

AP42 Section: 11.1

Reference Number: 385

**Title: Results Of The September 23, 1999 Air Emission
Compliance Test On The Monarch Paving
No. 10 Asphalt Plant Near Hager City, Wisconsin,**

Interpoll Laboratories, Circle Pines, MN,

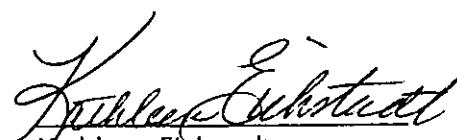
November 11, 1999.

Sec. 11.1
Ref. 385

Interpoll Laboratories, Inc.
4500 Ball Road NE
Circle Pines, Minnesota 55014-1819

TEL: (612) 786-6020
FAX: (612) 786-7854

**RESULTS OF THE SEPTEMBER 23, 1999
AIR EMISSION COMPLIANCE TEST
ON THE MONARCH PAVING
NO. 10 ASPHALT PLANT NEAR
HAGER CITY, WISCONSIN**


Submitted to:

Mathy Construction Company
920 10th Ave. N.
Onalaska, Wisconsin 54650

Attention:

Tara Wetzel

Approved by:

Kathleen Eickstadt
Department Coordinator
Field Services Department

Report Number 9-13517
November 11, 1999
KE/mn

TABLE OF CONTENTS

ABBREVIATIONS	iii
1 INTRODUCTION	1
2 SUMMARY AND DISCUSSION	3
3 RESULTS	7
3.1 Results of Orsat & Moisture Determinations	8
3.2 Results of Particulate Determinations	10
3.3 Results of Opacity Determinations	12
3.4 Results of Sulfur Dioxide Determinations	14
4 RESULTS OF FUEL ANALYSIS	16

APPENDICES:

- A - Preliminary Volumetric Flow Determination
- B - Location of Test Ports
- C - Field Data Sheets
- D - Interpoll Laboratories Analytical Results
- E - Computer Datalogger Printouts
- F - Gas Analyzer Specifications
- G - Measurement Systems Performance Specifications
- H - Calibration Gas Certification Sheets
- I - Process Rate Information
- J - Procedures
- K - Calculation Equations
- L - Sampling Train Calibration Data

ABBREVIATIONS

ACFM	actual cubic feet per minute
cc (ml)	cubic centimeter (milliliter)
DSCFM	dry standard cubic foot of dry gas per minute
DSML	dry standard milliliter
DEG-F (°F)	degrees Fahrenheit
DIA.	diameter
FP	finished product for plant
FT/SEC	feet per second
g	gram
GPM	gallons per minute
GR/ACF	grains per actual cubic foot
GR/DSCF	grains per dry standard cubic foot
g/dscm	grams per dry standard cubic meter
HP	horsepower
HRS	hours
IN.	inches
IN.HG.	inches of mercury
IN.WC.	inches of water
LB	pound
LB/DSCF	pounds per dry standard cubic foot
LB/HR	pounds per hour
LB/10 ⁶ BTU	pounds per million British Thermal Units heat input
LB/MMBTU	pounds per million British Thermal Units heat input
LTPD	long tons per day
MW	megawatt
mg/Nm ³	milligrams per dry standard cubic meter
ug/Nm ³	micrograms per dry standard cubic meter
microns (um)	micrometer
MIN.	minutes
ng	nanograms
ohm-cm	ohm-centimeter
PM	particulate matter
PPH	pounds per hour
PPM	parts per million
ppmC	parts per million carbon
ppm,d	parts per million, dry
ppm,w	parts per million, wet
ppt	parts per trillion
PSI	pounds per square inch
SQ.FT.	square feet
TPD	tons per day
ug	micrograms
v/v	percent by volume
w/w	percent by weight
<	≤ (when following a number)

Standard conditions are defined as 68°F (20°C) and 29.92 IN. of mercury pressure.

INTRODUCTION

On September 23, 1999 Interpoll Laboratories personnel conducted an air emission compliance test on the Monarch Paving Plant No. 10 located in Hager City, Wisconsin. The plant was tested while fired with waste oil. On-site testing was performed by Ed Juers, Scott Fjelsta and Doug Peterson. Coordination between testing activities and plant operation was provided by Tara Wetzel of Mathy Construction.

Particulate determinations were performed in accordance with EPA Methods 1 - 5, CFR Title 40, Part 60, Appendix A (revised July 1, 1999). A preliminary determination of the gas linear velocity profile was made before the first particulate determination to select the appropriate nozzle diameter for isokinetic sample withdrawal. An Interpoll Labs sampling train which meet or exceed specifications in the above-cited reference was used to extract particulate samples by means of heated glass-lined probes. A one hour opacity determination was run simultaneously with Run 1 in accordance with EPA Method 9.

The O₂, CO₂, SO₂ determinations were performed in accordance with CFR Title 40, Part 60 Appendix B (revised July 1, 1999). Evaluations were performed in accordance with EPA Methods 3A and 6C. For oxygen analysis, a slip stream of sample gas was withdrawn from the exhaust gas stream using test ports (provided by the plant) on the stack using a heat-traced probe and filter assembly. After passing through the filter, the gas passed through two condenser-type moisture removal systems operating in series. The particulate-free dry gas was then transported to the oxygen analyzer with the excess exhausted to the atmosphere through a calibrated orifice which was used to ensure that the flow from the stack exceeds the requirements of the analyzer. For SO₂ and CO₂ analysis, a dilution probe based system was used. In this system, a slip stream of exhaust gas is drawn from the exhaust gas stream using an EPM dilution probe. The sample stream is filtered and diluted (dilution during this test was 100:1) before delivery to the SO₂ and CO₂ analyzers. The analog response of the analyzers in both systems was recorded using a computer data logger and backed up with a strip chart recorder.

The O₂, SO₂, and CO₂ analyzers were calibrated with National Specialty Gases and Air Products and Chemicals standard gases. The instruments were calibrated before and after

each run as per EPA Method 3A and 6C. The sample probe was moved through a three-point traverse to measure sulfur dioxide concentrations.

Testing on the No. 10 Asphalt Plant Stack was conducted from eight test ports evenly spaced across the face of the stack. The ports are located 5.9 diameter equivalents downstream of the nearest flow disturbance and .96 diameter equivalents upstream of the stack exit. A 24-point traverse was used to collect representative particulate samples. Each traverse point was sampled 3.0 minutes to give a total sampling time of 72 minutes per run.

The important results of the test are summarized in Section 2. Detailed results are presented in Section 3. Field data and all other supporting information are presented in the appendices.

2 SUMMARY AND DISCUSSION

The important results of the air emission compliance tests are summarized in Tables 1-2. An overview of the results is presented below:

PARAMETER		LIMIT	MEASURED
NO.10 ASPHALT PLANT STACK			
PM			
DRY CATCH ONLY (GR/DSCF)	N/A	0.1777
 (LB/HR)	N/A	32.27
DRY + METHOD 202 (GR/DSCF)	N/A	0.1813
 (LB/HR)	N/A	32.89
Emission Rate (LB/KLB)	0.30	0.30
Sulfur Dioxide			
 (ppm,w)	N/A	1.87
 (LB/HR)	N/A	0.49
Opacity (%)	20%	5.00

No difficulties were encountered in the field by Interpoll Labs or in the laboratory evaluation of the samples which were conducted by Interpoll Labs. On the basis of these facts and a complete review of the data and results, it is our opinion that the results reported herein are accurate and closely reflect the actual values which existed at the time the test was performed.

SO2 EMISSIONS CALCULATIONS

Monarch Paving Plant #10

Sulfur in Burner Fuel

S = 0.36% by weight

Mass of Oil = 7.43 lb/gallon

Mass Flow of Sulfur Dioxide from the Burner

Average burner fuel flow = (288 + 324 + 324)gallons/hour / 3 = 312 gallons/hour.
312 gallons/hour x 7.43 lbs/gallon x .36/100 sulfur/oil x 2 SO2/S =
16.69 lbs SO2/hour generated in the plant drum by combustion.

Mass Flow of Sulfur Dioxide from the Plant Stack

0.49 lbs/hour

Sulfur Dioxide Capture Efficiency

EF = 100 x (Burner SO2 - Stack SO2) / Burner SO2

EF = **97.06** %

comp\plt\so2test

Table 1a Summary of the Results of the September 23, 1999 Particulate Emission Compliance Test on the Matthy/Monarch Paving No. 10 Asphalt Plant Located Near Hager City, Wisconsin.

ITEM	Run 1	Run 2	Run 3
Date of test	09-23-99	09-23-99	09-23-99
Time runs were done (HRS)	755 / 912	1130 / 1233	1255 / 1359
Volumetric flow actual standard	33783 (ACFM) 20666 (DSCFM)	36617 20879	37291 21766
Gas temperature (DEG-F)	227	258	245
Moisture content (%V/V)	17.77	19.96	19.48
Gas composition (%V/V, dry)			
carbon dioxide	3.97	4.54	4.54
oxygen	15.12	14.51	14.63
nitrogen	80.91	80.95	80.83
Isokinetic variation (%)	96.0	102.6	101.4
Particulate concentration actual standard	.0803 (GR/ACF) .0.131	0.113 0.198	0.125 0.215
Part. emission rate (LB/HR) (LB/KLB Flue Gas)	23.26 0.218	35.37 0.328	40.05 0.356

Note: Dry + Method 202 Condensible Particulate Material

Table 1b. Summary of the Results of the September 23, 1999 Particulate Emission Compliance Test on the Matthey/Monarch Paving No. 10 Asphalt Plant Located Near Hager City, Wisconsin.

ITEM	Run 1	Run 2	Run 3
Date of test	09-23-99	09-23-99	09-23-99
Time runs were done (HRS)	755 / 912	1130 / 1233	1255 / 1359
Volumetric flow actual standard	33783 (ACFM) 20666 (DSCFM)	36617 20879	37291 21766
Gas temperature (DEG-F)	227	258	245
Moisture content (%V/V)	17.77	19.96	19.48
Gas composition (%V/V,dry)			
carbon dioxide	3.97	4.54	4.54
oxygen	15.12	14.51	14.63
nitrogen	80.91	80.95	80.83
Isokinetic variation (%)	96.0	102.6	101.4
Particulate concentration actual standard	.0778 (GR/ACF) 0.127 (GR/DSCF)	0.111 0.195	0.123 0.211
Part. emission rate (LB/HR)	22.53	34.94	39.34

Note: Dry Catch Only

Table 2.

Summary of the Results of the Sulfur Dioxide Emission Compliance Tests on the No. 10 Asphalt Plant Stack.

Date	Time (HRS)	Concentration (ppm,w)	Emission Rate (LB/HR)
No. 10 Asphalt Plant			
9-23-99	0755-0857	2.07	0.52
9-23-99	1130-1233	2.07	0.54
9-23-99	1255-1358	1.47	0.40
	Avg	1.87	0.49

3 RESULTS

The results of all field and laboratory evaluations are presented in this section. Orsat (gas composition) and moisture is presented first followed by the computer printout of the particulate, sulfur dioxide and opacity results. Preliminary measurements including test port locations are given in the appendices.

The results have been calculated on a personal computer using programs written in Extended BASIC specifically for source testing calculations. EPA-published equations have been used as the basis of the calculation techniques in these programs. The emission rates have been calculated using the product of the concentration times flow method.

APPENDIX A

PRELIMINARY VOLUMETRIC FLOW DETERMINATION

Test No. 1
No. 10 Asphalt Plant Stack

Results of Volumetric Flow Rate Determination-----Method 2

Date of Determination.....	09-23-99
Time of Determination.....(HRS)	709
Barometric pressure.....(IN.HG)	28.99
Pitot tube coefficient.....	.84
Number of sampling ports.....	8
Total number of points.....	24
Shape of duct,.....	Rectangular
Duct width.....(IN)	23.75
Duct length.....(IN)	63.5
Duct area.....(SQ.FT)	10.47
Direction of flow.....	UP
Static pressure.....(IN.WC)	-.32
Avg. gas temp.....(DEG-F)	212
Moisture content.....(% V/V)	17.77
Avg. linear velocity.....(FT/SEC)	55.1
Gas density.....(LB/ACF)	.05381
Molecular weight.....(LB/LBMOLE)	29.24
Mass flow of gas.....(LB/HR)	111795
Volumetric flow rate.....	
actual.....(ACFM)	34623
dry standard.....(DSCFM)	21657

APPENDIX B

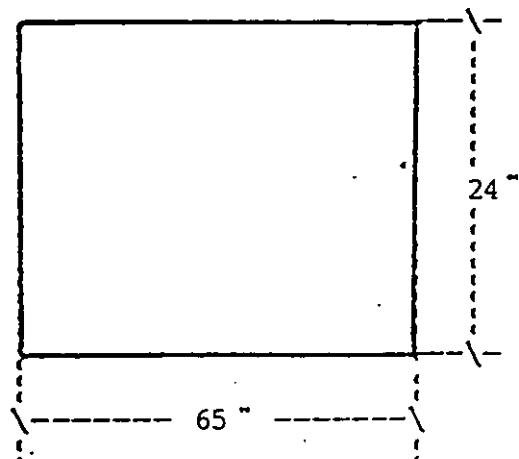
LOCATION OF TEST PORTS

SAMPLING SITE DETAIL

Plant #10

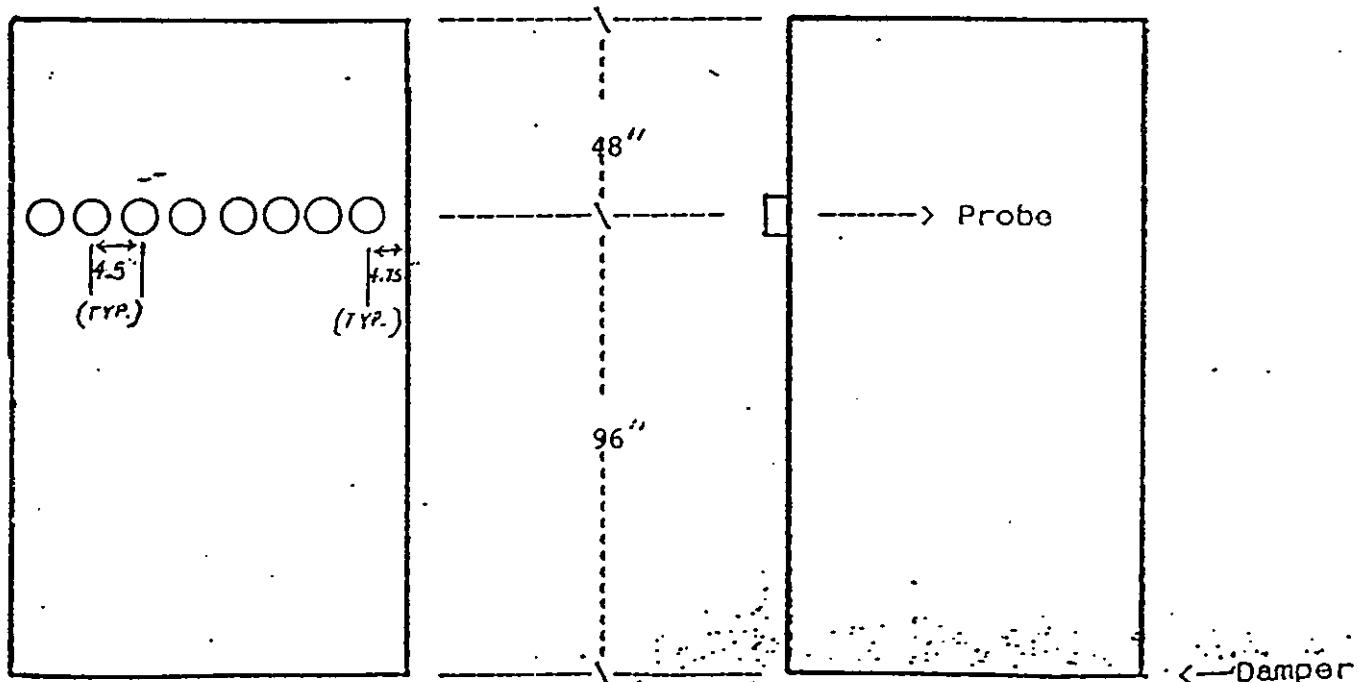
Stack Dimensions :

Width = 65 inches


Length = 24 inches

Equiv. Diameter = $\frac{2 \cdot L \cdot W}{(L + W)}$ = 35.06 inches

No. of Ports = 8 No. of Traverse Points = 24


Outside Port Spacing = 4.75 inches

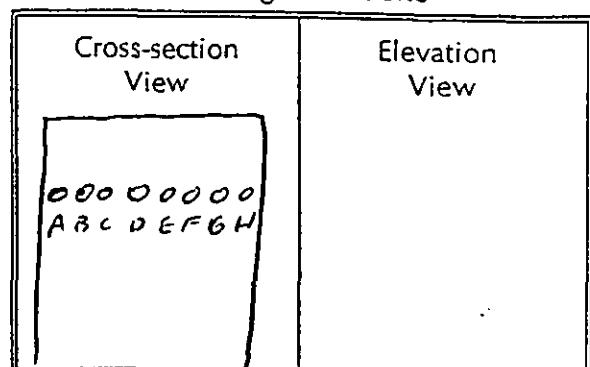
Inside Port Spacing = 4.5 inches

Point	Probe Mark	
1	4	**
2	12	"
3	20	"

** from stack wall

APPENDIX C

FIELD DATA SHEETS


INTERPOLL LABORATORIES, INC.

