            | 0                                | 0                                |
| Indeno[1,2,3,-cd]pyren | N.D.                                | 0                            | 0                                | 0                                |
| Naphthalene            | 5.900E-03                           | 0.0000124211                 | 5.159320210                      | 0.006831578                      |
| Hydrogen Sulfide       | N.D.                                | 0                            | 0                                | 0                                |
| Formaldehyde           | 3.200E-01                           | 0.0006736842                 | 279.8275368                      | 0.370526315                      |
| Benzene                | N.D.                                | 0                            | 0                                | 0                                |
| Toluene                | N.D.                                | 0                            | 0                                | 0                                |

12-Sep-90

## Fresno Asphalt Plant / FCAFCD

1

Xylene N.D. 0 0 0  
Methyl Chloroform N.D. 0 0 0

Estimation Method: Emission Factor + Analysis of Fugitive Dust Sample  
Yearly Emis Est Equatn: Py\*Ef\*Sf  
Hourly Emis Est Equatn: Pm\*Ef\*Sf

| Parameter Symbols/Names | Values |
|-------------------------|--------|
|-------------------------|--------|

Ef = Particulate Emission Factor (from source test) 0.00573 lbs/ton  
Sf = Speciation Factor (see below) ppm

| Emittent Species Name     | Speciation Factor | Emission Factor     | Annual Emissions     | Avg Hourly Emissions | Max Emissions |
|---------------------------|-------------------|---------------------|----------------------|----------------------|---------------|
| Crystalline Silica        | (ppm) 250,000     | (lbs/ton) 0.0014325 | (lbs/yr) 595.0160925 | (lbs/hr) 0.787875    |               |
| <b>Total Particulates</b> | <b>1,000,000</b>  | <b>0.00573</b>      | <b>2380.06437</b>    | <b>3.1515</b>        |               |

### Device #3: Hot Oil Heater

No. of Devices: 1

Control Equipment: None

#### Estimation Method: Source Test

Yearly Emiss Est Equatn:  $E_y \cdot E_f$

Hourly Emis Est Equatn: (Yearly Emissions)/Hr

Emission Factor:  $E_f = E_t/F_t$

| Parameter Symbols/Names                         | Values              |
|-------------------------------------------------|---------------------|
| Fy = Total Yearly Fuel Consumption              | 25000 gal/yr        |
| H = Total Yearly Hours of Operation             | 5,556 hrs/yr        |
| Fh = Average Hourly Fuel Consumption            | 4.499640028 gal/hr  |
| Ef = Et/Ft = Emission Factor                    | (see below) lbs/gal |
| Ft = Hourly Fuel Consumption during Source Test | 2.5 gal/hr          |
| Et = Tested Emission Rate                       | (see below) lbs/hr  |
| Gt = Tested Actual Gas Flow Rate of Stack       | 796 cfm             |
| Gn = Gt*Fy/(Ft*H) = Normal Actual Gas Flow Rate | 1432.685385 cfm     |
| T = Tested Stack Gas Temperature                | 514 degree F        |

| Emittent Species Name  | Tested Emis Rate ("Et")<br>(lbs/hr) | Emission Factor<br>(lbs/gal) | Annual Emissions<br>(lbs/yr) | Avg Emissions<br>(lbs/hr) | Hourly Max Emissions<br>(lbs/hr) |
|------------------------|-------------------------------------|------------------------------|------------------------------|---------------------------|----------------------------------|
| <b>PAHs:</b>           |                                     |                              |                              |                           |                                  |
| Total                  | 6.300E-05                           | 0.0000252                    | 0.63                         | 0.000113390               | 0                                |
| Benz[a]anthracene      | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| Benz[b]fluoranthene    | 2.500E-07                           | 0.0000001                    | 0.0025                       | 0.00000045                | 0                                |
| Benzo[k]fluoranthene   | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| Benzo[a]pyrene         | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| Di-benz[a,h]anthracene | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| Indeno[1,2,3,-cd]pyren | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| Naphthalene            | 4.200E-05                           | 0.0000168                    | 0.42                         | 0.000075594               | 0                                |
| <b>Dioxins</b>         |                                     |                              |                              |                           |                                  |
| Dioxins                | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| <b>Furans</b>          |                                     |                              |                              |                           |                                  |
| Furans                 | N.D.                                | 0                            | 0                            | 0                         | 0                                |
| <b>Formaldehyde</b>    |                                     |                              |                              |                           |                                  |
| Formaldehyde           | 6.800E-02                           | 0.0272                       | 680                          | 0.122390208               | 0                                |
| <b>Benzene</b>         |                                     |                              |                              |                           |                                  |
| Benzene                | N.D.                                | 0                            | 0                            | 0                         | 0                                |

Estimation Method: Fuel Analysis

Yearly Emis Est Equatn:  $F_y \cdot k \cdot C$

Hourly Emis Est Equatn: (Yearly Emissions)/H

Emission Factor: k\*c

| Parameter Symbols/Names              | Values                                   |
|--------------------------------------|------------------------------------------|
| $k = 3.785 \times 2.205 / 1,000,000$ | 0.000008345 (1/gal) (lb/m <sup>3</sup> ) |
| Fy = Yearly Fuel Usage               | 25000 gal/yr                             |

C = Concentration in fuel

(see below) mg/liter

| Emittent Species Name | Concentrtn in Fuel (mg/liter) | Emission Factor (lbs/gal) | Annual Emissions (lbs/yr) | Avg Emissions (lbs/hr) | Hourly Max Emissions (lbs/hr) |
|-----------------------|-------------------------------|---------------------------|---------------------------|------------------------|-------------------------------|
| Chlorine              | N.D.                          | 0                         | 0                         | 0                      | 0                             |
| <b>Heavy Metals:</b>  |                               |                           |                           |                        |                               |
| Arsenic               | N.D.                          | 0                         | 0                         | 0                      | 0                             |
| Beryllium             | N.D.                          | 0                         | 0                         | 0                      | 0                             |
| Cadmium               | 3.500E-01                     | 0.0000029211              | 0.073026843               | 0.000013143            |                               |
| Chromium (total)      | 6.000E-01                     | 0.0000050076              | 0.125188875               | 0.000022532            |                               |
| Copper                | 1.600E+00                     | 0.0000133535              | 0.333837                  | 0.000060085            |                               |
| Lead                  | 2.900E+00                     | 0.0000242032              | 0.605079562               | 0.000108905            |                               |
| Manganese             | 3.000E-01                     | 0.0000025038              | 0.062594437               | 0.000011266            |                               |
| Mercury               | 6.000E-03                     | 0.0000000501              | 0.001251889               | 0.000000225            |                               |
| Nickel                | N.D.                          | 0                         | 0                         | 0                      | 0                             |
| Selenium              | N.D.                          | 0                         | 0                         | 0                      | 0                             |
| Zinc                  | 3.340E+01                     | 0.0002787539              | 6.968847375               | 0.001254292            |                               |
| Radionuclides         | (pCuries/l)                   | (mCuries/gal)             | (Curies/yr)               | (mCurries/hr)          |                               |
|                       | N.D.                          | 0                         | 0                         | 0                      |                               |