(612) 786-6020

EPA Method 2 Field Data Sheet

Job Mathy / Monarch Paving
 Source Plant #10 Stack
 Test 1 Run 0 Date 9-23-99
 Stack Dimen. 23.75 x 63.5 IN.
 Dry Bulb 70 °F Wet bulb 65 °F
 Manometer Reg. Exp Elec.
 Barometric Pressure 29.99 IN.HG
 Static Pressure - .32 IN.WC
 Operators E. Juers, Scott Fjelstad, Doug Peterson
 Pitot No. 400-24 C_p .870

Drawing of Test Site

Traverse Point No.	Fraction of Diameter	Distance From Stack Wall (IN.)	Distance From End of Port (IN.)	140 TPH Velocity	Temp. of Gas
		Port Length: <u>2.75</u>	IN.	Time Start: <u>0709</u>	HRS
A 1	<u>1/8</u>	<u>2.97</u>	<u>3.96</u>	<u>6.78</u>	<u>6.71</u>
2	<u>2/8</u>	<u>5.94</u>	<u>11.88</u>	<u>14.63</u>	<u>1.2</u>
3	<u>3/8</u>	<u>8.91</u>	<u>19.80</u>	<u>22.55</u>	<u>1.1</u>
B 1	<u>4/8</u>				<u>1.1</u>
2					<u>1.15</u>
3					<u>1.1</u>
C 1					<u>.90</u>
2					<u>.97</u>
3					<u>.98</u>
D 1					<u>.71</u>
2					<u>.83</u>
3					<u>.89</u>
E 1					<u>.56</u>
2					<u>.65</u>
3					<u>.79</u>
F 1					<u>.38</u>
2					<u>.49</u>
3					<u>.62</u>
G 1					<u>.31</u>
2					<u>.36</u>
3					<u>.44</u>
H 1					<u>.24</u>
2					<u>.27</u>
3					<u>.30</u>
				Avg <u>.73</u>	
Temp. Meas. Device & S/N: <u>PDT</u>				Time End:	HRS

R or nothing = reg. manometer; S = expanded; E = electronic

INTERPOLL LABORATORIES, INC.
 (612) 786-6020
 Interpoll Laboratories EPA Method 5/202 Sample Log Sheet

Job Mathy/Monarch Paving
 Source Plant #10 Stack
 Method 5/202

Date 9-23-99 Test 1 Run 1
 No. of traverse points 27
 Filter holder Glass Filter Type 4"GF

Sample train Leak Check:

Pretest: ≤ 0.02 cfm @ 15 in. Hg (vac)
 Post test 0 cfm @ 6 Hg (vac)

Particulate Catch Data

No. of filters used

1133

Recovery Solvents

Acetone ✓
 Others CHCl₃, H₂O

No. of probe wash bottles: 1
 Sample recovered by: ES

Condensate Data:

Item	Final	Weight (g)	Difference
		Tare	
Impinger No. 1			
Impinger No. 2	<u>739</u>	<u>581</u>	<u>158</u>
Impinger No. 3			
Condenser			
Desiccant	<u>1490</u>	<u>1478</u>	<u>12</u>
Total			<u>165</u>

EPA Method 202 Data:

pH of Impinger Catch: 5.5 Purge: N₂ Time: _____ Date: _____

Tare weight of imp catch jar: _____ g

Integrated Bag Sample: Plan Instrumental O₂ CO₂

Bag Pump No. _____

Bag Material 5-layer aluminized Tedlar

Pretest Leak Check: _____

Time Start: _____

Box No. _____ Bag No. _____

Size: 44L

cc/min @ _____ in.Hg

Time End: _____

S/N of O₂ Analyzer 11

EPA Method 5 Field Data Sheet

Job: Matthey/Monarch Piping
 Source: Plant #10 Stack
 Date: 9-23-92 Test / Run /

Operators: ESF
 Meter Box No. 141 A1@ 1.91 in.WC
 Gasmeter Coeff. 1.0019

Nozzle No. 20
 Nozzle Dia. .220 in.
 Bar. Press. 28.89 in-lb

Pilot No. 20
 C₄ .870
 H₂O .23

Traverse Point No.	Sampling Time (min)	Sample Vol. (cf)	Velocity Head (in.WC)	Orifice Meter (in.WC)	Des. Vol. (cf)	VAC. (in.Hg)	Temperatures (°F)				Gas/Out	Oxygen (% v/v)
							Slack	Probe	Oven	Imp.		
H 3	3	(0755)	(162.80)	██████████	██████████	██████████	██████████	██████████	██████████	██████████	██████████	██████████
H 2	6	163.99	.30	.41	3.86	2	215	227	261	42	79	79
H 1	9	164.93	.31	.42	4.95	2	217				78	79
H 0	12	165.16	.26	.35	5.94	2	217	233	271	45	78	79
F 3	15	167.57	.18	.65	7.29	2.5	217				79	79
F 2	18	168.93	.45	.60	8.59	2.5	222	237	270	49	79	78
F 1	21	170.13	.39	.52	9.79	2	225				80	79
F 0	24	171.96	.81	1.09	15.3	3.5	227	257	269	52	81	79
C 3	30	172.60	.81	1.08	3.07	3	226				81	79
C 2	33	172.31	.70	.94	7.75	3	227	261	267	55	81	79
C 1	36	172.76	.53	.71	9.16	3	228				81	79
C 0	39	181.46	.81	1.08	0.90	3.5	228	266	269	56	82	79
C 2	42	183.12	.84	1.12	2.66	3.5	232				82	79
C 1	45	184.76	.71	.95	9.29	4	230	263	267	54	82	79
C 0	48	186.53	.83	1.08	6.04	3.5	232				81	79
C 2	51	188.31	.89	1.11	7.80	3.5	230	261	266	55	83	79
C 1	54	189.96	.73	.97	9.43	3.5	231				83	79
B 3	57	192.23	.83	1.11	1.91	3.5	236	268	261	53	82	79
B 2	60	193.56	.89	1.18	3.03	3.54	237				82	79
B 1	63	193.20	.76	1.01	1.71	4	231	257	263	54	82	79
A 3	66	197.05	.82	1.09	6.46	4	231				82	79
A 2	69	198.90	.88	1.17	8.26	4	231	260	264	53	82	79
A 1	72	200.66	.73	.97	9.91		230				83	79
A 0	75	201.27										
V _m = 72		V _m = 37.86	ΔT = .88								Avg. = 80	██████████

INTERPOLL LABORATORIES, INC.

(612) 786-6020

Interpoll Laboratories EPA Method 5/202 Sample Log Sheet

Job Mathy / Monarch Paving
Source Plant #10 Stack
Method 5/202Date 9-23-99 Test 1 Run 2
No. of traverse points 24
Filter holder 61-45 Filter Type 4"CF

Sample train Leak Check:

Pretest: ≤ 0.02 cfm @ 15 in. Hg (vac)Post test 0 cfm @ 7.5 Hg (vac)

Particulate Catch Data

No. of filters used

114

Recovery Solvents

Acetone

Others

✓MeOH, H2O

No. of probe wash bottles:

Sample recovered by:

Condensate Data:

Item	Final	Weight (g)	Difference
		Tare	
Impinger No. 1	<u>61/683</u>	<u>532</u>	<u>106</u>
Impinger No. 2	<u>734</u>	<u>581</u>	<u>263</u>
Impinger No. 3	<u>404</u>	<u>295</u>	<u>109</u>
Condenser	<u>1445</u>	<u>1430</u>	<u>15</u>
Desiccant	<u>4460</u>	<u>1478</u>	<u>12</u>
Total			<u>106230</u>

EPA Method 202 Data:

pH of Impinger Catch: 5.5 Purge: NA Time: _____ Date: _____

Tare weight of imp catch jar: _____ g

Integrated Bag Sample:

Simultaneous Instrument

Bag Pump No. _____

Box No. _____ Bag No. _____

Bag Material 5-layer aluminized TedlarSize: 44L

Pretest Leak Check: _____

cc/min @

in. Hg

Time Start: _____

Time End _____

S/N of O2 Analyzer _____

11

EPA Method 5 Field Data Sheet

Job Methyl Monochloride
 Source Plant #10 Stack
 Date 9-23-99 Test 1 Run 2

No. EF5 SF 07 No. 9-4
 Meter Box No. 14 Alt. @ 1.91 in.WC
 Gasmeter Coeff. 1.019

No. EF5 SF 07 No. 9-4
 Nozzle Dia. .255 in.
 Bar. Press. 28.91 in.Hg

Pilot No. EF5-25 No. 9-4
 C_p 84 H₂O 26

Traverse Point No.	Sampling Time (min)	Sample Vol. (cf)	Velocity Head (in.WC)	Orifice Meter (in.WC)	Des. Vol. (cf)	VAC. (in.Hg)	Temperatures (°F)				Oxygen (% v/v)
							Slack	Probe	Oven	Imp.	
A 3	2.4	201.05	201.05	240	239	261	43	75	75	75	14.7
2	5	202.85	61	154	2.77	5	240	78	75	75	14.6
1	7.5	204.68	65	162	453	5	245	79	76	76	14.6
3	10	206.37	61	152	6.24	5	240	79	75	75	14.6
3	10	208.29	70	175	807	5.5	295	79	75	75	15.5
2	12.5	210.24	76	191	9.98	6	242	80	76	76	14.9
1	15	211.98	61	153	1.70	5.5	242	81	76	76	15.6
C 3	17.5	214.03	79	199	3.66	6	242	81	76	76	15.4
2	20	216.10	84	2.11	5.67	7	243	81	76	76	14.6
1	22.5	217.90	67	168	7.46	6	263	96	82	76	15.1
D 3	25	219.80	84	2.10	9.48	7	245	82	76	76	14.8
2	27.5	221.91	86	2.13	1.51	7	248	97	82	76	14.7
1	30	223.89	69	172	3.73	6	246	82	76	76	14.8
E 3	32.5	225.79	92	2.29	5.43	7	248	82	76	76	14.8
2	35	227.80	78	1.96	2.37	7	244	83	76	76	14.8
1	37.5	229.82	76	1.91	9.29	6.5	266	42	84	77	15.3
F 3	40	231.90	95	2.39	1.43	7.5	245	83	77	77	15.3
2	42.5	234.01	80	2.00	3.39	7	244	266	48	84	77
1	45	235.86	61	1.53	5.11	6	245	84	77	77	14.9
6	47.5	237.80	81	2.09	7.10	6.5	245	263	47	84	77
2	50	239.70	73	1.83	8.98	6	245	84	78	78	14.9
1	52.5	240.41	59	1.48	0.67	6	248	263	49	84	78
H 3	55	243.30	64	1.60	2.43	5	248	84	79	79	14.9
2	57.5	245.01	63	1.58	4.18	5	246	261	51	84	79
1	60	246.60	51	1.29	5.76	4	243	84	78	78	14.6
	123.3										
	0-60	V _m - 44.55			ΔH - 1.81						Avg. - 77.2

(612) 700-20

EPA Method 5 Field Data Sheet (6/12/2020)

Job Source Date Math/Research Paring
Plant #10 Stacke
7-23-99 Test / Run 3

Operators CJ SF
Meter Box No. CJ AH@ C91 in WC
Gasmeter Coeff 1.000

$$130^2 - 1440^2 = 188344 - 193600 = -5256$$

EPA

VISIBLE EMISSION OBSERVATION FORM 1

Method Used (Circle One)	203A	203B	Other _____
--------------------------	------	------	-------------

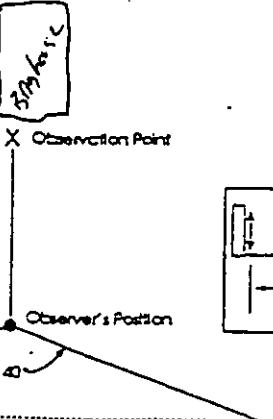
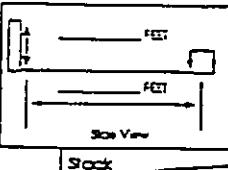
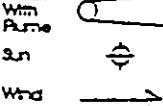
Company Name	MATHY PLANT NO. 10		
--------------	--------------------	--	--

Facility Name			
---------------	--	--	--

Street Address			
----------------	--	--	--

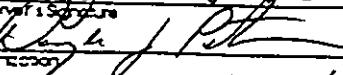
City	HAGAR CITY	State	WI
------	------------	-------	----

Process	ASPHALT PLANT	Unit #		Operating Mode
Control Equipment				Operating Mode




Describe Emission Point	Rectangular stack		
-------------------------	-------------------	--	--

Height of Emiss. Pt.	Height of Emiss. Pt. Rel. to Observer		
Start 35 FT	End 35 FT	Start 35 FT	End 35 FT
Distance to Emiss. Pt.	Direction to Emiss. Pt. (Degrees)		
Start 150 FT	End 150 FT	Start 0°N	End 0°N

Vertical Angle to Obs. Pt.	Direction to Obs. Pt. (Degrees)		
Start 15°	End 15°	Start 0°N	End 0°N
Distance and Direction to Observation Point from Emission Point			
Start 150 FT	0°N	End 150 FT	0°N


Describe Emissions			
Start high Velocity	End	Water Droplet Plume	
Emission Color	Attached <input type="checkbox"/> Detached <input checked="" type="checkbox"/> None <input type="checkbox"/>		
Start grey/yell/white	End		

Describe Plume Background			
Start overcast sky	End overcast sky		
Background Color	Sky Conditions		
Start Blue/Grey End	Start Grey	End Grey	DARKE
Wind Speed			
Start CALM	End 0-5 mph	Start 0°	End
Ambient Temp.	Wind Direction		
Start 58° F	End 60°	Start 0°	End
Wet Bulb Temp.		RH Percent	

Source Layout Sketch		Draw North Arrow
		<input type="checkbox"/> TN <input type="checkbox"/> MN
Latitude	Longitude	Direction
Sun Location Line		

Additional Information		
------------------------	--	--

Form Number	2030			
Continued on VEO Form Number				
Observation Date	Time Zone	Start Time	End Time	
9/23/99		0755		
Sec	0	15	30	45
Min				
1	0	5	0	5
2	0	0	0	0
3	0	10	0	5
4	5	5	5	0
5	0	5	5	5
6	5	10	5	0
7	0	0	5	0
8	0	0	5	0
9	0	5	0	5
10	5	10	5	5
11	0	10	0	5
12	0	5	5	5
13	0	5	0	0
14	0	5	5	0
15	5	0	5	0
16	5	0	0	5
17	0	10	5	5
18	5	5	5	5
19	0	5	0	0
20	0	0	0	0
21	0	10	0	0
22	5	5	15	5
23	5	5	6	5
24	0	5	5	10
25	5	5	5	0
26	0	10	5	5
27	10	5	0	5
28	5	5	5	10
29	5	0	10	5
30	0	0	0	5

Observer's Name (First)	Dengias J Peterson		
Observer's Signature			
Observer's Signature	9/23/99	Dec.	
Organization			
Tate-poll Labs			
Carried by	Easter-tch ASS		
	9/7/99	Dec.	

EPA

VISIBLE EMISSION OBSERVATION FORM 1

Method Used (Circle One)			
Method 9	203A	203B	Other: _____

Company Name _____

Facility Name _____

Street Address _____

City _____ State _____ Zip _____

Process _____ Unit # _____ Operating Mode _____

Control Equipment _____ Operating Mode _____

Describe Emission Points _____

Height of Emiss. Pt. _____ Height of Emiss. Pt. Rel. to Observer _____

Start _____ End _____ Start _____ End _____

Distance to Emiss. Pt. _____ Direction to Emiss. Pt. (Degrees) _____

Start _____ End _____ Start _____ End _____

Terminal Angle to Obs. Pt. _____ Direction to Obs. Pt. (Degrees) _____

Start _____ End _____ Start _____ End _____

Distance and Direction to Observation Point from Emission Points _____

Start _____ End _____

Describe Emissions _____

Start _____ End _____ Water Droplet Plume _____

Emission Color _____ Attached Detached None

Start _____ End _____

Describe Plume background _____

Start _____ End _____ Sky Conditions _____

Start _____ End _____ Start _____ End _____

Wind Speed _____ Wind Direction _____

Start _____ End _____ Start _____ End _____

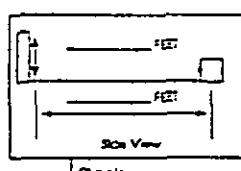
Ambient Temp. _____ Wet Bulb Temp. _____ RH Percent _____

Start _____ End _____

Source Layout Sketch

Draw North Arrow

 TN MN


X Observation Point

Observer's Position

Sun Location Line

Azimuth

Latitude

Stack
Wm
Rtme

Sun

Wind

Additional Information _____

Form Number	_____	_____	_____	_____	Or
Continued on VEO Form Number _____					

Observation Date _____ Time Zone _____ Start Time _____ End Time _____

Sec Min	0	15	30	45	Comments
1	0	5	20	15	↑
2	5	0	5	0	
3	0	5	0	0	Difficult to distinguish
4	0	0	5	0	Steam vs. Pollution
5	0	0	0	0	due to darker (grey) sky color.
6	5	5	10	10	
7	0	5	5	5	
8	0	5	0	0	
9	10	0	10	5	
10	0	5	5	5	
11	0	0	5	0	
12	15	0	5	0	↓
13	0	5	10	5	
14	5	5	10	5	
15	5	5	5	10	
16	0	5	0	0	
17	0	0	5	0	
18	5	5	0	5	
19	5	0	0	0	
20	0	0	0	0	
21	5	0	0	5	
22	0	0	5	0	
23	0	5	10	0	
24	0	0	5	0	
25	0	5	10	0	
26	5	5	0	5	
27	0	5	5	0	
28	0	5	0	0	
29	0	0	5	0	
30	5	0	5	0	

Observer's Name (P.T.):	_____
Observer's Signature:	_____
Observer's Occupation:	_____
Carried by:	_____

VISIBLE EMISSIONS• EVALUATOR

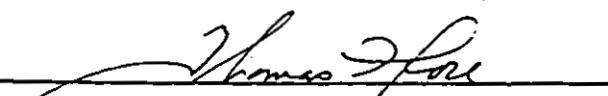
This is to certify that

Doug Peterson

met the specifications of Federal Reference Method 9 and qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates of Raleigh, North Carolina. This certificate is valid for six months from date of issue.