\*\*\*\*\*

**INDUSTRIAL ASPHALT  
FUEL ANALYSIS  
AND  
STACK TEST REPORTS**

**REPORT OF AB2588 AIR POLLUTION SOURCE TESTING  
AT INDUSTRIAL ASPHALT  
FRESNO, CALIFORNIA**

**Conducted at:**

**INDUSTRIAL ASPHALT  
FRESNO, CALIFORNIA**

**Conducted on:**

**May 22-24, 1990**

**Submitted on:**

**August 23, 1990**

**Prepared by:**

**ENGINEERING-SCIENCE, INC.  
75 N. Fair Oaks Avenue  
P.O. Box 7101  
Pasadena, California 91109**

**REPORT OF AB2588 AIR POLLUTION SOURCE TESTING  
AT INDUSTRIAL ASPHALT  
FRESNO, CALIFORNIA**

**Conducted at:**

**INDUSTRIAL ASPHALT  
FRESNO, CALIFORNIA**

**Conducted on:**

**May 22-24, 1990**

**Submitted on:**

**August 23, 1990**

**Prepared by:**

**ENGINEERING-SCIENCE, INC.  
75 N. Fair Oaks Avenue  
P.O. Box 7101  
Pasadena, California 91109**

**REPORT OF AB2588 AIR POLLUTION SOURCE TESTING  
AT INDUSTRIAL ASPHALT  
FRESNO, CALIFORNIA**

**SECTION I  
INTRODUCTION**

On May 22-24, 1990, Engineering-Science, Pasadena, (ES), conducted air pollution source tests at the Industrial Asphalt facility in Fresno, California. The sources tested were the exhausts of the dryer mixer and hot oil heater plant mixing operations. The testing was conducted to meet the conditions stipulated in California Assembly Bill 2588 (AB 2588). The plant is permitted by the Fresno County Air Pollution Control District (FCAPCD). The test effort was coordinated by Mr. Dan Olivera of Industrial Asphalt. The ES testing team was comprised of Messrs. Mike Edwards (team leader), Rani Sekhon, Tony King, and Greg Burke.

The source testing program included the determination of emission rates of trace elements, poly-aromatic hydrocarbons (PAH), organics, formaldehyde, and hydrogen sulfide for the dryer/mixer stack. For the hot oil heater stack, emission rates for poly-aromatic hydrocarbons, dioxins, dibenzofurans, benzene, and formaldehyde were determined. Fuel analysis included trace elements, chloride, and radionuclides. The tests were conducted in accordance with California Air Resources Board (CARB), and Environmental Protection Agency (EPA) published test procedures.

## SECTION II

### EQUIPMENT AND PROCESS DESCRIPTION

Industrial Asphalt of Fresno, California, operates a drum mixing asphalt batch plant for production of various grades of road asphalt. The facility is located in a large drainage wash, adjacent to their quarry. All gravels and sands necessary for asphalt production are generated on-site.

The process starts with differentiation of quarry aggregate into different grades of gravel and sand. These materials are stored in large piles at the facility, and as needed, are loaded into hoppers by skip loader for use by the plant.

Beneath the hoppers are belt conveyors, all of which feed a common conveyor belt. By adjusting the belt speeds for the individual hoppers, mixtures of different gravel sizes, sand and rock dust of desired proportions are created. The entire process is controlled by a central computer.

The common conveyor belt feeds materials through a knockout screen (protection against large stones) and into the top of the rotary drum. The materials are dried and heated at the top of the mixing drum by a propane flame. As the mixture falls through the last 15 feet of the drum, it is coated by 300°F asphalt oil. The asphalt which emerges from the mixing drum is carried by drag-slat up into storage silos, from where it is eventually poured into trucks.

To prevent the asphalt oil and asphalt mix from solidifying, a burner fired by low sulfur diesel heats circulating oil. The circulating oil maintains the temperature of the three 125-ton asphalt oil storage tanks and five asphalt mix silos at 300°F.

At maximum capacity, this facility can produce 650 tons of asphalt mix per hour. The plant load fluctuates constantly depending on the contractor demand, and can vary anywhere from complete shutdown to maximum capacity.

## SECTION III

### TESTING METHODOLOGY

#### Exhaust Gas Velocity and Moisture Determination

The exhaust gas flow rate was determined using an S-Type pitot tube. A Type-K thermocouple (chromel-alumel) connected to an Omega Model 601, digital temperature readout was used to determine the exhaust gas temperature. Carbon dioxide (CO<sub>2</sub>) and oxygen (O<sub>2</sub>) used in determining the molecular weight of the exhaust gases were determined by Fyrite analysis of integrated bag samples collected simultaneously with the wet impingement sampling trains. Moisture content was determined gravimetrically by the weight gain of the impingers from the particulate train in accordance with EPA Method 4.

Testing for cyclonic flow was conducted in accordance with EPA Reference Method 1. Absence of cyclonic flow was verified by rotating an S-Type pitot tube so that the planes of the face openings of the pitot tube are perpendicular to the stack cross-sectional plane. This is known as the "0 degree reference" or "null position". A zero reading should be obtained from the manometer. If the manometer did not read zero, the pitot tube was rotated up to a 90° yaw angle or until a zero reading was obtained. The angle of rotation from the initial position was recorded to the nearest degree. The source was considered free of cyclonic flow.

#### Trace Elements

Trace elements that were analyzed included As, Be, Cd, Cr, Cu, Hg, Pb, Mn, Ni, Se, Zn. Each sample was collected isokinetically using an EPA proposed multiple metals sampling train. The train was configured similar to the sampling train used for determining particulates (Method 5) except the first and second impingers contained nitric acid (HNO<sub>3</sub>) in a hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) solution. The third impinger was an empty modified Greenberg-Smith. The fourth impinger contained an acidified potassium permanganate (KMnO<sub>4</sub>) solution. The fifth impinger contained approximately 400 grams of indicating silica gel. A glass fiber filter was located between the fourth and fifth impingers. Sampling train components were

recovered in separate  $\text{HNO}_3$  and  $\text{KMnO}_4$  fractions. After the testing, the samples were analyzed by Inductively Coupled Argon Plasma Mass Spectrometry (ICAP-MS).

#### Total and Hexavalent Chromium

Total and Hexavalent Chromium sampling was conducted in accordance with CARB Method 425. The sampling technique is the same as that for CARB Method 5 for particulates except the impinger solution is sodium bicarbonate. A sample aliquot was analyzed for  $\text{Cr}^{6+}$  by a colorimetric technique and an aliquot was analyzed for total Cr by AAS with graphite furnace.

#### Audit metal, Be

The audit metal, Beryllium, was sampled as per EPA Method 104. The method is similar to EPA5 except for analysis.

#### Poly-aromatic Hydrocarbons, Dioxins, and Dibenzofurans

A modified EPA Reference Method 5 sampling train was used for the determination of Dioxins (PCDD), Dibenzofurans (PCDF), and poly-aromatic hydrocarbons (PAH) which are in accordance with CARB Method 428 and 429. The train design was based on an EPA validated emission collection system with the addition of an adsorbent cartridge of XAD-2 resin to collect vaporous emissions for semi-volatile organics. This train was operated for a period of 4 hours or more during each run and samples were collected using isokinetic sampling techniques. The train recovery was modified from Method 5 procedures to include a sample wash with deionized water followed by a sample wash each with acetone, methylene chloride, and toluene.