270123

Certificate Number


Minneapolis, Minnesota

Location

April 7, 1999

Date of Issue

President

Director of Training

APPENDIX D

INTERPOLL LABORATORIES ANALYTICAL DATA

See 9/27/99

Impinger Catch Data Reporting Sheet

Protocol: Minnesota Wisconsin Iowa
 Job: Mathy
 Date Submitted: 9/24/99
 Date of Analysis: 9/24/99

EPA Method 202 Other
 Source/Site: PLANT #10 / STACK
 Test No.: 1
 Technician: AKG / MKJ

		Solvent Phase	Aqueous Phase
Test: 1	Run: 0	Dish No: 029	Dish No: 100
Log No: 13517.09/13		Dish + Sample Wt: 52.5580	Dish + Sample Wt: 56.0668
Color & Appearance:		Dish Tare Wt: 52.5580	Dish Tare Wt: 56.0665
		Fraction Wt: 0.0000	Fraction Wt: 0.0003
Comments:		Smpl Vol: 300 ml, Alqt: 250 ml, Factor: 1.200	Smpl Vol: 300 ml, Alqt: 250 ml, Factor: 1.200
		Sample Wt: 0.0000	Sample Wt: 0.0004
Test: 1	Run: 1	Dish No: 060	Dish No: 757
Log No: 10/14		Dish + Sample Wt: 52.4156	Dish + Sample Wt: 50.8106
Color & Appearance:		Dish Tare Wt: 52.4105	Dish Tare Wt: 50.8067
		Fraction Wt: 0.0051	Fraction Wt: 0.0039
Comments:		Smpl Vol: 450 ml, Alqt: 400 ml, Factor 1.125	Smpl Vol: 450 ml, Alqt: 400 ml, Factor 1.125
		Sample Wt: 0.0057	Sample Wt: 0.0044
Test: 1	Run: 2	Dish No: 125	Dish No: 801
Log No: 11/15		Dish + Sample Wt: 52.2705	Dish + Sample Wt: 44.9883
Color & Appearance:		Dish Tare Wt: 52.2678	Dish Tare Wt: 44.9845
		Fraction Wt: 0.0027	Fraction Wt: 0.0038
Comments:		Smpl Vol: 500 ml, Alqt: 450 ml, Factor 1.111	Smpl Vol: 500 ml, Alqt: 450 ml, Factor 1.111
		Sample Wt: 0.0030	Sample Wt: 0.0042
Test: 1	Run: 3	Dish No: 135	Dish No: 938
Log No: 12/16		Dish + Sample Wt: 43.0145	Dish + Sample Wt: 43.6201
Color & Appearance:		Dish Tare Wt: 43.0132	Dish Tare Wt: 43.6110
		Fraction Wt: 0.0013	Fraction Wt: 0.0091
Comments:		Smpl Vol: 525 ml, Alqt: 475 ml, Factor 1.105	Smpl Vol: 525 ml, Alqt: 475 ml, Factor 1.105
		Sample Wt: 0.0014	Sample Wt: 0.0101

Note: Factor = Sample Volume/Aliquot Volume

Blank Solvent Wt: _____ g

	RUN 0	RUN 1	RUN 2	RUN 3
Results of Solvent Phase	g 0.0000	0.0057	0.0030	0.0014
Results of Aqueous Phase	D-1 g 0.0004	0.0040	0.0038	0.0097

INTERPOLL LABORATORIES, INC.

(612) 786-6020

GRAVIMETRICS DATA SHEET

Job Mathy Plant No. 10
 Date Collected 9/23/99
 Date of Analysis 9/27/99

Source No. 10 Stack
 Test No. 1
 Technician CGW

Probe Wash Data
 Solvent Used: Acetone

Filter Data
 Filter Type: GF

Run 0		Run 1	
Log # <u>13517-01</u>	Dish # <u>41</u>	Log # <u>13517-05</u>	Filter # <u>1048</u>
Volume <u>80</u> ml	Leakage <u>X</u> no, <u>yes</u>	Color	
Tare + Sample (g) <u>45.3190</u>		Tare + Sample (g) <u>0.8831</u>	
Tare (g) <u>45.3185</u>		Tare (g) <u>0.8828</u>	
Sample (g) <u>0.0005</u>		Sample (g) <u>0.0003</u>	
Run 2		Run 3	
Log # <u>-02</u>	Dish # <u>45</u>	Log # <u>-06</u>	Filter # <u>1133</u>
Volume <u>70</u> ml	Leakage <u>X</u> no, <u>yes</u>	Color	
Tare + Sample (g) <u>52.2542</u>		Tare + Sample (g) <u>1.0844</u>	
Tare (g) <u>52.1398</u>		Tare (g) <u>0.9017</u>	
Sample (g) <u>0.1144</u>		Sample (g) <u>0.1827</u>	
Run 0		Run 1	
Log # <u>-03</u>	Dish # <u>275</u>	Log # <u>-07</u>	Filter # <u>1134</u>
Volume <u>90</u> ml	Leakage <u>X</u> no, <u>yes</u>	Color	
Tare + Sample (g) <u>52.5712</u>		Tare + Sample (g) <u>1.3043</u>	
Tare (g) <u>52.4607</u>		Tare (g) <u>0.8641</u>	
Sample (g) <u>0.1105</u>		Sample (g) <u>0.4402</u>	
Run 1		Run 2	
Log # <u>-04</u>	Dish # <u>501</u>	Log # <u>-08</u>	Filter # <u>1047</u>
Volume <u>80</u> ml	Leakage <u>X</u> no, <u>yes</u>	Color	
Tare + Sample (g) <u>53.5254</u>		Tare + Sample (g) <u>1.4112</u>	
Tare (g) <u>53.4169</u>		Tare (g) <u>0.9067</u>	
Sample (g) <u>0.1085</u>		Sample (g) <u>0.5045</u>	

Note: Solvent residue must be less than 0.0000078 g/ml

0.1140 0.1099 0.1080

	Run 0	Run 1	Run 2	Run 3
Results of Filter + Probe Wash (g)		<u>0.2967</u>	<u>0.5501</u>	<u>0.6125</u>
Total Mass (g)				

Interpoll Laboratories, Inc.
(612) 786-6020

Due 4-27-99

Ion Chromatography Laboratory

DIONEX MODEL 4000I WITH ANION MICRO MEMBRANE SUPPRESSION

Analyst: KAB

Date of Analysis: 9/28/99

Job: Mathy

Source: Plant #10

Site: Stack

Chromatography Conditions

Column	Flow Rate	Eluent	Flow Rate	Suppressor Acid
AS3	ml/min	2.4 mM Na ₂ CO ₃ & 3.0 mM NaHCO ₃	ml/min	12.5 mM Sulfuric Acid
X AS4A	2 ml/min	1.8 mM Na ₂ CO ₃ & 1.7 mM NaHCO ₃	2 ml/min	SRS Setting 1
AS5	ml/min	100 mM NaOH	X	Isocratic
	ml/min			Gradient(List program below)

Gradient Program	Time (Min)	REVIEWED
Eluent	0.0	
* A		SEP 29 1999
* B		

Wayne O'Sullivan

Results of Sulfate Determination

Sample Name	Interpoll Log Number	Tot. Sample Volume (ml)	Dilution	Solution Conc. (ug/ml)	Total ug Sulfate	meq of Sulfate
T1R0	13517-09	300	100X	<0.025	<750	<0.0156
R1	-10	456	1	0.0433	1950	0.0406
R2	-11	500	1	0.0445	2220	0.0464
R3	-12	525	1	0.0318	1670	0.0348

Total ug = (Sample Vol.) x (Dilution) x (Solution Conc.)
meq = Total ug / 48000

INTERPOL LABORATORIES, INC.

(612) 786-6020

Sample Chain of Custody

Job No. 147 / Monarch Permy
Field Engineer E. J. SiersSource Site 44-10 Site Street
Date of Test 9-23-99 Test No. 1

No. Items	Sample Type	Analysis	Sequence No.	Comments
4	Probe Wash: <input checked="" type="checkbox"/> Acetone <input type="checkbox"/> MeCl ₂	<input type="checkbox"/> DI Water <input type="checkbox"/>	<input checked="" type="checkbox"/> EPA M-5 <input type="checkbox"/> EPA M-29	<input checked="" type="checkbox"/> EPA M-201A <input type="checkbox"/>
4	Filter: <input checked="" type="checkbox"/> 4" Glass <input type="checkbox"/> SS Thimble	<input type="checkbox"/> Pallflex <input type="checkbox"/> 2.5" Glass	<input checked="" type="checkbox"/> EPA M-5 <input type="checkbox"/> EPA M-29	<input checked="" type="checkbox"/> EPA M-17 <input type="checkbox"/>
6	Impingers: <input type="checkbox"/> DI Water <input type="checkbox"/> 3% H ₂ O ₂ <input type="checkbox"/> 1N NaOH <input type="checkbox"/> 2,4-DNPH	<input type="checkbox"/> H ₂ SO ₄ <input type="checkbox"/> HNO ₃ /H ₂ O ₂ <input type="checkbox"/> KMnO ₄ /H ₂ SO ₄ <input checked="" type="checkbox"/> HCl & Crusts	<input type="checkbox"/> MN Protocol <input checked="" type="checkbox"/> WI Protocol <input checked="" type="checkbox"/> EPA M-202 <input type="checkbox"/> EPA M6,8 <input type="checkbox"/> Acid Gases <input checked="" type="checkbox"/> Acid Gases	<input type="checkbox"/> IA Protocol <input type="checkbox"/> Formaldehyde <input checked="" type="checkbox"/> EPA M-29 <input type="checkbox"/> EPA M-26 <input type="checkbox"/>
—	Integrated Gas: <input type="checkbox"/> Tedlar Bag	<input type="checkbox"/>	<input type="checkbox"/> EPA M-3 <input type="checkbox"/>	<input checked="" type="checkbox"/> EPA M-10 <input type="checkbox"/>
—	Oxides of Nitrogen:		<input type="checkbox"/> EPA M-7A <input type="checkbox"/>	
1	Fuel Lab: <input checked="" type="checkbox"/> Fuel Sample	<input type="checkbox"/> Aggregate	<input type="checkbox"/> Per S-0163 <input type="checkbox"/> Waste	<input type="checkbox"/> EPA M-10 <input type="checkbox"/>
4	Particle Sizing: <input checked="" type="checkbox"/> sample /H ₂ O		<input type="checkbox"/> X-Ray Sgraph <input type="checkbox"/>	<input type="checkbox"/> Cascade Imp <input type="checkbox"/>
4	Miscellaneous:	<input checked="" type="checkbox"/> sample /H ₂ O	<input checked="" type="checkbox"/> m-202	<input type="checkbox"/> 13-16 <input type="checkbox"/>
Fuel Type: Coal: <input type="checkbox"/> Bituminous <input type="checkbox"/> Anthracite <input type="checkbox"/> Lignite		Wood: <input type="checkbox"/> Wood Waste <input type="checkbox"/> Dust <input type="checkbox"/> Bark	Oil: <input checked="" type="checkbox"/> sample Waste Oil <input type="checkbox"/> No. 2 <input type="checkbox"/> No. 6 <input type="checkbox"/>	Misc: <input type="checkbox"/> Natural Gas <input type="checkbox"/> RDF <input type="checkbox"/>
Relinquished by/Affiliation <i>John Siers</i>		Accepted by/Affiliation <i>John Siers</i>	Date <i>9-24-99</i>	

APPENDIX E
COMPUTER DATALOGGER PRINTOUTS

Mathy Constuction
Hager City, WI
Plant No. 10 Stack

9/23/99
Test 2 Run 1

VOLUMETRIC FLOW RATE
NUMBER OF SAMPLE POINTS

24

PT. NO.		DELTA P	SO. RT P	TEMP	TIME
1	A-1	.82	.906	226.8	7:55 AM
2	-2	.88	.938	226.8	
3	-3	.73	.854	226.8	
4	B-1	.76	.872	226.8	
5	-2	.89	.943	226.8	
6	-3	.83	.911	226.8	
7	C-1	.73	.854	226.8	
8	-2	.89	.943	226.8	
9	-3	.83	.911	226.8	
10	D-1	.71	.843	226.8	
11	-2	.84	.917	226.8	
12	-3	.81	.9	226.8	
13	E-1	.53	.728	226.8	
14	-2	.7	.837	226.8	
15	-3	.81	.9	226.8	
16	F-1	.47	.686	226.8	
17	-2	.63	.794	226.8	
18	-3	.81	.9	226.8	
19	G-1	.39	.624	226.8	
20	-2	.45	.671	226.8	
21	-3	.48	.693	226.8	
22	H-1	.26	.51	226.8	
23	-2	.31	.557	226.8	
24	-3	.3	.548	226.8	
AVERAGE		.661	.802	226.8	8:58 AM

<u>MOISTURE CONTENT</u>	<u>DATA</u>	<u>FLOW RATE</u>
METER VOLUME	37.86	STATIC PRESSURE
AVERAGE METER TEMP	80.	PITOT COEF.
GAS METER COEF. (Y)	1.0019	DUCT WIDTH(IN)
GAS METER DELTA H@	1.91	DUCT LENGTH(IN)
GRAMS OF WATER	165.	DUCT AREA (SQ.FT.)
BAROMETRIC PRESSURE	28.99	STACK DIA. (IN)
STANDARD METER VOLUME	36.096	STACK AREA (SQ.FT.)
MOISTURE CONTENT	17.716	MOLECULAR WEIGHT (DRY)
OXYGEN %	15.117	MOLECULAR WEIGHT (WET)
CO 2 %	3.967	STACK PRESSURE
STANDARD CFH	1,506,861	FEET PER SECOND
K STANDARD CFM	25.114	ACTUAL CFM
		DRY STANDARD CFM

Mathy Construction
Hager City, WI
Plant No. 10 Stack

9/23/99
Test 2 Run 1

FIELD CALCULATIONS

RAW DATA TABLE

INSTRUMENT	PPM OR %	ZERO	SPAN	GAS	C GAS	
O2 (dry)	15.4	0.02	11.11	10.9	15.12	dry
CO2 (wet)	3.3	0.02	11.18	11.1	3.26	wet
SO2 (wet)	4.2	2.20	88.90	89.8	2.07	wet
MOISTURE	17.72			STANDARD CFH	1,506,861	
FUEL FACTOR C				K STANDARD CFM	25.114	
DSCFM	20665.1					

RESULTS

O2 % (dry)	15.12	
CO2 % (dry)	3.97	
SO2 (dry)	2.52	SO2 LBS/HR
		.518
	Fo	1.458

Mathy Construction
Hager City, WI
Plant No. 10 Stack
9/23/99
Run 1

<u>Time</u>	<u>SO2 ppm, w</u>	<u>O2 %, d</u>	<u>CO2 %, w</u>
7:55 AM	5.4	15.6	3.2
7:56 AM	4.9	15.6	3.2
7:57 AM	5.2	15.5	3.2
7:58 AM	5.0	15.5	3.2
7:59 AM	5.2	15.6	3.2
8:00 AM	5.5	15.6	3.2
8:01 AM	5.3	15.6	3.2
8:02 AM	5.0	15.7	3.1
8:03 AM	4.6	15.7	3.1
8:04 AM	4.4	15.6	3.2
8:05 AM	4.3	15.6	3.2
8:06 AM	4.6	15.5	3.2
8:07 AM	5.5	15.5	3.2
8:08 AM	4.9	15.5	3.3
8:09 AM	4.3	15.2	3.4
8:10 AM	4.2	15.2	3.4
8:11 AM	4.1	15.2	3.4
8:12 AM	4.4	15.2	3.4
8:13 AM	4.8	15.2	3.4
8:14 AM	4.6	15.3	3.3
8:15 AM	4.0	15.6	3.1
8:16 AM	3.8	15.8	3.1
8:17 AM	4.0	15.8	3.1
8:18 AM	3.8	15.5	3.2
8:19 AM	5.2	15.3	3.4
8:20 AM	4.5	15.1	3.5
8:21 AM	4.4	15.2	3.4
8:22 AM	3.8	15.3	3.4
8:23 AM	4.0	15.5	3.2
8:24 AM	3.5	15.5	3.2
8:25 AM	3.8	15.5	3.2
8:26 AM	4.9	15.5	3.2
8:27 AM	4.7	15.5	3.2
8:28 AM	4.3	15.5	3.3
8:29 AM	3.9	15.5	3.3
8:30 AM	4.1	15.5	3.3
8:31 AM	4.0	15.5	3.2
8:32 AM	3.7	15.4	3.3
8:33 AM	4.3	15.4	3.3
8:37 AM	4.0	15.4	3.4

8:38 AM	3.8	15.2	3.4
8:39 AM	3.5	15.2	3.4
8:40 AM	3.8	15.2	3.4
8:41 AM	3.4	15.4	3.3
8:42 AM	3.2	15.6	3.2
8:43 AM	3.5	15.6	3.2
8:44 AM	3.8	15.5	3.2
8:45 AM	3.9	15.4	3.3
8:46 AM	4.4	15.2	3.4
8:47 AM	4.5	15.2	3.4
8:48 AM	4.1	15.2	3.4
8:49 AM	3.9	15.2	3.4
8:50 AM	3.5	15.2	3.4
8:51 AM	3.2	15.2	3.4
8:52 AM	3.5	15.3	3.4
8:53 AM	3.7	15.3	3.4
8:54 AM	3.6	15.2	3.4
8:55 AM	3.4	15.3	3.4
8:56 AM	3.4	15.3	3.4
8:57 AM	3.5	15.2	3.4
Average	4.2	15.4	3.3

Mathy Construction
Hager City, WI
Plant No. 10 Stack

9/23/99
Test 2 Run 2

VOLUMETRIC FLOW RATE
NUMBER OF SAMPLE POINTS

24

<u>PT. NO.</u>		<u>DELTA P</u>	<u>SQ. RT P</u>	<u>TEMP</u>	<u>TIME</u>
1	A-1	.61	.781	245.	11:30 AM
2	-2	.65	.806	245	
3	-3	.61	.781	245	
4	B-1	.61	.781	245	
5	-2	.76	.872	245	
6	-3	.7	.837	245	
7	C-1	.67	.819	245	
8	-2	.84	.917	245	
9	-3	.79	.889	245	
10	D-1	.69	.831	245	
11	-2	.86	.927	245	
12	-3	.84	.917	245	
13	E-1	.76	.872	245	
14	-2	.78	.883	245	
15	-3	.92	.959	245	
16	F-1	.61	.781	245	
17	-2	.8	.894	245	
18	-3	.95	.975	245	
19	G-1	.59	.768	245	
20	-2	.73	.854	245	
21	-3	.81	.9	245	
22	H-1	.51	.714	245	
23	-2	.63	.794	245	
24	-3	.64	.8	245	12:34 PM
AVERAGE		.723	.848	245.0	

<u>MOISTURE CONTENT</u>	<u>DATA</u>	<u>FLOW RATE</u>	
METER VOLUME	45.55	STATIC PRESSURE	-0.32
AVERAGE METER TEMP	79.2	PITOT COEF.	0.84
GAS METER COEF. (Y)	1.0019	DUCT WIDTH(IN)	23.75
GAS METER DELTA H AT	1.91	DUCT LENGTH(IN)	63.5
GRAMS OF WATER	230.	DUCT AREA (SQ.FT.)	10.4731
BAROMETRIC PRESSURE	28.99	STACK DIA. (IN)	0
STANDARD METER VOLUME	43.492	STACK AREA (SQ.FT.)	0.0000
MOISTURE CONTENT	19.941	MOLECULAR WEIGHT (DRY)	29.307
OXYGEN %	14.509	MOLECULAR WEIGHT (WET)	27.052
CO 2 %	4.543	STACK PRESSURE	28.966
STANDARD CFH	1,578,934	FEET PER SECOND	57.757
K STANDARD CFM	26.316	ACTUAL CFM	36293.92
		DRY STANDARD CFM	21067.94

Mathy Construction
Hager City, WI
Plant No. 10 Stack

9/23/99
Test 2 Run 2

FIELD CALCULATIONS

RAW DATA TABLE

<u>INSTRUMENT</u>	<u>PPM OR %</u>	<u>ZERO</u>	<u>SPAN</u>	<u>GAS</u>	<u>C GAS</u>	
O2 (dry)	14.8	0.01	11.12	10.9	14.51	dry
CO2 (wet)	3.7	0.12	11.05	11.1	3.64	wet
SO2 (wet)	3.7	1.70	88.44	89.8	2.07	wet
MOISTURE	19.94			STANDARD CFH		1,578,934
FUEL FACTOR C	0			K STANDARD CFM		26.316
DSCFM	21067.9					

RESULTS

O2 % (dry)	14.51		
CO2 % (dry)	4.54		
SO2 ppm (dry)	2.59	SO2 LBS/HR	.543

Fo 1.407

Mathy Construction
Hager City, WI
Plant No. 10 Stack
9/23/99
Run 2

<u>Time</u>	<u>SO2 ppm, w</u>	<u>O2 %, d</u>	<u>CO2 %, w</u>
11:30 AM	6.0	14.3	3.9
11:31 AM	4.8	14.3	4.0
11:32 AM	4.4	14.3	4.0
11:33 AM	4.2	14.3	4.0
11:34 AM	3.4	14.4	4.0
11:35 AM	4.6	14.4	4.0
11:36 AM	4.0	14.4	4.0
11:37 AM	3.9	14.6	3.8
11:38 AM	4.5	15.2	3.5
11:39 AM	3.8	15.2	3.4
11:40 AM	4.5	14.8	3.8
11:41 AM	4.0	14.5	3.9
11:42 AM	3.6	14.9	3.8
11:43 AM	3.8	15.5	3.3
11:44 AM	4.2	15.7	3.2
11:45 AM	3.6	15.6	3.2
11:46 AM	4.2	15.1	3.5
11:47 AM	5.1	14.6	3.8
11:48 AM	4.1	14.4	4.0
11:49 AM	3.8	14.5	3.9
11:50 AM	3.9	14.8	3.7
11:51 AM	4.3	14.9	3.6
11:52 AM	3.7	14.9	3.6
11:53 AM	3.4	14.7	3.7
11:54 AM	3.7	14.5	3.9
11:55 AM	3.8	14.4	3.9
11:56 AM	3.1	14.5	3.9
11:57 AM	3.2	14.4	3.9
11:58 AM	3.6	14.4	3.9
11:59 AM	2.9	14.5	3.9
12:00 PM	3.6	14.6	3.9
12:01 PM	3.4	14.9	3.7
12:02 PM	3.2	15.4	3.4
12:07 PM	4.1	15.0	3.5
12:08 PM	3.2	14.9	3.6
12:09 PM	4.1	14.9	3.6
12:10 PM	3.5	14.9	3.6
12:11 PM	3.6	14.7	3.8
12:12 PM	3.4	14.6	3.8
12:13 PM	3.4	14.6	3.7

12:14 PM	3.4	14.6	3.7
12:15 PM	3.3	14.6	3.8
12:16 PM	2.9	14.6	3.8
12:17 PM	3.4	14.6	3.8
12:18 PM	3.3	14.6	3.8
12:19 PM	2.9	14.7	3.7
12:20 PM	3.2	14.8	3.7
12:21 PM	3.2	15.1	3.5
12:22 PM	2.9	15.2	3.4
12:23 PM	3.3	15.1	3.5
12:24 PM	3.1	14.8	3.7
12:25 PM	3.1	14.8	3.7
12:26 PM	3.5	15.0	3.5
12:27 PM	3.4	15.3	3.4
12:28 PM	3.6	15.3	3.4
12:29 PM	3.1	15.1	3.5
12:30 PM	3.3	14.6	3.8
12:31 PM	2.8	14.3	3.9
12:32 PM	3.0	14.4	3.9
12:33 PM	3.3	15.3	3.4
Averages	3.7	14.8	3.7

Mathy Construction
Hager City, WI
Plant No. 10 Stack

9/23/99
Test 2 Run 3

VOLUMETRIC FLOW RATE
NUMBER OF SAMPLE POINTS

24

<u>PT. NO.</u>		<u>DELTA P</u>	<u>SQ. RT P</u>	<u>TEMP</u>	<u>TIME</u>
1	A-1	.89	.943	243.	12:55 PM
2	-2	.97	.985	243	
3	-3	.91	.954	243	
4	B-1	.86	.927	243	
5	-2	.98	.99	243	
6	-3	.89	.943	243	
7	C-1	.79	.889	243	
8	-2	.94	.97	243	
9	-3	.9	.949	243	
10	D-1	.71	.843	243	
11	-2	.87	.933	243	
12	-3	.88	.938	243	
13	E-1	.61	.781	243	
14	-2	.75	.866	243	
15	-3	.83	.911	243	
16	F-1	.49	.7	243	
17	-2	.63	.794	243	
18	-3	.76	.872	243	
19	G-1	.39	.624	243	
20	-2	.74	.86	243	
21	-3	.85	.922	243	
22	H-1	.55	.742	243	
23	-2	.64	.8	243	
25	-3	.63	.794	243	1:59 PM
AVERAGE		.769	.872	243.0	

<u>MOISTURE CONTENT</u>	<u>DATA</u>	<u>FLOW RATE</u>	
METER VOLUME	47.13	STATIC PRESSURE	-0.32
AVERAGE METER TEMP	81.4	PITOT COEF.	0.84
GAS METER COEF. (Y)	1.0019	DUCT WIDTH(IN)	23.75
GAS METER DELTA H AT	1.91	DUCT LENGTH(IN)	63.5
GRAMS OF WATER	230.	DUCT AREA (SQ.FT.)	10.47309
BAROMETRIC PRESSURE	28.99	STACK DIA. (IN)	0
STANDARD METER VOLUME	44.818	STACK AREA (SQ.FT.)	0
MOISTURE CONTENT	19.466	MOLECULAR WEIGHT (DRY)	29.312
OXYGEN %	14.632	MOLECULAR WEIGHT (WET)	27.11
CO 2 %	4.544	STACK PRESSURE	28.966
STANDARD CFH	1,624,375	FEET PER SECOND	59.251
K STANDARD CFM	27.073	ACTUAL CFM	37232.51
		DRY STANDARD CFM	21802.88

Mathy Construction
Hager City, WI
Plant No. 10 Stack

9/23/99
Test 2 Run 3

FIELD CALCULATIONS

RAW DATA TABLE

<u>INSTRUMENT</u>	<u>PPM OR %</u>	<u>ZERO</u>	<u>SPAN</u>	<u>GAS</u>	<u>C GAS</u>
O2 (dry)	14.9	0.00	11.10	10.9	14.63 dry
CO2 (wet)	3.7	0.12	10.98	11.1	3.66 wet
SO2 (wet)	3.3	1.90	87.69	89.8	1.47 wet
MOISTURE	19.47			STANDARD CFH	1,624,375
FUEL FACTOR C		0		K STANDARD CFM	27.073
DSCFM	21802.9				

RESULTS

O2 % (dry)	14.63		
CO2 % (dry)	4.54		
SO2 ppm (dry)	1.83	SO2 LBS/HR	.396

Fo 1.38

Mathy Construction
Hager City, WI
Plant No. 10 Stack
9/23/99
Run 3

<u>Time</u>	<u>SO2 ppm, w</u>	<u>O2 %, d</u>	<u>CO2 %, w</u>
12:55 PM	5.0	14.6	3.8
12:56 PM	5.2	14.6	3.8
12:57 PM	4.6	14.6	3.8
12:58 PM	4.3	14.6	3.8
12:59 PM	4.4	14.9	3.6
1:00 PM	4.4	15.1	3.5
1:01 PM	4.0	15.1	3.5
1:02 PM	4.3	14.9	3.6
1:03 PM	3.9	14.5	3.9
1:04 PM	3.6	14.4	3.9
1:05 PM	3.6	14.5	3.9
1:06 PM	3.8	15.1	3.5
1:07 PM	3.8	16.2	2.8
1:08 PM	3.6	16.4	2.8
1:09 PM	4.5	14.8	3.8
1:10 PM	4.1	14.2	4.1
1:11 PM	3.8	14.3	4.1
1:12 PM	3.3	14.8	3.7
1:13 PM	3.3	15.1	3.6
1:14 PM	3.3	15.1	3.5
1:15 PM	2.9	15.1	3.5
1:16 PM	2.9	15.1	3.6
1:17 PM	3.2	15.1	3.5
1:18 PM	3.0	15.0	3.6
1:19 PM	2.8	15.0	3.6
1:20 PM	3.1	15.0	3.6
1:21 PM	2.7	15.1	3.6
1:22 PM	3.1	15.1	3.6
1:23 PM	3.2	15.0	3.6
1:24 PM	3.3	15.0	3.5
1:29 PM	3.1	14.9	3.7
1:30 PM	2.7	15.2	3.5
1:31 PM	2.5	15.2	3.4
1:32 PM	2.5	15.2	3.5
1:33 PM	2.5	14.9	3.7
1:34 PM	2.7	14.6	3.8
1:35 PM	2.6	14.5	3.8
1:36 PM	3.1	14.5	3.9
1:37 PM	2.8	14.5	3.8
1:38 PM	3.6	14.6	3.9

1:39 PM	3.4	14.6	3.8
1:40 PM	3.2	14.9	3.6
1:41 PM	2.8	14.9	3.6
1:42 PM	2.7	15.0	3.6
1:43 PM	2.6	15.0	3.6
1:44 PM	2.5	14.9	3.7
1:45 PM	2.5	14.9	3.6
1:46 PM	2.8	14.9	3.6
1:47 PM	2.7	14.8	3.7
1:48 PM	3.4	14.5	3.8
1:49 PM	3.4	14.4	3.9
1:50 PM	3.5	14.4	4.0
1:51 PM	2.8	14.4	3.9
1:52 PM	2.5	14.5	3.9
1:53 PM	2.8	14.5	3.9
1:54 PM	2.9	14.6	3.8
1:55 PM	2.5	15.2	3.4
1:56 PM	2.7	15.4	3.4
1:57 PM	3.0	15.2	3.5
1:58 PM	3.0	14.9	3.7
Average=	3.3	14.9	3.7

APPENDIX F

GAS ANALYZER SPECIFICATIONS

INTERPOL LABORATORIES
4500 BALL ROAD N.E.
CIRCLE PINES, MN 55014-1819
(612) 786-6020

Servomex

1420
Oxygen Analyser
Instruction Manual

Ref: 01420/001A/0

Order as part No. 01420001A

was (7982-2842)

INTERPOL LABORATORIES
4500 BALL ROAD N.E.
CIRCLE PINES, MN 55014-1819
(612) 786-6020

1.3 Sampling System

The sampling system of the analyser includes a combination filter/automatic flow control device, designed to keep a constant flow of sample gas through the measuring cell for varying input pressures and to prevent the entrance of particulate matter into the measuring cell. Excess flow is vented to the by-pass.

1.4 Specification

Performance Specification (typical)

Repeatability: Better than $\pm 0.2\%$ O₂ under constant conditions.

Drift: Less than 0.2% O₂ per week under constant conditions. (Excluding variation due to barometric pressure changes; reading is proportional to barometric pressure.)

Outputs

Display: 3 1/2 digit LCD reading 0.0 to 100.0% oxygen with overrange capability.

Output: 0 to 1V (non-isolated) for 0 to 100% oxygen available on 'D' type connector located on the back panel of the instrument. Output impedance is less than 10 ohms.

Option: 4 - 20mA isolated, Max impedance 500 ohms.

Flow alarm output: Change over relay contact rated at 3A/115V ac, 1A/240V ac or 1A/28V dc. 4 sets of single pole changeover contacts. Alarm becomes active when sample gas flow through the analyser fails.

Sample requirements

Condition: Clean, dry gas with dew point 5 deg C below ambient temperature.

Inlet pressure: 0.5 to 3psig (3.5 to 21kPa). Inlet pressure changes within this range will change the reading by less than 0.1% O₂. May be operated up to 10psig (70kPa) with degraded stability.

Flowrate: 1.5 to 6 litres/minute approximately depending on sample pressure.

Filtering: 0.6 micron replaceable filter integral to the automatic flow control device.

Response time: Less than 15 secs. to 90% at an inlet pressure of 3psig (21kPa).

Inlet/vent connections: 1/4 inch OD tube (stainless steel) suitable for 6mm ID flexible tubing or 1/4 inch OD compression fittings.

Materials exposed to the sample: Stainless steel, Pyrex glass, brass, platinum, epoxy resin, Viton, polypropylene and glass fibre filter.

Physical Characteristics

Case: Steel and aluminium finished in epoxy powder paint.

Case classification: IP 20 (IEC 529) when fitted into the Servomex 1400 series 19 inch case.

Dimensions: See Figure 2.1.

Weight: 10Kg (22lb) approximately.

Electrical

AC Supply: 110 to 120V AC or 220 to 240V AC, +/-10%, 48 to 62Hz. Voltage selected by a voltage selector integral to the IEC supply plug.

Power required: 15VA maximum.

Environmental Limits

Operating ambient temperature: 0 to +40 deg C (32 to 104 deg F)

Storage temp. range: -20 to +70 deg C (-4 to 158 deg F)

Relative humidity: 0-85%, non-condensing.

SPECIFICATIONS FOR ACS MODEL 3300 CO₂ NDIR

Measuring principle	NDIR single beam method
Measurable gas components and measuring range	0 - 20%
Reproducibility	±0.5% of full scale
Stability	Zero drift; ±% of full scale/24H Span drift; ±% of full scale/24H
Noise	0.5% of full scale
Ambient temperature	-5 to 45°C
Ambient humidity	Less than 90% RH
Response time (90% of final reading)	Electrical system; 2 sec, 3 sec, 5 sec (selectable with connector) Response of actual gas; Within 15 sec (depending on cell length)
Indicator	100 linear division
Output signal	OUTPUT 1; DC 0 - 1 V OUTPUT 2; DC 0 - 10 mV or DC 0 - 100 mV or DC 0 - 1 V or DC 4 - 20 mA (Allowable load resistance 500Ω max.)
Linearity	Better than ±2% of full scale (when linearizer is used)
Power supply	AC 115 V ± 10%, 60 Hz

Power consumption	Approx. 30 VA
Materials of gas-contacting parts	Measuring cell; SUS304 Window; CaF ₂ Piping; Polyethylene
Sample gas flow rate	1 l/min ± 0.5 l/min
Sample gas temperature	0 to 55°C
Purging gas flow rate	1 l/min (to be flowed as occasion demands)
Warmup time	Approx. 2 hours
External dimensions	200 x 250 x 541 (H x W x D) mm
Weight	Approx. 11 kg
Finish Color	MUNSELL N1.5

Remarks: For combinations of measuring ranges for the dualcomponent analyzer, inquiry should be made to the manufacturer.