A quartz glass sampling probe liner was used. Organics were collected by the adsorbent trap containing a precleaned cartridge of XAD-2 Resin. The resin cartridges were precleaned by California Analytical Laboratory in Sacramento, California at least two weeks prior to the field testing. This glass trap was located in the sample line downstream of a heated filter holder and upstream of the first impinger. The module housing the trap was jacketed, with cold water circulating to maintain an outlet temperature below 60°F. Aluminum foil was wrapped around the sorbent tube to minimize any possible sample reactions caused by ultraviolet

light. A glass Hempel-type condenser was located between the filter and the XAD-2 cartridge to ensure that cool stack gas was entering the adsorbent trap.

All solvents used for preparing the sampling train for testing and field sample recovery were stored in glass bottles and were spectrographic grade. The train components that were to be in contact with the sample were handled with clean, bare hands. These components were free of all potential interfering materials, especially silicone grease.

The probe, sample line wash, and glass condenser were rinsed with deionized water, acetone, methylene chloride, and toluene during each rinse. All probe, filter, connecting tubing, and impinger washings were collected in precleaned glass containers. The sample train was separated into front and back halves.

Three composite samples from each sampling run were submitted to the laboratory for analysis. A composite sample of the "front half" was comprised of the nozzle/probe wash, filter wash, and filter. The "back half" composite sample was comprised of the filter back half wash, condenser wash, flexible line wash and XAD-2 cartridge. Another composite consisted of the impinger contents and associated washes. The samples were sealed, labelled and shipped with Chain of Custody forms to California Analytical Laboratories in Sacramento, California for analysis. The dioxins and dibenzofurans were analyzed, as specified by CARB Methods 428 and 429, in accordance with EPA Method 8280. The PAH's were analyzed by gas chromatography mass spectrometry (GC/MS) in accordance with EPA Method 8270. The analysis for PCDD and PCDF included the following compounds:

| <u>PCDD</u> | <u>PCDF</u> |
|-------------|-------------|
| Mono-CDD    | Mono-CDF    |
| Di-CDD      | Di-CDF      |
| Tri-CDD     | Tri-CDF     |
| Tetra-CDD   | Tetra-CDF   |
| Penta-CDD   | Penta-CDF   |
| Hexa-CDD    | Hexa-CDF    |
| Hepta-CDD   | Hepta-CDF   |
| Octa-CDD    | Octa-CDF    |

Concurrent with the laboratory analyses, the following poly-aromatic hydrocarbons (PAH's) were determined:

PAH's

Fluoranthene  
Pyrene  
Benzo (a) anthracene  
Chrysene  
Benzo (a) pyrene  
Acenaphthene  
Naphthalene  
Benzo (b) fluoranthene  
Benzo (k) fluoranthene  
Acenaphthylene  
Anthracene  
Benzo (g, h, i) perylene  
Fluorene  
Phenanthrene  
Dibenzo (a, h) anthracene  
Indeno (1,2,3-cd) pyrene

The samples that were submitted to the laboratory included a sample train blank which was collected on site. A sampling train was prepared as if it were to be used on the stack, but without being used, the train was washed with the appropriate solvents which were collected in the respective containers.

#### Benzenes

Benzene, dichlorobenzenes, ethylene dichloride and ethylene dibromide samples were collected in accordance with CARB Method 410A.

Three integrated samples were collected into evacuated summa polished canisters. The analysis were performed using a gas chromatograph (GC) equipped with a photoionization detector (PID).

#### Hydrogen Chloride

Using CARB method 421, hydrogen chloride samples were collected with wet impingement sampling trains. The first and second impingers were charged with a solution of sodium bicarbonate and sodium carbonate. The samples were collected through a stainless steel probe connected to a teflon sampling line. Analysis of the samples were conducted by ion chromatography with conductivity detection.

### **Hydrogen Sulfide**

Samples were collected and analyzed in accordance with EPA method 11. A midget impinger train charged with a scrubbing solution of hydrogen peroxide and an absorbing solution of cadmium sulfate.

### **Formaldehyde**

Samples were collected in accordance with CARB Method 430. Three runs each 2 hours in duration were conducted on the stack outlet.

The sampling train consisted of a Teflon lined probe connected to three midget impingers in series. The first two impingers contained 10 mls of 2,4-dinitrophenyl-hydrazine (DNPH) and the third impinger was empty. A preweighed silica gel cartridge was attached between the third impinger and the pump to prevent moisture entering the pump and for use in determining the moisture content of the stack exhaust gas. Samples were analyzed by high performance liquid chromatography.

### **Radionuclides Sampling**

Gross alpha and beta radioactivity were measured using Methods 601 and 602 of the Intersociety Committee "Methods of Air Sampling and Analysis", third edition. Samples were collected once per hour and composited for each source test run. A total of three composite samples were collected.

## **SECTION V**

### **RESULTS**

The test results are presented in Tables 1-9. Manganese emissions are not deemed reliable because of the possible migration of the highly concentrated permanganate solution in the EPA multiple metal train.

**Table 2**  
**Summary of Poly-Aromatic Hydrocarbon Emissions Data**  
**Dryer/Mixer Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter                | Run #1<br>lb/hr.       | Run #2<br>lb/hr.       | Run #3<br>lb/hr.       | Average<br>lb/hr.      |
|--------------------------|------------------------|------------------------|------------------------|------------------------|
| Naphthalene              | $5.6 \times 10^{-3}$   | $5.0 \times 10^{-3}$   | $7.0 \times 10^{-3}$   | $5.9 \times 10^{-3}$   |
| Acenaphthylene           | $3.5 \times 10^{-5}$   | $4.9 \times 10^{-5}$   | $6.4 \times 10^{-5}$   | $4.9 \times 10^{-5}$   |
| Acenaphthene             | $2.4 \times 10^{-4}$   | $2.1 \times 10^{-4}$   | $3.6 \times 10^{-4}$   | $2.7 \times 10^{-4}$   |
| Fluorene                 | $3.0 \times 10^{-4}$   | $3.5 \times 10^{-4}$   | $5.1 \times 10^{-4}$   | $3.9 \times 10^{-4}$   |
| Phenanthrene             | $6.0 \times 10^{-4}$   | $3.5 \times 10^{-3}$   | $9.8 \times 10^{-4}$   | $1.7 \times 10^{-3}$   |
| Anthracene               | $2.1 \times 10^{-5}$   | $3.2 \times 10^{-5}$   | $5.1 \times 10^{-5}$   | $3.5 \times 10^{-5}$   |
| Fluoranthene             | $5.0 \times 10^{-6}$   | $< 7.3 \times 10^{-6}$ | $1.6 \times 10^{-5}$   | $< 9.4 \times 10^{-6}$ |
| Pyrene                   | $8.2 \times 10^{-6}$   | $< 1.3 \times 10^{-5}$ | $2.6 \times 10^{-5}$   | $< 1.6 \times 10^{-5}$ |
| Benzo (a) anthracene     | $< 2.0 \times 10^{-7}$ | $< 4.9 \times 10^{-6}$ | $< 3.3 \times 10^{-6}$ | $< 2.8 \times 10^{-6}$ |
| Chrysene                 | $2.3 \times 10^{-6}$   | $< 6.5 \times 10^{-6}$ | $< 4.1 \times 10^{-6}$ | $< 4.3 \times 10^{-6}$ |
| Benzo (b) fluoranthene   | $4.5 \times 10^{-5}$   | $3.2 \times 10^{-5}$   | $< 5.4 \times 10^{-6}$ | $< 2.8 \times 10^{-5}$ |
| Benzo (k) fluoranthene   | $< 1.5 \times 10^{-6}$ | $< 8.4 \times 10^{-6}$ | $3.3 \times 10^{-5}$   | $< 1.4 \times 10^{-5}$ |
| Benzo (a) pyrene         | $< 2.5 \times 10^{-7}$ | $< 1.0 \times 10^{-5}$ | $< 4.4 \times 10^{-6}$ | $< 4.9 \times 10^{-6}$ |
| Dibenz (a,h) anthracene  | $< 3.2 \times 10^{-8}$ | $< 4.6 \times 10^{-6}$ | $< 2.8 \times 10^{-6}$ | $< 2.5 \times 10^{-6}$ |
| Benzo (g,h,i) perylene   | $< 8.7 \times 10^{-8}$ | $< 1.5 \times 10^{-5}$ | $< 7.2 \times 10^{-6}$ | $< 7.4 \times 10^{-6}$ |
| Indeno (1,2,3-cd) pyrene | $< 4.7 \times 10^{-8}$ | $< 6.5 \times 10^{-6}$ | $< 2.8 \times 10^{-6}$ | $< 3.1 \times 10^{-6}$ |

**Table 3**  
**Summary of Organics, Formaldehyde, and Hydrogen Sulfide Emission Data**  
**Dryer/Mixer Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter         | Run #1<br>lb/hr.         | Run #2<br>lb/hr.         | Run #3<br>lb/hr.         | Average<br>lb/hr         |
|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Benzene           | < 2.6 x 10 <sup>-2</sup> |
| Toluene           | 1.0 x 10 <sup>-1</sup>   | 1.3 x 10 <sup>-1</sup>   | < 2.6 x 10 <sup>-2</sup> | < 8.5 x 10 <sup>-2</sup> |
| Xylene            | < 2.6 x 10 <sup>-2</sup> |
| Methyl Chloroform | < 2.6 x 10 <sup>-2</sup> | < 2.6 x 10 <sup>-2</sup> | 4.2 x 10 <sup>-2</sup>   | < 3.1 x 10 <sup>-2</sup> |
| Formaldehyde      | 3.7 x 10 <sup>-2</sup>   | 5.0 x 10 <sup>-1</sup>   | 4.2 x 10 <sup>-1</sup>   | 3.2 x 10 <sup>-1</sup>   |
| Hydrogen Sulfide  | < 2.1 x 10 <sup>-2</sup> | < 3.0 x 10 <sup>-2</sup> | < 3.4 x 10 <sup>-2</sup> | < 2.8 x 10 <sup>-2</sup> |

**Table 4**  
**Summary of Poly-Aromatic Hydrocarbon Emission Data**  
**Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter                | Run #1<br>lb/hr.         | Run #2<br>lb/hr.         | Run #3<br>lb/hr.         | Average<br>lb/hr.        |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Naphthalene              | 5.8 x 10 <sup>-5</sup>   | 4.2 x 10 <sup>-5</sup>   | 2.7 x 10 <sup>-5</sup>   | 4.2 x 10 <sup>-5</sup>   |
| Acenaphthylene           | 6.3 x 10 <sup>-7</sup>   | 5.1 x 10 <sup>-7</sup>   | 3.6 x 10 <sup>-7</sup>   | 5.0 x 10 <sup>-7</sup>   |
| Acenaphthene             | 1.4 x 10 <sup>-6</sup>   | 1.3 x 10 <sup>-6</sup>   | 1.3 x 10 <sup>-6</sup>   | 1.3 x 10 <sup>-6</sup>   |
| Fluorene                 | 9.4 x 10 <sup>-6</sup>   | 3.3 x 10 <sup>-6</sup>   | 4.8 x 10 <sup>-6</sup>   | 5.8 x 10 <sup>-6</sup>   |
| Phenanthrene             | 1.7 x 10 <sup>-5</sup>   | 1.0 x 10 <sup>-5</sup>   | 1.0 x 10 <sup>-5</sup>   | 1.2 x 10 <sup>-5</sup>   |
| Anthracene               | 4.0 x 10 <sup>-7</sup>   | 3.4 x 10 <sup>-7</sup>   | 6.0 x 10 <sup>-7</sup>   | 4.5 x 10 <sup>-7</sup>   |
| Fluoranthene             | 1.3 x 10 <sup>-7</sup>   | 7.1 x 10 <sup>-8</sup>   | 1.3 x 10 <sup>-7</sup>   | 1.1 x 10 <sup>-7</sup>   |
| Pyrene                   | 9.7 x 10 <sup>-8</sup>   | 7.1 x 10 <sup>-8</sup>   | 6.8 x 10 <sup>-8</sup>   | 7.9 x 10 <sup>-8</sup>   |
| Benzo (a) anthracene     | < 9.5 x 10 <sup>-9</sup> | < 7.8 x 10 <sup>-9</sup> | < 1.9 x 10 <sup>-8</sup> | < 1.2 x 10 <sup>-8</sup> |
| Chrysene                 | < 8.5 x 10 <sup>-9</sup> | < 7.4 x 10 <sup>-9</sup> | < 1.9 x 10 <sup>-8</sup> | < 1.2 x 10 <sup>-8</sup> |
| Benzo (b) fluoranthene   | 3.7 x 10 <sup>-7</sup>   | 1.5 x 10 <sup>-7</sup>   | 2.4 x 10 <sup>-7</sup>   | 2.5 x 10 <sup>-7</sup>   |
| Benzo (k) fluoranthene   | < 1.2 x 10 <sup>-8</sup> | < 1.0 x 10 <sup>-8</sup> | < 9.7 x 10 <sup>-9</sup> | < 1.1 x 10 <sup>-8</sup> |
| Benzo (a) pyrene         | < 6.3 x 10 <sup>-9</sup> | < 5.7 x 10 <sup>-9</sup> | < 8.4 x 10 <sup>-9</sup> | < 6.8 x 10 <sup>-9</sup> |
| Dibenz (a,h) anthracene  | < 1.2 x 10 <sup>-9</sup> | < 2.4 x 10 <sup>-9</sup> | < 1.4 x 10 <sup>-9</sup> | < 1.7 x 10 <sup>-9</sup> |
| Benzo (g,h,i) perylene   | < 2.9 x 10 <sup>-9</sup> | < 2.8 x 10 <sup>-9</sup> | < 5.2 x 10 <sup>-9</sup> | < 3.6 x 10 <sup>-9</sup> |
| Indeno (1,2,3-cd) pyrene | < 1.5 x 10 <sup>-9</sup> | < 3.1 x 10 <sup>-9</sup> | < 4.2 x 10 <sup>-9</sup> | < 2.9 x 10 <sup>-9</sup> |