SPECIFICATIONS FOR SO₂ ANALYZER
WESTERN RESEARCH MODEL 721ATZ

Measuring principle	NDUV double beam method which uses 285 nm UV light for SO ₂ measurement and 585 nm visible light to compensate for contamination of all windows, detector drift or changes in the intensity of the radiation source
Range	SO ₂ : 0 - 500 ppm and 0 - 1000 ppm; but low range may be reduced to 0 - 100 ppm with full scale analog output; total dynamic range of 0 - 5000 ppm with 1 ppm readability
Accuracy	±2% f.s., worst case. Typically better than ±1% f.s.
Temperature drift	≤0.5% f.s./°C
Noise	0.5% of full scale, worst case
Ambient temperature	0 to 40 °C
Ambient humidity	Less than 100% RH
Response time (90% of final reading)	<5 seconds
Optical cell length	35 cm
Output signal	Panel display is digital - direct reading in ppm, w; output signal: 7 field-selectable potentiometric outputs of 1V, 2V, 5V, 10V DC and 100, 200, 500 mV DC. Two outputs per range are provided at the rear of the

instrument, standard. Unit equipped also with 4 - 20 mA

Interferences	No known interferences from O ₂ , CO ₂ , CO or hydrocarbons; internally compensated for NO interference
Linearity	±1.5% of full scale
Power supply	AC 115 V ± 10%, 60 Hz
Power consumption	Less than 575 watts
Electronic span value	Nominal 766 @ 77 °F and 29.92 in Hg
Sample gas flow	1.0 - 5.0 LPM to give desired response time
Sample gas temperature	0 to 40 °C
Warmup time	Approximately 30 minutes
External dimensions	7 x 19 x 22 (H x W x D) inch
Weight	40 LB

APPENDIX G

MEASUREMENT SYSTEMS PERFORMANCE SPECIFICATIONS

Calibration Error

Mathy Construction
Hager City, WI
Plant No. 10 Stack
9/23/99
Test 2

SO2 TEI Model 43B)

	Cylinder Value (ppm)	Analyzer Response (ppm)	Difference (ppm)	Span Value (ppm)	% of Span
Zero	0.00	2.13	2.13	150.00	1.42
Mid Level	89.80	88.53	1.27	150.00	0.85
High Level	134.00	133.81	0.19	150.00	0.13

CO2 (TEI Model 41H)

	Cylinder Value (ppm)	Analyzer Response (ppm)	Difference (ppm)	Span Value (ppm)	% of Span
Zero	0.00	0.12	0.12	20.00	0.60
Mid Level	11.10	11.45	0.35	20.00	1.75
High Level	16.60	16.72	0.12	20.00	0.60

O2 (Servomex Series 1400)

	Cylinder Value (ppm)	Analyzer Response (ppm)	Difference (ppm)	Span Value (ppm)	% of Span
Zero	0.00	0.11	0.11	25.00	0.44
Mid Level	10.90	11.11	0.21	25.00	0.84
High Level	21.00	21.04	0.04	25.00	0.16

**** All Calibrations must be within 2% of the span value...

Calibration Drift

Mathy Construction
Hager City, WI
Plant No. 10 Stack
9/23/99
Test 2

O2			CO2			SO2			
	Initial	Final	Avg.	Initial	Final	Avg.	Initial	Final	Avg.
1	Zero	0.03	0.01	0.02	1	Zero	0.12	0.12	0.12
	Upscale	11.08	11.14	11.11		Upscale	11.27	11.08	11.18
2	Zero	0.01	0.00	0.01	2	Zero	0.12	0.12	0.12
	Upscale	11.14	11.10	11.12		Upscale	11.08	11.01	11.05
3	Zero	0.00	0.00	0.00	3	Zero	0.12	0.12	0.12
	Upscale	11.10	11.10	11.10		Upscale	11.01	10.95	10.98

*** All Calibrations must be within 3% of the span value...

APPENDIX H

CALIBRATION GAS CERTIFICATION SHEETS

NATIONAL SPECIALTY GASES
 630 UNITED DRIVE
 DURHAM, NC
 27713

(919)544-3772

CERTIFICATE OF ANALYSIS • EPA PROTOCOL MIXTURES

REFERENCE #:	88-43277	CYLINDER #:	CC103657	CYL. PRESSURE:	2000 PSIG	P.O. #:	30756
EXP. DATE:	6/28/02	LAST ANALYSIS DATE:	6/28/99	CUSTOMER:	TWIN CITY OXYGEN		
METHOD:	ANALYZED ACCORDING TO EPA TRACABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS-SEPTEMBER 1991; G-1 THIS STANDARD SHOULD NOT BE USED WHEN ITS GAS PRESSURE IS BELOW 1.0 MEGAPASCALS (150 PSIG).						
COMPONENT:	OXYGEN						
STANDARD		COMPONENT:	CARBON DIOXIDE				
SRM #:	2658A	STANDARD					
CYL. #:	CAL 014513	SRM #:	1675B				
CONC.:	9.397%	CYL. #:	CAL 014623				
INSTRUMENT:	BECKMAN PARAMAGNETIC	INSTRUMENT:	ROSEMOUNT NDIR				
MODEL #:	755	MODEL #:	880A				
SERIAL #:	10011419	SERIAL #:	2000418				
LAST CAL.:	6/15/99	LAST CAL.:	6/3/99				
MEAN CONC.:	10.9%	+/-:	0.09 %	MEAN CONC.:	11.1%	+/-:	0.09 %
REPLICATE CONC.				REPLICATE CONC.:			
DATE:	6/28/99			DATE:	6/28/99		
10.9	%			11.1	%		
10.9	%			11.1	%		
10.9	%			11.1	%		
BALANCE GAS: NITROGEN							

REPLICATE DATA		REPLICATE DATA		REPLICATE DATA	
DATE:	6/28/99	DATE:	6/28/99	DATE:	6/28/99
Z	0	R	9.40	C	10.9
R	9.40	Z	0	C	10.9
Z	0	C	10.9	R	9.40

Z=ZERO C=CANDIDATE R=REFERENCE

APPROVED BY:

Richard Sykes
Richard Sykes

ANALYST:

THIS REPORT STATED ACCURATELY THE RESULTS OF THE INVESTIGATION MADE UPON THE MATERIAL SUBMITTED TO THE ANALYTICAL LABORATORY. EVERY EFFORT HAS BEEN MADE TO DETERMINE OBJECTIVELY THE INFORMATION REQUESTED; HOWEVER, IN CONNECTION WITH THIS REPORT, NATIONAL SPECIALTY GASES SHALL HAVE NO LIABILITY IN EXCESS OF ITS ESTABLISHED CHARGE FOR THE SERVICE. ASSAYED AT NATIONAL SPECIALTY GASES, 630 UNITED DRIVE, DURHAM, NC 27711 (919)544-3772

NATIONAL SPECIALTY GASES
630 UNITED DRIVE
DURHAM, NC

27713

(919)544-3772

CERTIFICATE OF ANALYSIS NPA PROTOCOL MIXTURES

REFERENCE #:	81-59504	CYLINDER #:	CC 4643J	CYL. PRESSURE:	2000 PSIG	P.O. #:	24599
EXP. DATE:	8/17/91	LAST ANALYSIS DATE:	8/17/91	CUSTOMER:	TWIN CITY OXYGEN		
METHOD: ANALYZED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF DAESEUS CALIBRATION STANDARDS-SEPTEMBER 1997-0-1 THIS STANDARD IS FUDGED.							
NOTE: BE USED WHEN ITS GAS PRESSURE IS BELOW 10 MERA PASCALS (150 PSIG).							
COMPONENT:	OXYGEN	COMPONENT:	CARBON DIOXIDE				
STANDARD		STANDARD					
SRM #:	2659A	SRM #:	1675D				
CYL. #:	CLN 6947	CYL. #:	CLM 6481				
CONC.:	20.72 %	CONC.:	14.01 %				
INSTRUMENT:	DECKMAN PARAMAGNETIC	INSTRUMENT:	ROSEMOUNT NDIR				
MODEL #:	715	MODEL #:	160A				
SERIAL #:	1001419	SERIAL #:	20000416				
LAST CAL. #:	8/16/91	LAST CAL. #:	8/9/91				
MEAN CONC.:	21.0 %	MEAN CONC.:	0.17 %	MEAN CONC.:	16.6 %	MEAN CONC.:	0.13 %
REPLICATE CONC.		REPLICATE CONC.		REPLICATE CONC.		REPLICATE CONC.	
DATE:	8/17/91	DATE:	8/17/91	DATE:	8/17/91	DATE:	8/17/91
21.0	%		16.6	%		16.6	%
21.0	%		16.7	%		16.6	%
21.1	%		16.6	%		16.6	%

BALANCE GAS: NITROGEN

REPLICATE DATA	REPLICATE DATA	REPLICATE DATA	REPLICATE DATA
DATE: 8/17/91	DATE: 8/17/91	DATE: 8/17/91	DATE: 8/17/91

ANALYST: *Richard Sibley*
This report is issued ACCORDING TO THE PROTOCOL FOR THE ANALYSIS OF THE MATERIAL SUBMITTED TO THE ANALYTICAL LABORATORY. EVERY EFFORT HAS BEEN MADE TO DETERMINE OBJECTIVELY THE INFORMATION REQUESTED. HOWEVER, IN COMPLIANCE WITH THE NATIONAL SPECIALTY GASES STANDARD FOR ANALYTICAL SERVICES, THE ESTABLISHED CHARGE FOR THE SERVICE, AS STATED AT: NATIONAL SPECIALTY GASES 600 UNITED DRIVE, DURHAM, NC 27713. (919)544-3772

For Technical Information Call
1-800-752-1597

Air Products and Chemicals, Inc. • 12722 S. Wentworth Avenue, Chicago, IL 60628

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer:

AIR PRODUCTS & CHEMICALS, INC.
373 CANTERBURY ROAD
SHAKOPEE MN 55379

Order No: CSS-838253-01
Batch No: 861-43720
PO: 26902
Release:

Cylinder No: SG9153312BAL
Bar Code No: DNN870
Cylinder Pressure*: 2000 psig
Certification Date: 12/15/97
Expiration Date: 12/15/99

CERTIFIED CONCENTRATION			REFERENCE STANDARDS			ANALYTICAL INSTRUMENTATION			
Component	Certified Concentration	Cylinder Number	Standard Type	Standard Concentration	Instrument Make/Model	Serial Number	Last Calibration	Measurement Principal	
SULFUR DIOXIDE	89.8±1.76 PPM	SG9137979	GM1S R	253.6 PPM	HORIBA VIA-510	85079208	12/04/97	NON DISPERITIVE INFRARED	
NITROGEN Balance Gas									

* STANDARD SHOULD NOT BE USED BELOW 150 PSIG

Analyst:

(16921)

Approved By:

James Laas

Richard Fry

Ph. No 320 0702

For Technical Information Call
1-800-752-1597

AIR
PRODUCTS

Air Products and Chemicals, Inc. * 12722 S. Wentworth Avenue, Chicago, IL 60628

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer:

AIR PRODUCTS & CHEMICALS, INC.
373 CANTERBURY ROAD
SHAKOPEE MN 55379

PO:
Release:

Order No: CSS-109413-01

Batch No: 861-52469

Cylinder No: SG9148857BAL
Bar Code No: DGG814
Cylinder Pressure*: 2000 psig
Certification Date: 01/05/1999
Expiration Date: 01/05/2001

CERTIFIED CONCENTRATION		REFERENCE STANDARDS			ANALYTICAL INSTRUMENTATION			
Component	Certified Concentration	Cylinder Number	Standard Type	Standard Concentration	Instrument Make/Model	Serial Number	Last Calibration	
SULFUR DIOXIDE	134 ±1.5 PPM	SG9151666BAL	GMIS R	252.9 PPM	KORIBA VIA-510	85079208	12/27/98	
NITROGEN	Balance Gas						NON DISPERSIVE INFRARED	

* STANDARD SHOULD NOT BE USED BELOW 150 PSIG

Analyst: James Laabs
116921

Approved By:

James Laabs
James Laabs

Richard Fry
Richard Fry

D.H. NC 2000 0000

APPENDIX I

PROCESS RATE INFORMATION

3.1 Results of Orsat and Moisture Determinations

Interpoll Labs Report No. 9-13517
Mathy-Monarch Paving
Hager City, Wisconsin

Test No. 1
No. 10 Asphalt Plant Stack

Results of Orsat & Moisture Analyses----Methods 3 & 4(%v/v)

Date of run	Run 1 09-23-99	Run 2 09-23-99	Run 3 09-23-99
-------------	-------------------	-------------------	-------------------

Dry basis (orsat)

carbon dioxide.....	3.97	4.54	4.54
oxygen.....	15.12	14.51	14.63
nitrogen.....	80.91	80.95	80.83

Wet basis (orsat)

carbon dioxide.....	3.26	3.63	3.66
oxygen.....	12.43	11.61	11.78
nitrogen.....	66.53	64.79	65.08
water vapor.....	17.77	19.96	19.48
Dry molecular weight.....	29.24	29.31	29.31
Wet molecular weight.....	27.24	27.05	27.11
Specific gravity.....	0.941	0.934	0.936
Water mass flow.....(LB/HR)	12527	14607	14772

FO	1.456	1.407	1.381
----	-------	-------	-------

3.2 Results of Particulate Determinations

Interpoll Labs Report No. 9-13517
 Mathy-Monarch Paving
 Hager City, Wisconsin

Test No. 1
 No. 10 Asphalt Plant Stack

Results of Particulate Loading Determinations-----Method 5

Date of run	Run 1 09-23-99	Run 2 09-23-99	Run 3 09-23-99
Time run start/end.....(HRS)	755/ 912	1130/1233	1255/1359
Static pressure.....(IN.WC)	-0.32	-0.32	-0.32
Cross sectional area (SQ.FT)	10.47	10.47	10.47
Pitot tube coefficient.....	.84	.84	.84
Water in sample gas			
condenser.....(ML)	0.0	0.0	0.0
impingers.....(GRAMS)	153.0	215.0	218.0
desiccant.....(GRAMS)	12.0	15.0	12.0
total.....(GRAMS)	165.0	230.0	230.0
Total particulate material..			
.....collected(grams)	0.3064	0.5569	0.6236
Gas meter coefficient.....	1.0019	1.0019	1.0019
Barometric pressure..(IN.HG)	28.99	28.99	28.99
Avg. orif.pres.drop..(IN.WC)	0.88	1.81	1.93
Avg. gas meter temp..(DEF-F)	80.0	79.2	81.4
Volume through gas meter....			
at meter conditions...(CF)	37.86	45.55	47.13
standard conditions.(DSCF)	36.00	43.48	44.82
Total sampling time....(MIN)	72.00	60.00	60.00
Nozzle diameter.....(IN)	.220	.255	.255
Avg.stack gas temp ..(DEG-F)	227	258	245
Volumetric flow rate.....			
actual.....(ACFM)	33783	36617	37291
dry standard.....(DSCFM)	20666	20879	21766
Isokinetic variation....(%)	96.0	102.6	101.4
Particulate concentration...			
actual.....(GR/ACF)	0.08030	0.11264	0.12526
dry standard.....(GR/DSCF)	0.13132	0.19763	0.21468
Particle mass rate...(LB/HR)	23.262	35.367	40.053

3.3 Results of Opacity Determinations

Test No. 1
 Asphalt Plant No. 10

RESULTS OF OPACITY OBSERVATIONS —————— EPA Method 9

MINUTE	SECONDS				SIX MINUTE AVERAGES
	0	15	30	45	
1	5	0	5		3.13
2	0	0	0		2.92
3	0	10	0	5	3.13
4	5	5	5	0	2.92
5	0	5	5	5	3.33
6	5	10	5	0	3.33
7	0	0	5	0	3.13
8	0	0	5	0	2.92
9	0	5	0	5	3.33
10	5	10	5	5	3.33
11	0	10	0	5	3.33
12	0	5	5	5	3.13
13	0	5	0	0	3.13
14	0	5	5	0	3.33
15	5	0	5	0	3.33
16	5	0	0	5	2.71
17	0	10	5	5	2.92
18	5	5	5	5	3.13
19	0	5	0	0	3.13
20	0	0	0	0	2.71
21	0	10	0	0	2.71
22	5	5	15	5	3.54
23	5	5	0	5	3.33
24	0	5	5	10	3.33
25	5	5	5	0	3.75
26	0	10	5	5	4.58
27	5	5	0	5	5.00
28	5	5	5	10	4.79
29	5	0	10	5	5.00
30	0	0	0	5	4.38
31	0	5	10	15	5.00
32	5	0	5	0	4.58
33	0	5	0	0	3.96
34	0	0	5	0	3.13
35	0	0	0	0	2.29
36	5	5	5	10	3.13
37	0	5	5	5	2.50
38	0	5	0	0	2.29
39	10	0	10	5	3.13
40	0	5	5	5	3.54
41	0	0	5	0	3.75
42	15	0	5	0	3.54
43	0	5	10	5	3.75
44	5	5	10	5	4.58
45	5	5	5	10	4.58
46	0	5	0	0	4.17
47	0	0	5	0	4.17
48	5	5	0	5	3.96
49	5	0	0	0	3.33
50	0	0	0	0	2.29
51	5	0	0	5	1.67
52	0	0	5	0	1.67
53	0	5	10	0	2.08
54	0	0	5	0	1.67
55	0	5	10	0	2.08
56	5	5	0	5	2.71
57	0	5	5	0	2.71
58	0	5	0	0	2.71
59	0	0	5	0	2.29
60	5	0	5	0	2.50

Average Opacity **3.19**
 Highest six-minute average **5.00**

Observer : Doug Peterson
 Cert Date : 4-7-99
 Date of Observation : 9-23-99
 Time of Observation : 0755-0855

3.4 Results of Sulfur Dioxide Determinations

Interpoll Labs Report No. 9-13517
Monarch Paving
Hager City, Wisconsin

Test No. 1
No. 10 Asphalt Plant Stack

Results of Sulfur Dioxide Determinations Method 6C

	Run 1	Run 2	Run 3
Date of run	9-23-99	9-23-99	9-23-99
Time run start/end (HRS)	0755-0855	1130-1230	1255-1355
Total sampling time (MIN)	60	60	60
Moisture content (%V/V)	17.72	19.94	19.47
Oxygen content (%V/V dry)	15.12	14.51	14.63
Volumetric flow rate (DSCFM)	20665	21068	21803
SO₂ concentration			
ppm wet	2.07	2.07	1.47
SO₂ emission rate (LB/HR)	0.52	0.54	0.40

4 RESULTS OF FUEL ANALYSIS

INTERPOLL LABORATORIES, INC.
(612)786-6020

Mathy Construction
Sample Log No. 13517-17

Results of Waste Oil Analysis

Source: Plant No. 10 Stack

Sample Description: Test 1

Sample Type: Waste Oil

Parameter	Units	Method	As Received
Gross heating value	BTU/LB	ASTM D240	18938
Sulfur	%	ASTM D129	0.36*
Ash	%	ASTM D482	0.59
Density	LB/GAL at 60°F	ASTM D1298	7.311
Specific gravity	60/60°F	ASTM D1298	0.8779

Respectfully submitted,

David J. Schneider, Manager
Chemistry Department

DJS/cg

*As requested by Mathy Construction, the sample was analyzed following the cited ASTM method. This method, however, is not applicable to the analysis of used oils.