**Table 5**  
**Summary of Polychlorinated Dibenzofurans Emissions Data**  
**Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter            | Run #1<br>lb/hr.          | Run #2<br>lb/hr.          | Run #3<br>lb/hr.          | Average<br>lb/hr          |
|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| TCDFs (total)        | < 2.8 x 10 <sup>-12</sup> | 6.4 x 10 <sup>-12</sup>   | 1.7 x 10 <sup>-11</sup>   | < 8.7 x 10 <sup>-12</sup> |
| 2,3,7,8, -TCDF       | < 1.1 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> | < 4.2 x 10 <sup>-12</sup> | < 2.4 x 10 <sup>-12</sup> |
| PCDFs (total)        | < 9.8 x 10 <sup>-13</sup> | < 1.0 x 10 <sup>-12</sup> | 2.6 x 10 <sup>-12</sup>   | < 1.5 x 10 <sup>-12</sup> |
| 1,2,3,4,7,8 -PCDF    | < 9.8 x 10 <sup>-13</sup> | < 1.0 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> | < 1.3 x 10 <sup>-12</sup> |
| 2,3,4,7,8 -PCDF      | < 1.6 x 10 <sup>-12</sup> | < 1.7 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> | < 1.8 x 10 <sup>-12</sup> |
| HxCDFs (total)       | < 6.6 x 10 <sup>-13</sup> | 2.7 x 10 <sup>-12</sup>   | 1.2 x 10 <sup>-11</sup>   | < 5.1 x 10 <sup>-12</sup> |
| 1,2,3,4,7,8 -HxCDF   | < 1.9 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> | < 5.5 x 10 <sup>-12</sup> | < 3.1 x 10 <sup>-12</sup> |
| 1,2,3,4,6,7,8 -HxCDF | < 7.6 x 10 <sup>-13</sup> | < 8.1 x 10 <sup>-13</sup> | < 2.0 x 10 <sup>-12</sup> | < 1.2 x 10 <sup>-12</sup> |
| 2,3,4,6,7,8 -HxCDF   | < 7.6 x 10 <sup>-13</sup> | < 8.1 x 10 <sup>-13</sup> | < 2.0 x 10 <sup>-12</sup> | < 1.2 x 10 <sup>-12</sup> |
| 1,2,3,7,8,9 -HxCDF   | < 7.6 x 10 <sup>-13</sup> | < 8.1 x 10 <sup>-13</sup> | < 2.0 x 10 <sup>-12</sup> | < 1.2 x 10 <sup>-12</sup> |
| HpCDFs (total)       | < 1.6 x 10 <sup>-12</sup> | 1.7 x 10 <sup>-11</sup>   | 5.5 x 10 <sup>-11</sup>   | < 2.5 x 10 <sup>-11</sup> |
| 1,2,3,4,6,7,8 -HpCDF | < 3.8 x 10 <sup>-12</sup> | < 6.7 x 10 <sup>-12</sup> | 2.1 x 10 <sup>-11</sup>   | < 1.1 x 10 <sup>-11</sup> |
| 1,2,3,4,7,8,9 -HpCDF | < 1.9 x 10 <sup>-12</sup> | < 6.7 x 10 <sup>-12</sup> | < 3.2 x 10 <sup>-12</sup> | < 3.9 x 10 <sup>-12</sup> |
| OCDF                 | < 5.0 x 10 <sup>-12</sup> | 9.4 x 10 <sup>-12</sup>   | 7.8 x 10 <sup>-11</sup>   | < 3.1 x 10 <sup>-11</sup> |

**Table 6**  
**Summary of Dioxin Emissions Data**  
**Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter            | Run #1<br>lb/hr.          | Run #2<br>lb/hr.          | Run #3<br>lb/hr.          | Average<br>lb/hr.         |
|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| TCDDs (total)        | < 1.9 x 10 <sup>-12</sup> | < 2.1 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> |
| 2,3,7,8 -TCDD        | < 1.5 x 10 <sup>-12</sup> | < 9.8 x 10 <sup>-13</sup> | < 1.7 x 10 <sup>-12</sup> | < 1.4 x 10 <sup>-12</sup> |
| PeCDDs (total)       | < 2.0 x 10 <sup>-12</sup> | < 2.1 x 10 <sup>-12</sup> | < 3.1 x 10 <sup>-12</sup> | < 2.4 x 10 <sup>-12</sup> |
| 1,2,3,7,8-PeCDD      | < 2.0 x 10 <sup>-12</sup> | < 2.1 x 10 <sup>-12</sup> | < 3.1 x 10 <sup>-12</sup> | < 2.4 x 10 <sup>-12</sup> |
| HxCDDs (total)       | 4.7 x 10 <sup>-12</sup>   | 1.4 x 10 <sup>-11</sup>   | 2.8 x 10 <sup>-11</sup>   | 1.6 x 10 <sup>-11</sup>   |
| 1,2,3,6,7,8 -HxCDD   | < 1.6 x 10 <sup>-12</sup> | < 1.8 x 10 <sup>-12</sup> | < 4.5 x 10 <sup>-12</sup> | < 2.6 x 10 <sup>-12</sup> |
| 1,2,3,7,8,9 -HxCDD   | < 1.6 x 10 <sup>-12</sup> | 2.6 x 10 <sup>-12</sup>   | < 4.5 x 10 <sup>-12</sup> | < 2.9 x 10 <sup>-12</sup> |
| 1,2,3,4,7,8 -HxCDD   | < 1.6 x 10 <sup>-12</sup> | 2.1 x 10 <sup>-12</sup>   | < 4.5 x 10 <sup>-12</sup> | < 2.7 x 10 <sup>-12</sup> |
| HpCDDs (total)       | < 7.2 x 10 <sup>-12</sup> | < 7.8 x 10 <sup>-12</sup> | 1.4 x 10 <sup>-10</sup>   | < 5.2 x 10 <sup>-11</sup> |
| 1,2,3,4,6,7,8 -HpCDD | < 7.2 x 10 <sup>-12</sup> | 1.2 x 10 <sup>-11</sup>   | 9.6 x 10 <sup>-11</sup>   | < 3.8 x 10 <sup>-11</sup> |
| OCDD                 | < 5.0 x 10 <sup>-11</sup> | 9.4 x 10 <sup>-11</sup>   | 1.1 x 10 <sup>-9</sup>    | < 4.2 x 10 <sup>-10</sup> |

**INDUSTRIAL ASPHALT  
CRYSTALLINE SILICA  
SOURCE TEST REPORT**

The sequence of activities concerned with sample custody together with identification and tracking procedures are described below:

1. Filter preparation by laboratory, high volume sampler calibration and identification by tags and codes.
2. Filters issued to test team and master log filled out. Sample I.D. number stickers issued according to test identification code.
3. Filters recovered when a valid sample was obtained, accompanied by all field data sheets.
4. All samples returned to ES Pasadena laboratory with Chain-of-Custody form.
5. Samples examined at each transfer point for integrity and identity.