OPERATING DATA SUMMARY FOR ASPHALT SOURCES

Form OAS01
June 1999Test Date(s): 9/23General Information: All blanks must be filled in, use N/A where appropriate, circle all that applyThis plant is: Portable [moved around for majority of year] Stationary [in one place for a majority of year] Plant Type: Batch Mix Parallel Flow Drum Counterflow Drum Continuous Mix
Other _____Pollution Control Equipment: Fabric Filter Multicloner
 Venturi Scrubber Wet Scrubber Cyclone
If wet scrubber: _____ % scrubber water recycledFuel, Material Processed, and Control Equipment Information:Itemize all fuels and materials added to the combustion process during the test period. List fuel type used during testing (if oil, specify type)
Waste Oil. If other units of measure are used, specify and calculate appropriate heat input.

What other types of fuel can be burned? _____

Test No.	Fuel Input (gal/hr)	Heat Content (Btu/gal-as received)	Heat Input (Btu/hr)	% - 200 fines	% Moisture of Virgin Aggregate Material
Run 1	288			6.7%	3.2
Run 2	324			5.6%	3.2
Run 3	324				3.2

Other Control Equipment Parameters	Design	During Testing
Cleaning Cycles (fabric filter)	6 sec.	
Air to Cloth Ratios (fabric filter)		
No. of spray bars and psi (scrubber)	N.A.	
No. of nozzles per spray bar (scrubber)	N.A.	
Water flow rate in gpm (scrubber)	N.A.	

Describe the location of the thermocouples reading exiting dryer and mix temperature: _____

Note:

- All information required must be completed and submitted as part of the performance test report. Failure to submit the required information will result in an incomplete performance test report.
- This form provides only a summary of the operating conditions during the performance test. Additional and more detailed records are required to meet the requirements of Minn. R. 7017.2035. This form is to be submitted as part of the performance test report to: North, Metro, or South District, Performance Test Coordinator, Minnesota Pollution Control Agency, 520 Lafayette Rd., St. Paul, MN 55155-4194.

June 1993

Time in 15 minute intervals	Virgin (V) Material tph	Asphalt (A) Material tph	Total Throughput (V+A) tph	Temp. of Gases Exiting Dryer °F	Hot Mix Temp. °F	Dust Collector ΔP inches w. c.	Water Flow Rate gpm	Water Supply Pressure psig
7:55	160	9.12	169.12	240	282	.13	7.0	
8:10	160	9.12	169.12	240	283	.13	7.0	
8:25	160	9.12	169.12	245	282	.15	7.0	
8:40	160	9.12	169.12	250	288	.14	7.0	
8:55	160	9.12	169.12	250	284	.14	7.0	
9:10	160	9.12	169.12	250	279	.15	7.0	
	160	10.00						
11:30	180	10.26	190.26	270	283	.14	7.0	
11:45	180	10.26	190.26	260	280	.16	7.0	
12:00	180	10.26	190.26	265	290	.16	7.0	
12:15	180	10.26	190.26	270	277	.15	7.0	
12:30	180	10.26	190.26	265	290	.16	7.0	
12:55	180	10.26	190.26	270	290	.16	7.0	
1:10	180	10.26	190.26	270	291	.15	6.5	
1:25	180	10.26	190.26	260	279	.15	6.5	
1:40	180	10.26	190.26	260	278	.16	6.5	
1:55	180	10.26	190.26	260	270	.17	6.5	

tph - tons per hour

°F-degrees Fahrenheit

ΔP - pressure drop

Temp.-Temperature
inches w. c.- inches of water column

gpm-gallons per minute

psig-pressure per square inch gauge

June 1993

Boeing Olash

USED OIL BURNER FUEL ANALYSIS RESULTS

As a burner of used oil, subject to EPA regulations Part 279, and additional individual state requirements, OSI Environmental, Inc. is providing the following analytical data which is representative of the burner fuel you are receiving.

OSI location: CNR Group 3
Date effective: September 2, 1999
Analysis # 13272

Constituency/ Property	Analysis Results
Arsenic	< 4 ppm
Cadmium	0 ppm
Chromium	1 ppm
Total Halogens	550 ppm
Lead	48 ppm
Flashpoint	> 200 F
Sulfur % by wgt.	0.29%
Ash % by wgt.	0.60%
Specific gravity	.8852
Acidity	Neutral
PCB's	Non-detect
BTU/gallon	136,846

These results should provide total assurance that OSI Environmental, Inc. is providing burner fuel that meets your requirements for burning, as well as those of the state and the EPA.

*** KANE-MAY ***
*** KM QUINTOX ***

DATE 09-23-99
TIME 11:46:09

HEAVY OIL

O2 % 11.5
CO ppm 44
Prs mBar 0.02
EFF % (G) 82.1
XAIR % 121
CO2 % 7.1

NO ppm ... 126
NO2 FAULT
NOx ppm ... 132
SO2 ppm 0

NETT .. F 285.6
FLUE .. F 354.0
INLT NOT FITTED
AMBIENT F 68.3

*** KANE-MAY ***
*** KM QUINTOX ***

DATE 09-23-99
TIME 13:15:49

HEAVY OIL

O2 % 12.8
CO ppm 49
Prs mBar 0.02
EFF % (G) 83.2
XAIR % 158
CO2 % 6.1

NO ppm ... 104
NO2 FAULT
NOx ppm ... 109
SO2 ppm 0

NETT .. F 225.5
FLUE .. F 287.7
INLT NOT FITTED
AMBIENT F 68.2

*** KANE-MAY ***
*** KM QUINTOX ***

DATE 09-23-99
TIME 13:15:49

HEAVY OIL

O2 % 11.0
CO ppm 47
Prs mBar 0.02
EFF % (G) 83.6
XAIR % 110
CO2 % 7.4

NO ppm ... 130
NO2 FAULT
NOx ppm ... 137
SO2 ppm 0

NETT .. F 261.9
FLUE .. F 338.6
INLT NOT FITTED
AMBIENT F 70.7

Environmental Programs Daily Tracking Form

Plant #: 10 Date: 9-23-99
 Location: Hager City
 Plant Foreman: Bernie

AIR QUALITY MONITORING

Production:

Total Asphalt Mix Tonnage: 1894.00

Diesel Fuel Gallons for Generator: _____

RAP % in mix: _____ RAP tons: _____

Mix Temperature (degrees F): 285

Hours of Operation: 11

Process fuel:

Fuel Type: Waste Oil Amt: 2912

Burner Pressure: 38 Fuel Temp: 150

Fuel Type: _____ Amt: _____

Burner Pressure: _____ Fuel Temp: _____

Spec. Sheet Delivered: ✓ yes _____ no

Baghouse:

Magnehelic dP: 7.0 16.5 inches of water

Photohelic dP: .15 inches of water

Optimum photohelic range from burner
tunc-up: .13 ~ .23 inches of water

Photohelic malfunction: _____ yes ✓ no

(If yes, next day DNR notification required)

Weekly Inspection of drum and door seals,
ducts, photohelic, damper, & other
system parts: ✓ yes _____ no

Maintenance Performed: Cleaned
Back of Drum + Burner
Head

50,000 ton Blacklight Baghouse Inspection:
✓ yes _____ no

Number of Bags Replaced: _____

Fugitive Dust Control:

Control Measures: ✓ yes _____ no

Water Amt. Applied: _____

Chemical Amt. Applied: _____

Speed Limit Control (mph): 5

Soil Remediation:

Soil Remediation Performed: ✓ yes ✓ no

Type: _____ commercial _____ own spill

Documented: _____ yes

(If yes, Complete Contaminated Soil

Tracking form and Monthly Soil
Remediation Summary form)

SPILL PREVENTION PLAN (SPCC)

Plant Inspection Conducted per SPCC

Inspection Outline (Attachment # 9)

✓ yes _____ no

Systems Locked out: ✓ yes _____ no

Petroleum Equipment Maintenance:

Cleaned Burning Oil
Strainer

Weekly SPCC Meeting: ✓ yes _____ no

Containment Water Released: ✓ yes ✓ no

(If yes, complete Water Drainage Form)

STORMWATER RUNOFF QUALITY

Best Mgmt. Practices (BMP) Applied: ✓ yes _____ no

Petroleum Products Secure: ✓ yes _____ no

Site Runoff Naturally Contained on Site:

✓ yes _____ no

If no, has containment been constructed:

_____ yes _____ no

Erosion Control Practices used (i.e. silt fence,
site seeding, slopes): Berm's

Rain Amount in last 24 hrs: _____ inches

Any known Petro. Contamination: ✓ yes ✓ no

Sediment Content:

✓ Low _____ Medium _____ High

(Water Containment Drainage

documentation is covered by SPCC)

To the best of my ability and to the extent that I am able to
observe under the conditions of this site, I have due diligently
completed this daily form. Signature means that the inspections
have been completed and any observed deficiencies have been
noted and communicated to the supervisors.

Plant Foreman's Signature:

Bernie Oreck

APPENDIX J

PROCEDURES

Particulate Loading and Emission Rates

The particulate emission rates were determined per EPA Methods 1 - 5, CFR Title 40, Part 60, Appendix A (revised July 1, 1992). In this procedure a preliminary velocity profile of the gases in the flue is obtained by means of a temperature and velocity traverse. On the basis of these values, sampling nozzles of appropriate diameter are selected to allow isokinetic sampling, a necessary prerequisite for obtaining a representative sample.

The sampling train consists of a heated glass-lined sampling probe equipped with a Type S pitot and a thermocouple. The probe is attached to a sampling module which houses the all-glass in line filter holder in a temperature controlled oven. The sampling module also houses the impinger case and a Drierite filled column. The sampling module is connected by means of an umbilical cord to the control module. The control module houses the dry test gas meter, the calibrated orifice, a leakless pump, two inclined manometers, and all controls required for operating the sampling train.

Particulate samples are collected as follows: The sample gas is drawn through the sampling probe isokinetically and passed through a 4-inch diameter Gelman Type A/E glass fiber filter where particulates are removed. The sample gas is then passed through an ice-cooled impinger train and a desiccant-packed column which absorbs remaining moisture. The sample gas then passes through a vacuum pump followed by a dry test gas meter. The gas meter integrates the sample gas flow throughout the course of the test. A calibrated orifice attached to the outlet of the gasmeter provides real time flow rate data.

A representative particulate sample was acquired by sampling for equal periods of time at the centroid of a number of equal area regions in the duct. The sampling rate is adjusted at each test point maintaining isokinetic sampling conditions. Nomographs are used for rapid determination of the sampling rate.

Particulate Loading and Emission Rates

When sampling is complete the filter is removed with tweezers and placed in a clean container. The nozzle, pitot tube and inlet side of the filter holder are quantitatively washed with acetone and the washings are stored in a second container. A brush is often used in the cleaning step to help dislodge deposits. The samples are returned to the laboratory where they are logged in and analyzed. The volume of the acetone rinse ("probe wash") is noted and the rinse is transferred to a tared 120 cc porcelain evaporating dish. The acetone is then evaporated off at 97 - 105 °F. At this elevated temperature condensation of atmospheric moisture is prevented. The acetone-free sample is then dried at 105 °C for 30 minutes, cooled in a desiccator over Drierite, and weighed to the nearest 0.01 mg. The filter sample is transferred to a 6 inch watch glass and dried at 105 °C for two hours. The filter and watch glass are then cooled in a desiccator and the filter weighed to the nearest 0.01 mg. All weighings are performed in a balance room where the relative humidity is maintained at less than 50%. Microscopic examination of the samples is performed if any unusual characteristics are observed. The weight of the acetone rinse blank is subtracted from the samples. The Drierite column is weighed on-site and the water absorbed by the Drierite is added to the condensate to give the total amount of absorbed water.

Method 3A—Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)

1. Applicability and Principle

1.1 Applicability. This method is applicable to the determination of oxygen (O_2) and carbon dioxide (CO_2) concentrations in emissions from stationary sources only when specified within the regulations.

1.2 Principle. A sample is continuously extracted from the effluent stream: a portion of the sample stream is conveyed to an instrumental analyzer(s) for determination of O_2 and CO_2 concentration(s). Performance specifications and test procedures are provided to ensure reliable data.

2. Range and Sensitivity

Same as Method 6C, Sections 2.1 and 2.2, except that the span of the monitoring system shall be selected such that the average O_2 or CO_2 concentration is not less than 20 percent of the span.

3. Definitions

3.1 Measurement System. The total equipment required for the determination of the O_2 or CO_2 concentration. The measurement system consists of the same major subsystems as defined in Method 6C, Sections 3.1.1, 3.1.2, and 3.1.3.

3.2 Span, Calibration Gas, Analyzer Calibration Error, Sampling System Bias, Zero Drift, Calibration Drift, Response Time, and Calibration Curve. Same as Method 6C, Sections 3.2 through 3.8, and 3.10.

3.3 Interference Response. The output response of the measurement system to a component in the sample gas, other than the gas component being measured.

4. Measurement System Performance Specifications

Same as Method 6C, Sections 4.1 through 4.4.

5. Apparatus and Reagents

5.1 Measurement System. Any measurement system for O_2 or CO_2 that meets the specifications of this method. A schematic of an acceptable measurement system is shown in Figure 6C-1 of Method 6C. The essential components of the measurement system are described below:

5.1.1 Sample Probe. A leak-free probe, of sufficient length to traverse the sample points.

5.1.2 Sample Line. Tubing, to transport the sample gas from the probe to the moisture removal system. A heated sample line is not required for systems that measure the O_2 or CO_2 concentration on a dry basis, or transport dry gases.

5.1.3 Sample Transport Line, Calibration Value Assembly, Moisture Removal System, Particulate Filter, Sample Pump, Sample Flow Rate Control, Sample Gas Manifold, and Data Recorder. Same as Method 6C, Sections 5.1.3 through 5.1.9, and 5.1.11, except that the requirements to use stainless steel, Teflon, and nonreactive glass filters do not apply.

5.1.4 Gas Analyzer. An analyzer to determine continuously the O₂ or CO₂ concentration in the sample gas stream. The analyzer shall meet the applicable performance specifications of Section 4. A means of controlling the analyzer flow rate and a device for determining proper sample flow rate (e.g., precision rotameter, pressure gauge downstream of all flow controls, etc.) shall be provided at the analyzer. The requirements for measuring and controlling the analyzer flow rate are not applicable if data are presented that demonstrate the analyzer is insensitive to flow variations over the range encountered during the test.

5.2 Calibration Gases. The calibration gases for CO₂ analyzers shall be CO₂ in N₂ or CO₂ in air. Alternatively, CO₂/SO₂, O₂/SO₂, or O₂/CO₂/SO₂ gas mixtures in N₂ may be used. Three calibration gases, as specified Section 5.3.1 through 5.3.3 of Method 6C, shall be used. For O₂ monitors that cannot analyze zero gas, a calibration gas concentration equivalent to less than 10 percent of the span may be used in place of zero gas.

6. Measurement System Performance Test Procedures

Perform the following procedures before measurement of emissions (Section 7).

6.1 Calibration Concentration Verification. Follow Section 6.1 of Method 6C, except if calibration gas analysis is required, use Method 3 and change the acceptance criteria for agreement among Method 3 results to 5 percent (or 0.2 percent by volume, whichever is greater).

6.2 Interference Response. Conduct an interference response test of the analyzer prior to its initial use in the field. Thereafter, recheck the measurement system if changes are made in the instrumentation that could alter the interference response (e.g., changes in the type of gas detector). Conduct the interference response in accordance with Section 5.4 of Method 20.

6.3 Measurement System Preparation, Analyzer Calibration Error, and Sampling System Bias Check. Follow Sections 6.2 through 6.4 of Method 6C.

7. Emission Test Procedure

7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and sampling points using the same criteria that are applicable to tests performed using Method 3.

7.2 Sample Collection. Position the sampling probe at the first measurement point, and begin sampling at the same rate as used during the sampling system bias check. Maintain constant rate sampling (i.e., ± 10 percent) during the entire run. The sampling time per run shall be the same as for tests conducted using Method 3 plus twice the system response time. For each run, use only those measurements obtained after twice the response time of the measurement system has elapsed to determine the average effluent concentration.

7.3 Zero and Calibration Drift Test. Follow Section 7.4 of Method 6C.

8. Quality Control Procedures

The following quality control procedures are recommended when the results of this method are used for an emission rate correction factor, or excess air determination. The tester should select one of the following options for validating measurement results:

8.1 If both O₂ and CO₂ are measured using Method 3A, the procedures described in Section 4.4 of Method 3 should be followed to validate the O₂ and CO₂ measurement results.

8.2 If only O₂ is measured using Method 3A, measurements of the sample stream CO₂ concentration should be obtained at the sample by-pass vent discharge using an Orsat or Fyrite analyzer, or equivalent. Duplicate samples should be obtained concurrent with at least one run. Average the duplicate Orsat or Fyrite analysis results for each run. Use the average CO₂ values for comparison with the O₂ measurements in accordance with the procedures described in Section 4.4 of Method 3.

8.3 If only CO₂ is measured using Method 3A, concurrent measurements of the sample stream CO₂ concentration should be obtained using an Orsat or Fyrite analyzer as described in Section 8.2. For each run, differences greater than 0.5 percent between the Method 3A results and the average of the duplicate Fyrite analysis should be investigated.

9. Emission Calculation

For all CO₂ analyzers, and for O₂ analyzers that can be calibrated with zero gas, follow Section 8 of Method 6C, except express all concentrations as percent, rather than ppm.

For O₂ analyzers that use a low-level calibration gas in place of a zero gas, calculate the effluent gas concentration using Equation 3A-1.

$$C_{gas} = \frac{C_{ma} - C_{oa}}{C_m - C_o} - (\bar{C} - C_m) + C_{ma} \quad Eq. 3A - 1$$

Where:

C_{gas} = Effluent gas concentration, dry basis, percent.
 C_{ma} = Actual concentration of the upscale calibration gas, percent.
 C_{oa} = Actual concentration of the low-level calibration gas, percent.
 C_m = Average of initial and final system calibration bias check responses for the upscale calibration gas, percent.
 C_o = Average of initial and final system calibration bias check responses for the low-level gas, percent.
 \bar{C} = Average gas concentration indicated by the gas analyzer, dry basis, percent.

10. Bibliography

Same as bibliography of Method 6C.

Method 6C—Determination of Sulfur Dioxide Emissions From Stationary Sources (Instrumental Analyzer Procedure)

1. Applicability and Principle

1.1 Applicability. This method is applicable to the determination of sulfur dioxide (SO_2) concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations.

1.2 Principle. A gas sample is continuously extracted from a stack, and a portion of the sample is conveyed to an instrumental analyzer for determination of SO_2 gas concentration using an ultraviolet (UV), nondispersive infrared (NDIR), or fluorescence analyzer. Performance specifications and test procedures are provided to ensure reliable data.

2. Range and Sensitivity

2.1 Analytical Range. The analytical range is determined by the instrumental design. For this method, a portion of the analytical range is selected by choosing the span of the monitoring system. The span of the monitoring system shall be selected such that the pollutant gas concentration equivalent to the emission standard is not less than 30 percent of the span. If at any time during a run the measured gas concentration exceeds the span, the run shall be considered invalid.

2.2 Sensitivity. The minimum detectable limit depends on the analytical range, span, and signal-to-noise ratio of the measurement system. For a well designed system, the minimum detectable limit should be less than 2 percent of the span.

3. Definitions

3.1 Measurement System. The total equipment required for the determination of gas concentration. The measurement system consists of the following major subsystems:

3.1.1 Sample Interface. That portion of a system used for one or more of the following: sample acquisition, sample transport, sample conditioning, or protection of the analyzers from the effects of the stack effluent.

3.1.2 Gas Analyzer. That portion of the system that senses the gas to be measured and generates an output proportional to its concentration.

3.1.3 Data Recorder. A strip chart recorder, analog computer, or digital recorder for recording measurement data from the analyzer output.

3.2 Span. The upper limit of the gas concentration measurement range displayed on the data recorder.

3.3 Calibration Gas. A known concentration of a gas in an appropriate diluent gas.

3.4 **Analyzer Calibration Error.** The difference between the gas concentration exhibited by the gas analyzer and the known concentration of the calibration gas when the calibration gas is introduced directly to the analyzer.

3.5 **Sampling System Bias.** The difference between the gas concentrations exhibited by the measurement system when a known concentration gas is introduced at the outlet of the sampling probe and when the same gas is introduced directly to the analyzer.

3.6 **Zero Drift.** The difference in the measurement system output reading from the initial calibration response at the zero concentration level after a stated period of operation during which no unscheduled maintenance, repair, or adjustment took place.

3.7 **Calibration Drift.** The difference in the measurement system output reading from the initial calibration response at a mid-range calibration value after a stated period of operation during which no unscheduled maintenance, repair, or adjustment took place.

3.8 **Response Time.** The amount of time required for the measurement system to display 95 percent of a step change in gas concentration on the data recorder.

3.9 **Interference Check.** A method for detecting analytical interferences and excessive biases through direct comparison of gas concentrations provided by the measurement system and by a modified Method 6 procedure. For this check, the modified Method 6 samples are acquired at the sample by-pass discharge vent.

3.10 **Calibration Curve.** A graph or other systematic method of establishing the relationship between the analyzer response and the actual gas concentration introduced to the analyzer.

4. Measurement System Performance Specifications

4.1 **Analyzer Calibration Error.** Less than \pm 2 percent of the span for the zero, mid-range, and high-range calibration gases.

4.2 **Sampling System Bias.** Less than \pm 5 percent of the span for the zero, and mid— or high-range calibration gases.

4.3 **Zero Drift.** Less than \pm 3 percent of the span over the period of each run.

4.4 **Calibration Drift.** Less than \pm 3 percent of the span over the period of each run.

4.5 **Interference Check.** Less than \pm 7 percent of the modified Method 6 result for each run.

5. Apparatus and Reagents

5.1 **Measurement System.** Any measurement system for SO₂ that meets the specifications of this method. A schematic of an acceptable measurement system is shown in Figure 6C-1. The essential components of the measurement system are described below:

5.1.1 Sample Probe. Glass, stainless steel, or equivalent, of sufficient length to traverse the sample points. The sampling probe shall be heated to prevent condensation.

5.1.2 Sample Line. Heated (sufficient to prevent condensation) stainless steel or Teflon tubing, to transport the sample gas to the moisture removal system.

5.1.3 Sample Transport Lines. Stainless steel or Teflon tubing, to transport the sample from the moisture removal system to the sample pump, sample flow rate control, and sample gas manifold.

5.1.4 Calibration Valve Assembly. A three-way valve assembly, or equivalent, for blocking the sample gas flow and introducing calibration gases to the measurement system at the outlet of the sampling probe when in the calibration mode.

5.1.5 Moisture Removal System. A refrigerator-type condenser or similar device (e.g., permeation dryer), to remove condensate continuously from the sample gas while maintaining minimal contact between the condensate and the sample gas. The moisture removal system is not necessary for analyzers that can measure gas concentrations on a wet basis; for these analyzers, (1) heat the sample line and all interface components up to the inlet of the analyzer sufficiently to prevent condensation, and (2) determine the moisture content and correct the measured gas concentrations to a dry basis using appropriate methods, subject to the approval of the Administrator. The determination of sample moisture content is not necessary for pollutant analyzers that measure concentrations on a wet basis when (1) a wet basis CO₂ analyzer operated according to Method 3A is used to obtain simultaneous measurements, and (2) the pollutant/CO₂ measurements are used to determine emissions in units of the standard.

5.1.6 Particulate Filter. An in-stack or heated (sufficient to prevent water condensation) out-of-stack filter. The filter shall be borosilicate or quartz glass wool, or glass fiber mat. Additional filters at the inlet or outlet of the moisture removal system and inlet of the analyzer may be used to prevent accumulation of particulate material in the measurement system and extend the useful life of the components. All filters shall be fabricated of materials that are nonreactive to the gas being sampled.

5.1.7 Sample Pump. A leak-free pump, to pull the sample gas through the system at a flow rate sufficient to minimize the response time of the measurement system. The pump may be constructed of any material that is nonreactive to the gas being sampled.

5.1.8 Sample Flow Rate Control. A sample flow rate control valve and rotameter, or equivalent, to maintain a constant sampling rate within 10 percent.

(Note: The tester may elect to install a back-pressure regulator to maintain the sample gas manifold at a constant pressure in order to protect the analyzer(s) from over pressurization, and to minimize the need for flow rate adjustments.)

5.1.9 Sample Gas Manifold. A sample gas manifold, to divert a portion of the sample gas stream to the analyzer, and the remainder to the by-pass discharge vent. The sample gas manifold should also include provisions for introducing calibration gases directly to the analyzer. The manifold may be constructed of any material that is nonreactive to the gas being sampled.

5.1.10 Gas Analyzer. A UV or NDIR absorption or fluorescence analyzer, to determine continuously the SO₂ concentration in the sample gas stream. The analyzer shall meet the applicable performance specifications of Section 4. A means of controlling the analyzer flow rate and a device for determining proper sample flow rate (e.g., precision rotameter, pressure gauge downstream of all flow controls, etc.) shall be provided at the analyzer.

(Note: Housing the analyzer(s) in a clean, thermally-stable, vibration-free environment will minimize drift in the analyzer calibration.)

5.1.11 Data Recorder. A strip chart recorder, analog computer, or digital recorder, for recording measurement data. The data recorder resolution (i.e., readability) shall be 0.5 percent of span. Alternatively, a digital or analog meter having a resolution of 0.5 percent of span may be used to obtain the analyzer responses and the readings may be recorded manually. If this alternative is used, the readings shall be obtained at equally spaced intervals over the duration of the sampling run. For sampling run durations of less than 1 hour, measurements at 1—minute intervals or a minimum of 30 measurements, whichever is less restrictive, shall be obtained. For sampling run durations greater than 1 hour, measurements at 2—minute intervals or a minimum of 96 measurements, whichever is less restrictive, shall be obtained.

5.2 Method 6 Apparatus and Reagents. The apparatus and reagents described in Method 6, and shown by the schematic of the sampling train in Figure 6C-2, to conduct the interference check.

5.3 SO₂ Calibration Gases. The calibration gases for the gas analyzer shall be SO₂ in N₂ or SO₂ in air. Alternatively, SO₂/CO₂, SO₂/O₂, or SO₂/CO₂/O₂ gas mixtures in N₂ may be used. For fluorescence-based analyzers, the O₂ and CO₂ concentrations of the calibration gases as introduced to the analyzer shall be within 1 percent (absolute) O₂ and 1 percent (absolute) CO₂ of the O₂ and CO₂ concentrations of the effluent samples as introduced to the analyzer. Alternatively, for fluorescence-based analyzers, use calibration blends of SO₂ in air and the nomographs provided by the vendor to determine the quenching correction factor (the effluent O₂ and CO₂ concentrations must be known). Use three calibration gases as specified below:

5.3.1 High-Range Gas. Concentration equivalent to 80 to 100 percent of the span.

5.3.2 Mid-Range Gas. Concentration equivalent to 40 to 60 percent of the span.

5.3.3 Zero Gas. Concentration of less than 0.25 percent of the span. Purified ambient air may be used for the zero gas by passing air through a charcoal filter, or through one or more impingers containing a solution of 3 percent H₂O₂.

6. Measurement System Performance Test Procedures

Perform the following procedures before measurement of emissions (Section 7).

6.1 Calibration Gas Concentration Verification. There are two alternatives for establishing the concentrations of calibration gases. Alternative Number 1 is preferred.

6.1.1 Alternative Number 1—Use of calibration gases that are analyzed following the Environmental Protection Agency Traceability Protocol Number 1 (see Citation 1 in the Bibliography). Obtain a certification from the gas manufacturer that Protocol Number 1 was followed.

6.1.2 Alternative Number 2—Use of calibration gases not prepared according to Protocol Number 1. If this alternative is chosen, obtain gas mixtures with a manufacturer's tolerance not to exceed \pm 2 percent of the tag value. Within 6 months before the emission test, analyze each of the calibration gases in triplicate using Method 6. Citation 2 in the Bibliography describes procedures and techniques that may be used for this analysis. Record the results on a data sheet (example is shown in Figure 6C-3). Each of the individual SO₂ analytical results for each calibration gas shall be within 5 percent (or 5 PPM, whichever is greater) of the triplicate set average; otherwise, discard the entire set, and repeat the triplicate analyses. If the average of the triplicate analyses is within 5 percent of the calibration gas manufacturer's cylinder tag value, use the tag value; otherwise, conduct at least three additional analyses until the results of six consecutive runs agree with 5 percent (or 5 PPM, whichever is greater) of their average. Then use this average for the cylinder value.

6.2 Measurement System Preparation. Assemble the measurement system by following the manufacturer's written instructions for preparing and preconditioning the gas analyzer and, as applicable, the other system components. Introduce the calibration gases in any sequence, and make all necessary adjustments to calibrate the analyzer and the data recorder. Adjust system components to achieve correct sampling rates.

6.3 Analyzer Calibration Error. Conduct the analyzer calibration error check by introducing calibration gases to the measurement system at any point upstream of the gas analyzer as follows:

6.3.1 After the measurement system has been prepared for use, introduce the zero, mid-range, and high-range gases to the analyzer. During this check, make no adjustments to the system except those necessary to achieve the correct calibration gas flow rate at the analyzer. Record the analyzer responses to each calibration gas on a form similar to Figure 6C-4.

Note: A calibration curve established prior to the analyzer calibration error check may be used to convert the analyzer response to the equivalent gas concentration introduced to the analyzer. However, the same correction procedure shall be used for all effluent and calibration measurements obtained during the test.

6.3.2 The analyzer calibration error check shall be considered invalid if the gas concentration displayed by the analyzer exceeds \pm 2 percent of the span for any of the calibration gases. If an invalid calibration is exhibited, take corrective action, and repeat the analyzer calibration error check until acceptable performance is achieved.

6.4 Sampling System Bias Check. Perform the sampling system bias check by introducing calibration gases at the calibration valve installed at the outlet of the sampling probe. A zero gas and either the mid-range or high-range gas, whichever most closely approximates the effluent concentrations, shall be used for this check as follows:

6.4.1 Introduce the upscale calibration gas, and record the gas concentration displayed by the analyzer on a form similar to Figure 6C-5. Then introduce zero gas, and record the gas concentration displayed by the analyzer. During the sampling system bias check, operate the system at the normal sampling rate, and make no adjustments to the measurement system other than those necessary to achieve proper calibration gas flow rates at the analyzer. Alternately introduce the zero and upscale gases until a stable response is achieved. The tester shall determine the measurement system response time by observing the times required to achieve a stable response for both the zero and upscale gases. Note the longer of the two times as the response time.

6.4.2 The sampling system bias check shall be considered invalid if the difference between the gas concentrations displayed by the measurement system for the analyzer calibration error check and for the sampling system bias check exceeds \pm 5 percent of the span for either the zero or upscale calibration gas. If an invalid calibration is exhibited, take corrective action, and repeat the sampling system bias check until acceptable performance is achieved. If adjustment to the analyzer is required, first repeat the analyzer calibration error check, then repeat the sampling system bias check.

7. Emission Test Procedure

7.1 Selection of Sampling Site and Sampling Points. Select a measurement site and sampling points using the same criteria that are applicable to Method 6.

7.2 Interference Check Preparation. For each individual analyzer, conduct an interference check for at least three runs during the initial field test on a particular source category. Retain the results, and report them with each test performed on that source category. If an interference check is being performed, assemble the modified Method 6 train (flow control valve, two midget impingers containing 3 percent H_2O_2 , and dry gas meter) as shown in Figure 6C-2. Install the sampling train to obtain a sample at the measurement system sample by-pass discharge vent. Record the initial dry gas meter reading.

7.3 Sample Collection. Position the sampling probe at the first measurement point, and begin sampling at the same rate as used during the sampling system bias check. Maintain constant rate sampling (i.e., \pm 10 percent) during the entire run. The sampling time per run shall be the same as for Method 6 plus twice the system response time. For each run, use only those measurements obtained after twice response time of the measurement system has elapsed, to determine the average effluent concentration. If an interference check is being performed, open the flow control valve on the modified Method 6 train concurrent with the initiation of the sampling period, and adjust the flow to 1 liter per minute (\pm 10 percent).

(Note: If a pump is not used in the modified Method 6 train, caution should be exercised in adjusting the flow rate since overpressurization of the impingers may cause leakage in the impinger train, resulting in positively biased results).

7.4 Zero and Calibration Drift Tests. Immediately preceding and following each run, or if adjustments are necessary for the measurement system during the run, repeat the sampling system bias check procedure described in Section 6.4 (Make no adjustments to the measurement system until after the drift checks are completed.) Record and analyzer's responses on a form similar to Figure 6C-5.

7.4.1 If either the zero or upscale calibration value exceeds the sampling system bias specification, then the run is considered invalid. Repeat both the analyzer calibration error check procedure (Section 6.3) and the sampling system bias check procedure (Section 6.4) before repeating the run.

7.4.2 If both the zero and upscale calibration values are within the sampling system bias specification, then use the average of the initial and final bias check values to calculate the gas concentration for the run. If the zero or upscale calibration drift value exceeds the drift limits, based on the difference between the sampling system bias check responses immediately before and after the run, repeat both the analyzer calibration error check procedure (Section 6.3) and the sampling system bias check procedure (Section 6.4) before conducting additional runs.

7.5 Interference Check (if performed). After completing the run, record the final dry gas meter reading, meter temperature, and barometric pressure. Recover and analyze the contents of the midget impingers, and determine the SO₂ gas concentration using the procedures of Method 6. (It is not necessary to analyze EPA performance audit samples for Method 6.) Determine the average gas concentration exhibited by the analyzer for the run. If the gas concentrations provided by the analyzer and the modified Method 6 differ by more than 7 percent of the modified Method 6 result, the run is invalidated.