Upon completing the required analysis, the analyst returns the Chain-of-Custody form along with results to ES. All samples were accounted for by the ES Laboratory Supervisor and Project Manager. Each laboratory identifies samples in its own laboratory notebooks by the ES I.D. number as well as any internal identification. Notebooks were retained by each laboratory according to usual laboratory practices.

## II. Calibration Procedures

The calibration procedures are specific to each analytical procedure. Standards are prepared from the highest grade reagents available, using procedures specified in the methods.

## RESULTS

Analysis of all samples was performed by EMS Laboratories in South Pasadena. The results of the fugitive dust and grab sample testing are presented in Tables 1 and 2.

**TABLE 1**  
**SUMMARY OF RESULTS FOR ANALYSIS OF FUGITIVE DUST**  
**FOR CRYSTALLINE SILICA CONTENT**  
**AT CALMAT AGGREGATE PLANTS**  
**FROM MAY 30 TO JUNE 27, 1990**

| Source                           | Quartz  | Crystalline Silica (mg/kg) |           |
|----------------------------------|---------|----------------------------|-----------|
|                                  |         | Crystalobite               | Tridymite |
| Mission Valley Secondary Crusher | 275,690 | 3,750*                     | 3,750*    |
| Final Screen                     | 256,540 | 2,620*                     | 2,620*    |
| Carol Canyon Secondary Crusher   | 145,270 | 3,380*                     | 3,380*    |
| Secondary Screen                 | 169,740 | 4,060*                     | 4,060*    |
| Sloan Canyon Screen              | 64,900  | 6,500*                     | 6,500*    |
| Pala Primary Screen              | 24,100  | 6,020*                     | 6,020*    |
| Secondary Crus                   | 100,580 | 4,260*                     | 4,260*    |
| Fresno Secondary Crusher         | 56,620  | 4,480*                     | 4,480*    |
| Secondary Screen                 | 255,730 | 4,280*                     | 4,280*    |
| Palmdale Secondary Screen        | 260,400 | 4,260*                     | 4,260*    |
| Secondary Crusher                | 100,000 | 5,000*                     | 5,000*    |
| Bakersfield Secondary Crusher    | 191,720 | 23,000                     | 360*      |
| Primary Screen                   | 184,770 | 16,600                     | 830*      |
| San Bernardino Secondary Crusher | 186,000 | 18,770                     | 430*      |
| Primary Screen                   | 171,000 | 20,446                     | 2,970*    |
| Sun Valley Secondary Crusher     | 249,240 | 3,340*                     | 3,340*    |
| Primary Screen                   | 208,100 | 3,620*                     | 3,620*    |
| Reliance Secondary Crusher       | 164,180 | 7,460*                     | 7,460*    |
| Primary Screen                   | 160,340 | 4,180*                     | 4,180*    |
| Saticoy Secondary Crusher        | 193,000 | 3,510*                     | 3,510*    |
| Primary Screen                   | 168,420 | 5,260*                     | 5,260*    |
| Durbin Secondary Crusher         | 239,130 | 5,430*                     | 5,430*    |
| Secondary Screen                 | 231,680 | 4,830*                     | 4,830*    |

\* non-detected samples, value represents lower detection limit

**TABLE 2**  
**SUMMARY OF RESULTS FOR ANALYSIS OF ROAD, BAGHOUSE,**  
**AND STOCKPILE DUST**  
**FOR CRYSTALLINE SILICA CONTENT**  
**AT CALMAT PLANTS**  
**FROM MAY TO SEPTEMBER 1990**

| Source                                         | Quartz         | Crystalline Silica (mg/kg) |               |
|------------------------------------------------|----------------|----------------------------|---------------|
|                                                |                | Crystalline Silica         | Tridymite     |
| Mojave Iron Ore                                | 11,000         | 2,000*                     | 2,000*        |
| Clinker                                        | 3,000*         | 3,000*                     | 3,000*        |
| Limestone                                      | 2,000*         | 2,000*                     | 2,000*        |
| Silica                                         | 430,000        | 3,000*                     | 3,000*        |
| Bissell Clay                                   | 52,000         | 3,000*                     | 3,000*        |
| Baghouse Dust                                  | 49,000         | 3,000*                     | 3,000*        |
| Kiln Feed                                      | 50,000         | 3,000*                     | 3,000*        |
| Pacific Clay                                   | 34,000         | 3,000*                     | 3,000*        |
| Shale                                          | 150,000        | 3,000*                     | 3,000*        |
| Colton Iron Ore                                | 86,000         | 3,000*                     | 3,000*        |
| Clinker                                        | 3,000*         | 3,000*                     | 3,000*        |
| Limestone                                      | 3,000*         | 3,000*                     | 3,000*        |
| Silica                                         | 920,000        | 2,000*                     | 2,000*        |
| Baghouse Dust                                  | 24,000         | 3,000*                     | 3,000*        |
| Kiln Feed                                      | 69,000         | 3,000*                     | 3,000*        |
| Catalyst Fines                                 | 3,000*         | 3,000*                     | 3,000*        |
| Shale                                          | 310,000        | 2,000*                     | 2,000*        |
| Mission Valley Solid                           | 140,000        | 2,000*                     | 2,000*        |
| Haul Road Dust                                 | 120,000        | 3,000*                     | 3,000*        |
| Sloan Canyon Solid                             | 78,000         | 2,000*                     | 2,000*        |
| Haul Road Dust                                 | 160,000        | 3,000*                     | 3,000*        |
| Carol Canyon Solid                             | 190,000        | 2,000*                     | 2,000*        |
| Haul Road Dust                                 | 150,000        | 3,000*                     | 3,000*        |
| Pala Solid                                     | 90,000         | 2,000*                     | 2,000*        |
| Haul Road Dust                                 | 86,000         | 3,000*                     | 3,000*        |
| <b>Fresno Industrial Asphalt Baghouse Dust</b> | <b>250,000</b> | <b>2,000*</b>              | <b>2,000*</b> |
| <b>Fresno Haul Road Dust</b>                   | <b>160,000</b> | <b>2,000*</b>              | <b>2,000*</b> |