8. Emission Calculation

The average gas effluent concentration is determined from the average gas concentration displayed by the gas analyzer, and is adjusted for the zero and upscale sampling system bias checks, as determined in accordance with Section 7.4. The average gas concentration displayed by the analyzer may be determined by integration of the area under the curve for chart recorders, or by averaging all of the effluent measurements. Alternatively, the average may be calculated from measurements recorded at equally spaced intervals over the entire duration of the run. For sampling run durations of less than 1 hour, measurements at 1-minute intervals or a minimum of 30 measurements, whichever is less restrictive, shall be used. For sampling run durations greater than 1 hour, measurements at 2-minute intervals or a minimum of 96 measurements, whichever is less restrictive, shall be used. Calculate the effluent gas concentration using Equation 6C-1.

$$\bar{C}_{gas} = (C - C_o) \frac{C_{ma}}{C_m - C_o} \text{ Eq. 6C - 1}$$

Where:

C_{gas} = Effluent gas concentration, dry basis, PPM.

\bar{C} = Average gas concentration indicated by gas analyzer, dry basis, PPM.

C_o = Average of initial and final system calibration bias check responses for the zero gas, PPM.

C_m = Average of initial and final system calibration bias check responses for the upscale calibration gas, PPM.

C_{ma} = Actual concentration of the upscale calibration gas, PPM.

9. Bibliography

1. Traceability Protocol for Establishing True Concentrations of Gases Used for Calibrations and Audits of Continuous Source Emission Monitors: Protocol Number 1. U.S. Environmental Protection Agency, Quality Assurance Division. Research Triangle Park, NC. June 1978.
2. Westlin, Peter R. and J. W. Brown. Methods for Collecting and Analyzing Gas Cylinder Samples. Source Evaluation Society Newsletter. 3(3):5-15. September 1978.

|_See_CFR_paper_publication_for_illustration_0809

|_See_CFR_paper_publication_for_illustration_0810

APPENDIX K

CALCULATION EQUATIONS

METHOD 2
CALCULATION EQUATIONS

$$\overline{V}_s = 85.49 C_p (\sqrt{\Delta p})_{avg} \sqrt{\frac{T_{s(avg)}}{P_s M_s}}$$

$$Q_{s,d} = 60 (1 - B_{ws}) \overline{V}_s A \left(\frac{528}{T_{s(avg)}} \right) \left(\frac{P_s}{29.92} \right)$$

$$Q_a = 60 \overline{V}_s A$$

$$\dot{m}_s = \frac{4.995 Q_{s,d} G_d}{1 - B_{ws}}$$

$$RH^* = 100 (vp_{wb} - 0.0003641 P_s (T_{db} - T_{wb})) / vp_{wb}$$

$$B_{ws}^* = RH(vp_{wb})/P_s$$

$$\rho = \frac{4.585 \times 10^{-2} P_s M_s}{T_s (avg)}$$

*Alternate equations for calculating moisture content from wet bulb and dry bulb data.

SYMBOLS

A	=	Cross Sectional area of stack, SQ. FT.
A_n	=	Cross sectional area of nozzle, SQ. FT.
B_{ws}	=	Water vapor in gas stream, proportion by volume
C_p	=	Pitot tube coefficient, dimensionless
C_w	=	Concentration of particulate matter in stack gas, wet basis, GR/ACF
C_d	=	Concentration of particulate matter in stack gas, dry basis, corrected to standard conditions, GR/DSCF
EA	=	Excess air, percent by volume
γ	=	Dry test meter correction factor, dimensionless
G_d	=	Specific gravity (relative to air), dimensionless
I	=	Isokinetic variation, percent by volume
M_d	=	Molecular weight of stack gas, dry basis, g/g - mole.
m_g	=	Mass flow of wet flue gas, LB/HR
m_p	=	Particulate mass flow, LB/HR
M_w	=	Molecular weight of stack gas, wet basis, g/g mole.
M_p	=	Total amount of particulate matter collected, g
P_{bar}	=	Atmospheric pressure, IN. HG. (uncompensated)
P_s	=	Stack static gas pressure, IN. WC.
P_g	=	Absolute pressure of stack gas, IN. HG.
P_{std}	=	Standard absolute pressure, 29.92 IN. HG.
A_a	=	Actual volumetric stack gas flow rate, ACFM
$Q_{s,d}$	=	Dry volumetric stack gas flow rate corrected to standard conditions, DSCFM
RH	=	Relative humidity, %

T_{db}	=	Dry bulb temperature of stack gas, °F
T_{wb}	=	Wet bulb temperature of stack gas, °F
$T_{m(avg)}$	=	Absolute average dry gas meter temperature, °R
$T_{s(avg)}$	=	Absolute average stack temperature, °R
T_{std}	=	Standard absolute temperature, 528 °R (68 °F)
θ	=	Total sampling time, min.
V_{lc}	=	Total volume of liquid collected in impingers and silica gel, ml
V_m	=	Volume of gas sample as measured by dry gas meter, CF
$V_{m(std)}$	=	Volume of gas sample measured by the dry gas meter corrected to standard conditions, DSCF
$V_{w(std)}$	=	Volume of water vapor in the gas sample corrected to standard conditions, SCF
\bar{V}_s	=	Average actual stack gas velocity, FT/SEC
vp_{db}	=	Vapor pressure at T_{db} , IN. HG.
vp_{wb}	=	Vapor pressure at T_{wb} , IN. HG.
$\bar{\Delta}H$	=	Average pressure differential across the orifice meter, IN. WC.
ΔP	=	Velocity pressure of stack gas, IN. WC.
γ	=	Dry test meter correction coefficient, dimensionless
ρ	=	Actual gas density, LB/ACF

METHOD 3
CALCULATION EQUATIONS

$$\%EA = \frac{100(\%O_2 - 0.5\% CO)}{0.264\% N_2 - \%O_2 + 0.5\% CO}$$

$$M_d = 0.44(\%CO_2) + 0.32 (\%O_2) + 0.28 (\%N_2 + \%CO)$$

$$M_s = M_d (I - B_{ws}) + 0.18 B_{ws}$$

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$$

METHOD 5
CALCULATION EQUATIONS

$$V_{m(std)} = 17.65 V_m \gamma \left(\frac{P_{bar} + \overline{\Delta H}/13.6}{T_{m(avg)}} \right)$$

$$V_{w(std)} = 0.0472 V_{ls}$$

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{m(std)}}$$

$$I = 0.0944 \left(\frac{T_{s(avg)} V_{m(std)}}{P_s V_s A_n \theta (I - B_{ws})} \right)$$

$$C_s = \frac{15.43 M_p}{V_{m(std)}}$$

$$C_a = \frac{272.3 M_p P_s}{T_{s(avg)} (V_{w(std)} + V_{m(std)})}$$

$$(\dot{m}_p)_1 = 8.5714 \times 10^{-3} C_s Q_{s,d}$$

$$(\dot{m}_p)_2 = \frac{1.3228 \times 10^{-1} M_p A}{\theta A_n}$$

$$\dot{m}_p = \frac{(\dot{m}_p)_1 + (\dot{m}_p)_2}{2}$$

Report No. 9-13517

MATHY-MONARCH PAVING

PLANT NO. 10 - HAGER CITY

CALCULATION OF (LB/KLB FLUE GAS)

PARAMETER	UNITS	TEST 1		
		RUN 1	RUN 2	RUN 3
Q _{s,d}	DSCFM	20666	20879	21766
Mass Flow	(LB/HR)	111795	111795	111795
Flow	(DSCFM)	21657	21657	21657
**M _f g	(LB/HR)	106679	107779	112358
M _f g	(KLB/HR)	106.6794	107.7789	112.3577
M _p	(LB/HR)	23.26	35.37	40.05
E	(LB/KLB)	0.218036	0.328172	0.356451

Where:

Q_{s,d} = Flow from each individual run of particulate.

Mass Flow (Method 2 sheet)

Flow (Flow at bottom of Method 2 sheet)

** M_fg = Mass Flow ((LB/HR)/DSCFM) *DSCFM

M_p = Pounds per hour of particulate (each individual run)

E = Emission rate in LB/KLB Flue Gas

APPENDIX L

SAMPLING TRAIN CALIBRATION DATA

EPA Method 5 Gas Metering System Quality Control Check Data Sheet

Job Mathy / Monarch Paving Date 9-23-99
Operator E Jours Module No. 1C

Instructions:

Operate the control module at a flow rate equal to $\Delta H@$ for 10 minutes before attaching the umbilical.

Record the following data:

Bar press 28.29 in.Hg $\theta =$ 1.0019 $\Delta H@$ 1.91 in.WC.

Time (min)	Volume (CF)	Meter Temp (°F)	
		Inlet	Outlet
	(154.60)		
2.5	156.55	76	89
5.0	156.52	78	77
7.5	160.46	79	76
10	162.40	79	76
	$V_m = 7.8$	Avg(t_m) =	77.5 °F

Calculate Y_m as follows:

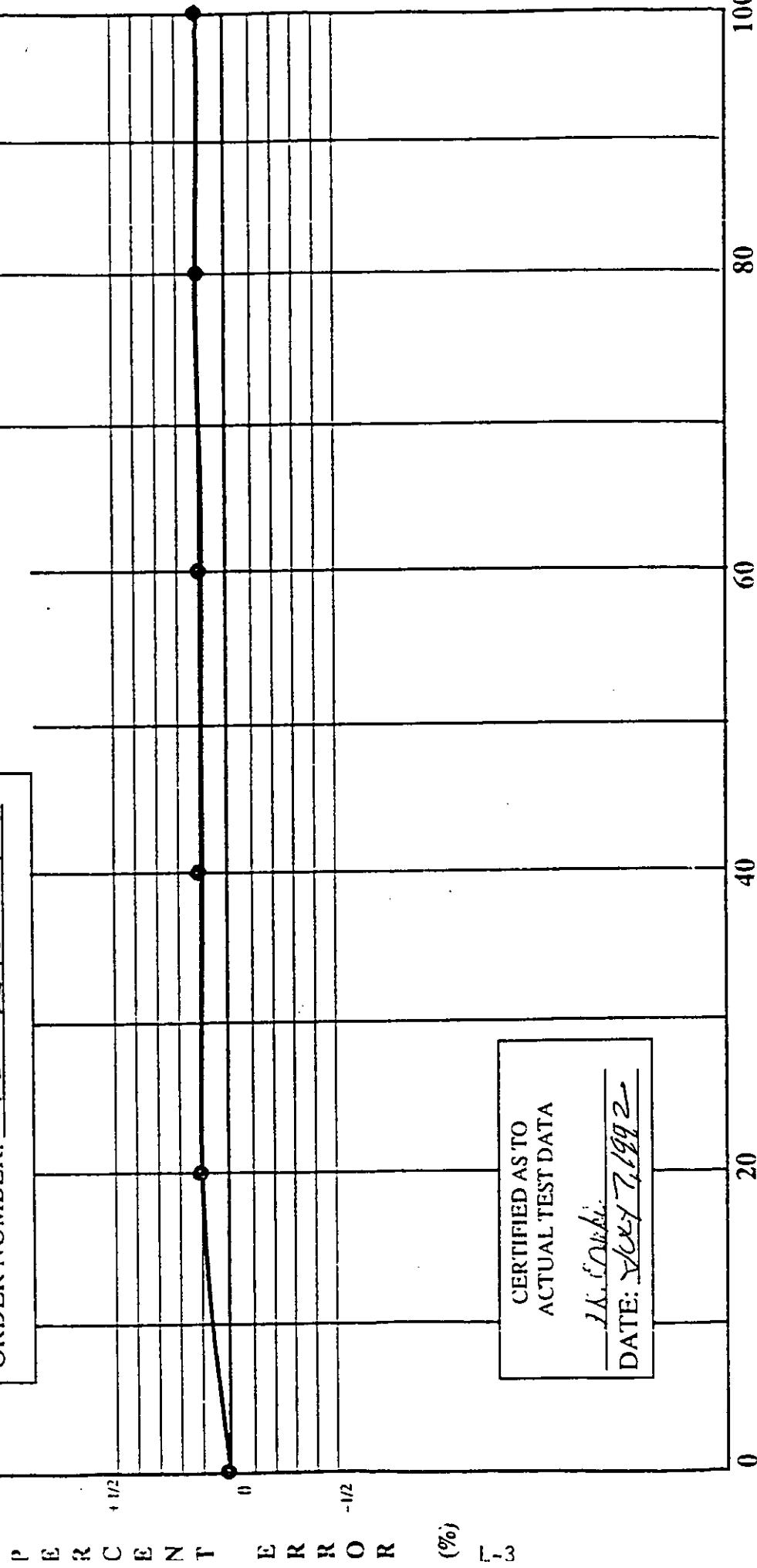
$$Y_m = \frac{1.786}{\theta V_m} \left[\frac{(t_m + 460)}{P_b} \right]^{0.5}$$

$$Y_m = \frac{1.786}{() ()} \left[\frac{(77.5 + 460)}{(26.9)} \right]^{0.5} 0.971$$

$$Y_m = 0.971$$

If Y_m is not within the range of 0.97 to 1.03, "the volume metering system should be investigated before beginning."

CFR Title 40, Part 60, Appendix A, Method 5, Section 4.4.1



INCORPORATED AIR Company
805 Liberty Blvd., Dubois, PA 15801

TEST METER PERFORMANCE

METER SIZE: F-275 STD
SERIAL NUMBER: 1334123
CUSTOMER NAME: CONTROLS & METERS, INC.
ORDER NUMBER: 613-73640-001

Meter Box #
14

CERTIFIED AS TO
ACTUAL TEST DATA

J. A. Olski
DATE: July 7/992

Interpoll Laboratories, Inc.
(612) 786-6020

Meter Box Calibration and Usage Status

Date of Report: November 9, 1999

Meter Box No. : 14 (Rockwell Dry Test Meter Serial No. 1334123)

Date of Last Calibration: December 5, 1998
Calibration Technician: D. Van Hoever
Wet Test Meter No.: American Meter AL-20

Date of Use	Report No.	Initial Meter Reading	Final Meter Reading	Volume/job (cu. ft.)	Total Volume* (cu. ft.)
March 11, 1999	9-12472	1000.00	1153.57	153.57	153.57
July 27-28, 1999	9-13204	154.00	496.20	342.20	495.77
August 2-3, 1999	9-13234	506.40	734.87	228.47	724.24
August 11, 1999	9-13290	735.20	862.89	127.69	851.93
August 17-19, 1999	9-13324	887.60	1426.71	539.11	1391.04
August 25-26, 1999	9-13372	428.90	739.57	364.67	1755.71
Aug 30-Sept 3, 1999	9-13405	739.85	1487.98	748.13	2503.84
September 9, 1999	9-13439	488.08	791.60	303.52	2807.36
September 14-20, 1999	9-13471	791.90	2151.50	1359.60	4166.96
September 23, 1999	9-13517	154.60	293.98	139.38	4306.34

* Total volume through meter since last calibration.

INTERPOLL LABORATORIES, INC.
(612) 786-6020

Stack Sampling Department - QA
Aneroid Barometer Calibration Sheet

Date 6-4-99
Technician E. Juers
Mercury Column Barometer No. Cals
Aneroid Barometer No. 10724004

Actual Mercury Barometer Read	Ambient Temp.	Temperature Correction Factor	Adjusted Mercury Barometer Read	Initial Aneroid Barometer Read	Difference ($P_{ba} - P_{bm}$)
29.18	76	.124 + .001	29.055	29.05	0

Has this barometer shown any consistent problems with calibration? Yes/No. If yes, explain. _____

OFFSET -1422

Slope < 1254

Has problem been alleviated? Yes/No. How? _____

Note: Aneroid barometers will be calibrated periodically against a mercury column barometer. The aneroid barometer to be calibrated should be placed in close proximity to the mercury barometer and left to equilibrate for 20 - 30 minutes before calibrating. Aneroid barometer will be calibrated to the adjusted mercury barometer readings.

INTERPOLL LABORATORIES, INC.
(612) 786-6020

Temperature Measurement Device Calibration Sheet

Unit Under Test:

Vendor

Model

Range

Date of Calibration

Method of Calibration:

Omega

HH31

-330 → 2501.6

E

Serial Number

77JX 1106

Thermocouple Type

K

Technician

E. JURIS

PDT No.

57

Comparison against ASTM mercury in glass thermometer using a thermostatted and insulated aluminum block designed to provide uniform temperature. The temperature is adjusted by adjusting the voltage on the block heater cartridge.

Omega Model CL-300 Type K Thermocouple Simulator which provides 22 precise temperature equivalent millivolt signals. The CL-300 is cold junction compensated. Calibration accuracy is $\pm 0.1\%$ of span (2100°F) ± 1 degree (for negative temperatures add ± 2 degrees). The CL-300 simulates exactly the millivoltage of a Type K thermocouple at the indicated temperature.

Desired Temp (°F) Nominal	Temperature of Standard or Simulated Temp (°F)	Response of Unit Under Test (°F)	Deviation	
			Δt (°F)	(%)
0	-	-1.6	1.6	.38
100	-	96.9	3.1	.55
200	-	199	1	.15
300	-	297	3	.39
400	-	397	3	.35
500	-	498	2	.20
600	-	599	1	.09
700	-	698	2	.17
800	-	800	0	0
900	-	899	1	.08
1000	-	999	1	.07
1100	-	1098	2	.13
1200	-	1200	0	0
1300	-	1298	2	.11
1400	-	1401	1	.05
1500	-	1499	1	.05
1600	-	1602	2	.10
1700	-	1699	1	.05
1800	-	1802	2	.09
1900	-	1899	1	.04
2000	-	2000	0	0
2100	-	2097	3	.12
Averages:			154	.14

OF = off scale response by unit under test (°F)

% dev = $100 \Delta t / (460 + 0)$

Unit in tolerance

Unit was not in tolerance: recalibrated - See new calibration sheet.