\* non-detected samples, value represents lower detection limit

**Table 6**  
**Summary of Dioxin Emissions Data**  
**Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter            | Run #1<br>lb/hr.          | Run #2<br>lb/hr.          | Run #3<br>lb/hr.          | Average<br>lb/hr.         |
|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| TCDDs (total)        | < 1.9 x 10 <sup>-12</sup> | < 2.1 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> | < 2.0 x 10 <sup>-12</sup> |
| 2,3,7,8 -TCDD        | < 1.5 x 10 <sup>-12</sup> | < 9.8 x 10 <sup>-13</sup> | < 1.7 x 10 <sup>-12</sup> | < 1.4 x 10 <sup>-12</sup> |
| PeCDDs (total)       | < 2.0 x 10 <sup>-12</sup> | < 2.1 x 10 <sup>-12</sup> | < 3.1 x 10 <sup>-12</sup> | < 2.4 x 10 <sup>-12</sup> |
| 1,2,3,7,8-PeCDD      | < 2.0 x 10 <sup>-12</sup> | < 2.1 x 10 <sup>-12</sup> | < 3.1 x 10 <sup>-12</sup> | < 2.4 x 10 <sup>-12</sup> |
| HxCDDs (total)       | 4.7 x 10 <sup>-12</sup>   | 1.4 x 10 <sup>-11</sup>   | 2.8 x 10 <sup>-11</sup>   | 1.6 x 10 <sup>-11</sup>   |
| 1,2,3,6,7,8 -HxCDD   | < 1.6 x 10 <sup>-12</sup> | < 1.8 x 10 <sup>-12</sup> | < 4.5 x 10 <sup>-12</sup> | < 2.6 x 10 <sup>-12</sup> |
| 1,2,3,7,8,9 -HxCDD   | < 1.6 x 10 <sup>-12</sup> | 2.6 x 10 <sup>-12</sup>   | < 4.5 x 10 <sup>-12</sup> | < 2.9 x 10 <sup>-12</sup> |
| 1,2,3,4,7,8 -HxCDD   | < 1.6 x 10 <sup>-12</sup> | 2.1 x 10 <sup>-12</sup>   | < 4.5 x 10 <sup>-12</sup> | < 2.7 x 10 <sup>-12</sup> |
| HpCDDs (total)       | < 7.2 x 10 <sup>-12</sup> | < 7.8 x 10 <sup>-12</sup> | 1.4 x 10 <sup>-10</sup>   | < 5.2 x 10 <sup>-11</sup> |
| 1,2,3,4,6,7,8 -HpCDD | < 7.2 x 10 <sup>-12</sup> | 1.2 x 10 <sup>-11</sup>   | 9.6 x 10 <sup>-11</sup>   | < 3.8 x 10 <sup>-11</sup> |
| OCDD                 | < 5.0 x 10 <sup>-11</sup> | 9.4 x 10 <sup>-11</sup>   | 1.1 x 10 <sup>-9</sup>    | < 4.2 x 10 <sup>-10</sup> |

**Table 7**  
**Summary of Benzene and Formaldehyde Emissions Data**  
**Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter    | Run #1<br>lb/hr.       | Run #2<br>lb/hr.       | Run #3<br>lb/hr.       | Average<br>lb/hr.      |
|--------------|------------------------|------------------------|------------------------|------------------------|
| Benzene      | $< 3.8 \times 10^{-4}$ |
| Formaldehyde | $4.0 \times 10^{-2}$   | $5.5 \times 10^{-2}$   | $1.1 \times 10^{-1}$   | $6.8 \times 10^{-2}$   |

1.6 - 2

4.01 - 2

$2.7 \times 10^{-2}$

**Table 8**  
**Summary of Chloride and Trace Element Data**  
**Fuel Oil to Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter | mg/l   |
|-----------|--------|
| As        | < 0.1  |
| Be        | < 0.1  |
| Cd        | 0.35   |
| Cl        | < 45.0 |
| Cr        | 0.6    |
| Cu        | 1.6    |
| Hg        | 0.006  |
| Mn        | 0.3    |
| Ni        | < 0.2  |
| Pb        | 2.9    |
| Se        | < 0.2  |
| Zn        | 33.4   |

**Table 9**  
**Summary of Radionuclides Data**  
**Fuel Oil to Hot Oil Heater Stack**  
**Industrial Asphalt**  
**Fresno, California**  
**May 22-24, 1990**

| Parameter         | pico curie/l                  |
|-------------------|-------------------------------|
| Gross Alpha       | 0 ± 7                         |
| Gross Beta        | 0 ± 13                        |
| Gamma Scan:       |                               |
| K <sup>40</sup>   | (8.4 ± 7.8) x 10 <sup>2</sup> |
| Cs <sup>137</sup> | < 52                          |
| Ra <sup>226</sup> | < 111                         |
| Th <sup>226</sup> | < 87                          |
| Th <sup>232</sup> | < 216                         |

**INDUSTRIAL ASPHALT**  
**CRYSTALLINE SILICA**  
**SOURCE TEST REPORT**

# **REPORT OF FUGITIVE DUST MONITORING FOR CRYSTALLINE SILICA AT CALMAT FRESNO FACILITY**

## **INTRODUCTION**

From May 30 to June 27, 1990, personnel from Engineering-Science, Inc. (ES) conducted fugitive dust monitoring for crystalline silica at the following Calmat aggregate plants: Reliance, Fresno, Bakersfield, Pala, Mission Valley, Carol Canyon, Sloan Canyon, Durbin, Saticoy, Sun Valley, San Bernardino, and Palmdale. Grab samples of haul road, baghouse, and stock pile dust were collected in the months of May, June, July, August, and September by Calmat personnel at Fresno, Pala, Mission Valley, Carol Canyon, Sloan Canyon, Mojave and Colton. The samples were delivered to ES for analysis.

The monitoring was conducted at two locations at each plant. Sampling locations were usually the cone crusher and the screen that appear to generate the most dust. The ES testing technician was Mr. Rico Rivera. The grab samples were collected by Calmat personnel. The samples were taken at plant access roadsides, baghouse, and storage piles at the different facilities.

## **METHODOLOGY OF SAMPLING AND ANALYSIS AT FRESNO FACILITY**

### **I. Sampling Procedure**

#### **A. Fugitive Dust Monitoring**

High volume air samplers, with PM10 heads, properly located at the measurement site, drew a measured quantity of ambient air into a covered housing and through a tared polycarbonate filter during a 24 hour sampling period. Suspended particulates collected on the filter surface and were subsequently analyzed for crystalline silica content. The sample flow rate, collection times, and the increase in filter weight provided a measurement for the mass calculation.

#### **B. Grab Samples**

Grab samples of road haul dust were collected in jars from plant access roadsides. Grab samples of baghouse dust were collected in jars from the dryer/mixer baghouse at the industrial asphalt plant. No special equipment was used in grab sampling.

## **II. Analytical Procedure**

### **Free Crystalline Silica Analysis (NIOSH Method 7500)**

#### **Sample Preparation -**

The entire sample or an aliquot portion of the sample dust was suspended in 2-propanol and then agitated in an ultrasonic bath until all agglomerated particles were broken up. This suspension and all subsequent beaker washings were subjected to vacuum filtration through a 25mm silver membrane filter of  $0.45\mu\text{m}$  pore size. This filter was mounted on an x-ray diffraction (XRD) sample holder for analysis.

#### **Standards -**

Standards were prepared by suspending 10.00mg and 50.00mg of the standard material, each into a 1 liter volume of 2-propanol. These suspensions were agitated in an ultrasonic bath for 20 minutes each. Aliquots were pipetted out and vacuum filtered onto silver membrane filters to produce working standard filters of varying sample sizes (e.g. 20 $\mu\text{g}$ , 30 $\mu\text{g}$ , 50 $\mu\text{g}$ , 100 $\mu\text{g}$ , 250 $\mu\text{g}$ , etc.). These working standards were analyzed together with all samples and blanks.

#### **Analysis -**

Standards, samples, and blanks were qualitatively scanned from 10 to 80 degrees 2-theta by XRD. The areas under the peaks for each silica polymorph were measured over a long (e.g. 15 minute) scan time for each peak to allow low detection limits. The baseline measurements flanking each peak were taken in 1/2 of the peak scanning time.

#### **Calculations -**

Silica concentrations were calculated by comparing the intensity of the sample peak (corrected for background intensity and interferences) to the graph of standard intensities (also corrected for background intensity and interference). Concentration was calculated as the weight fraction of silica in total mass of particulate matter (particulates with diameter of less than  $10\mu\text{m}$ ) and reported in mg/kg.

## **QUALITY ASSURANCE**

### **I. Sample Custody**

A specific Chain-of-Custody procedure was used for this project. The elements of this plan include:

- Sample identification
- Sample labels
- Documentation
- Chain of Custody forms

The sequence of activities concerned with sample custody together with identification and tracking procedures are described below:

1. Filter preparation by laboratory, high volume sampler calibration and identification by tags and codes.
2. Filters issued to test team and master log filled out. Sample I.D. number stickers issued according to test identification code.
3. Filters recovered when a valid sample was obtained, accompanied by all field data sheets.
4. All samples returned to ES Pasadena laboratory with Chain-of-Custody form.
5. Samples examined at each transfer point for integrity and identity.

Upon completing the required analysis, the analyst returns the Chain-of-Custody form along with results to ES. All samples were accounted for by the ES Laboratory Supervisor and Project Manager. Each laboratory identifies samples in its own laboratory notebooks by the ES I.D. number as well as any internal identification. Notebooks were retained by each laboratory according to usual laboratory practices.

## II. Calibration Procedures

The calibration procedures are specific to each analytical procedure. Standards are prepared from the highest grade reagents available, using procedures specified in the methods.

## RESULTS

Analysis of all samples was performed by EMS Laboratories in South Pasadena. The results of the fugitive dust and grab sample testing are presented in Tables 1 and 2.

**TABLE 1**  
**SUMMARY OF RESULTS FOR ANALYSIS OF FUGITIVE DUST**  
**FOR CRYSTALLINE SILICA CONTENT**  
**AT CALMAT AGGREGATE PLANTS**  
**FROM MAY 30 TO JUNE 27, 1990**

| Source                           | Quartz  | Crystalline Silica (mg/kg) |           |
|----------------------------------|---------|----------------------------|-----------|
|                                  |         | Crystalobite               | Tridymite |
| Mission Valley Secondary Crusher | 275,690 | 3,750*                     | 3,750*    |
| Final Screen                     | 256,540 | 2,620*                     | 2,620*    |
| Carol Canyon Secondary Crusher   | 145,270 | 3,380*                     | 3,380*    |
| Secondary Screen                 | 169,740 | 4,060*                     | 4,060*    |
| Sloan Canyon Screen              | 64,900  | 6,500*                     | 6,500*    |
| Pala Primary Screen              | 24,100  | 6,020*                     | 6,020*    |
| Secondary Crus                   | 100,580 | 4,260*                     | 4,260*    |
| Fresno Secondary Crusher         | 56,620  | 4,480*                     | 4,480*    |
| Secondary Screen                 | 255,730 | 4,280*                     | 4,280*    |
| Palmdale Secondary Screen        | 260,400 | 4,260*                     | 4,260*    |
| Secondary Crusher                | 100,000 | 5,000*                     | 5,000*    |
| Bakersfield Secondary Crusher    | 191,720 | 23,000                     | 360*      |
| Primary Screen                   | 184,770 | 16,600                     | 830*      |
| San Bernardino Secondary Crusher | 186,000 | 18,770                     | 430*      |
| Primary Screen                   | 171,000 | 20,446                     | 2,970*    |
| Sun Valley Secondary Crusher     | 249,240 | 3,340*                     | 3,340*    |
| Primary Screen                   | 208,100 | 3,620*                     | 3,620*    |
| Reliance Secondary Crusher       | 164,180 | 7,460*                     | 7,460*    |
| Primary Screen                   | 160,340 | 4,180*                     | 4,180*    |
| Saticoy Secondary Crusher        | 193,000 | 3,510*                     | 3,510*    |
| Primary Screen                   | 168,420 | 5,260*                     | 5,260*    |
| Durbin Secondary Crusher         | 239,130 | 5,430*                     | 5,430*    |
| Secondary Screen                 | 231,680 | 4,830*                     | 4,830*    |

\* non-detected samples, value represents lower detection limit

**TABLE 2**  
**SUMMARY OF RESULTS FOR ANALYSIS OF ROAD, BAGHOUSE,**  
**AND STOCKPILE DUST**  
**FOR CRYSTALLINE SILICA CONTENT**  
**AT CALMAT PLANTS**  
**FROM MAY TO SEPTEMBER 1990**

| Source                                  | Quartz  | Crystalline Silica (mg/kg)         |           |
|-----------------------------------------|---------|------------------------------------|-----------|
|                                         |         | Crystalline Silica<br>Crystalobite | Tridymite |
| Mojave Iron Ore                         | 11,000  | 2,000*                             | 2,000*    |
| Clinker                                 | 3,000*  | 3,000*                             | 3,000*    |
| Limestone                               | 2,000*  | 2,000*                             | 2,000*    |
| Silica                                  | 430,000 | 3,000*                             | 3,000*    |
| Bissell Clay                            | 52,000  | 3,000*                             | 3,000*    |
| Baghouse Dust                           | 49,000  | 3,000*                             | 3,000*    |
| Kiln Feed                               | 50,000  | 3,000*                             | 3,000*    |
| Pacific Clay                            | 34,000  | 3,000*                             | 3,000*    |
| Shale                                   | 150,000 | 3,000*                             | 3,000*    |
| Colton Iron Ore                         | 86,000  | 3,000*                             | 3,000*    |
| Clinker                                 | 3,000*  | 3,000*                             | 3,000*    |
| Limestone                               | 3,000*  | 3,000*                             | 3,000*    |
| Silica                                  | 920,000 | 2,000*                             | 2,000*    |
| Baghouse Dust                           | 24,000  | 3,000*                             | 3,000*    |
| Kiln Feed                               | 69,000  | 3,000*                             | 3,000*    |
| Catalyst Fines                          | 3,000*  | 3,000*                             | 3,000*    |
| Shale                                   | 310,000 | 2,000*                             | 2,000*    |
| Mission Valley Solid                    | 140,000 | 2,000*                             | 2,000*    |
| Haul Road Dust                          | 120,000 | 3,000*                             | 3,000*    |
| Sloan Canyon Solid                      | 78,000  | 2,000*                             | 2,000*    |
| Haul Road Dust                          | 160,000 | 3,000*                             | 3,000*    |
| Carol Canyon Solid                      | 190,000 | 2,000*                             | 2,000*    |
| Haul Road Dust                          | 150,000 | 3,000*                             | 3,000*    |
| Pala Solid                              | 90,000  | 2,000*                             | 2,000*    |
| Haul Road Dust                          | 86,000  | 3,000*                             | 3,000*    |
| Fresno Industrial Asphalt Baghouse Dust | 250,000 | 2,000*                             | 2,000*    |
| Fresno Haul Road Dust                   | 160,000 | 2,000*                             | 2,000*    |

\* non-detected samples, value represents lower detection limit