

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

DIVISION OF ENVIRONMENTAL MANAGEMENT

Air Quality Section

August 17, 1988

MEMORANDUM

To: Ken Schuster / Clyde E. Fuller
From: Michael Y. Aldridge *MYA*
Subject: Alliance Contracting Corporation
Durham, Durham County, North Carolina
Particulate and Visible Emissions Testing of a
Baghouse installed on an Asphalt Plant Dryer
Conducted May 26, 1988 by
Entropy Environmentalists, Inc.

A report of the subject testing has been reviewed and is found to be acceptable. The results appear reliable and indicate that compliance with the applicable particulate emission standard was being achieved during the test.

The emission standard that applies to the subject facility is 40 CFR 60, Subpart I, which limits particulate emissions to 0.04 grains per dry standard cubic foot and visible emissions to 20 percent opacity.

The particulate emission rate demonstrated by the test results was 0.002 grains per dry standard cubic foot.

Visible emissions were zero for most of the test period with a few isolated instances of 5 percent opacity.

The plant is rated at 200 tons per hour and was operating at 150 tons per hour (75 percent capacity) during the test. While this is a lower operating rate than is usually considered desirable for testing such a facility, the margin of compliance and the degree of control provide additional evidence to support this test as an adequate demonstration of compliance.

Compliance is indicated for particulate and visible emissions.

cc: Central File via Lee Daniel

ENTROPY

ENVIRONMENTALISTS INC.

POST OFFICE BOX 12291
RESEARCH TRIANGLE PARK
NORTH CAROLINA 27709-2291
919-781-3550

STATIONARY SOURCE SAMPLING REPORT
REFERENCE NO. 5911

ALLIANCE CONTRACTING CORPORATION
DURHAM, NORTH CAROLINA

PARTICULATE EMISSIONS AND PLUME OPACITY
COMPLIANCE TESTING

ROTARY DRYER SYSTEM STACK

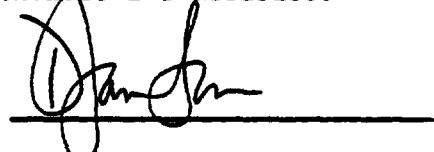
MAY 26, 1988

REPORT CERTIFICATION

The sampling and analysis performed for this report was carried out under my direction and supervision.

Date June 8, 1988

Signature



Willis S. Nesbit

I have reviewed all testing details and results in this test report and hereby certify that the test report is authentic and accurate.

Date June 8, 1988

Signature

D. James Grove, P.E.

RECEIVED
JUN 16 1988

AIR QUALITY TECH SERVICES

ENTROPY

TABLE OF CONTENTS

	<u>PAGE</u>
INTRODUCTION	
1.1 Outline of Test Program	1-1
1.2 Test Participants	1-1
SUMMARY OF RESULTS	
2.1 Presentation	2-1
2.2 Plume Opacity Observations	2-1
2.3 Average Emission Rate	2-1
PROCESS DESCRIPTION AND OPERATION	
3.1 General	3-1
3.2 Source Air Flow	3-1
3.3 Operation During Testing	3-1
SAMPLING AND ANALYTICAL PROCEDURES	
4.1 General	4-1
4.2 Sampling Points	4-1
4.3 Volumetric Air Flow Rates	4-1
4.3.1 Flue Gas Velocity	4-1
4.3.2 Flue Gas Composition	4-1
4.3.3 Flue Gas Moisture	4-1
4.4 Emissions Determinations	4-1
4.5 Plume Opacity	4-1
4.6 Equipment Calibration	4-1
APPENDICES	
A. Test Results and Example Calculations	1
B. Field and Analytical Data	
1. Particulate	7
2. Plume Opacity	16
C. Calibration Data	27
D. Sampling and Analytical Procedures	40

INTRODUCTION

1.1 Outline of Test Program. Stationary source sampling was performed for Alliance Contracting Corporation in Durham, North Carolina, on May 26, 1988. Three sets of concurrent EPA Method 5 and Method 9 runs were performed at the rotary dryer system stack to determine the particulate emissions and the plume opacity, respectively. The testing was conducted for compliance purposes.

1.2 Test Participants. Table 1-1 lists the personnel present during the test program.

TABLE 1-1
TEST PARTICIPANTS

Alliance Contracting Corporation	I. E. Harris Test Coordinator
	Mickey Hicks Plant Operator
North Carolina Department of Natural Resources and Community Development	Clyde E. Fuller Test Observer
Entropy Environmentalists, Inc.	Willis S. Nesbit Project Supervisor
	Joseph W. Mullen Engineering Technician
Eastern Technical Associates	Paul A. Minor Plume Opacity Observer

SUMMARY OF RESULTS

2.1 Presentation. Table 2-1 presents the particulate emissions for the testing performed May 26, 1988, at the rotary dryer system stack. Detailed test results are presented in Appendix A; field and analytical data are given in Appendix B.

2.2 Plume Opacity Observations. Plume opacity observations were conducted concurrently with the particulate emissions testing. The majority of the readings were zero, with the highest single reading at 5%. Due to the near absence of a visible plume, the observations were not summarized; refer to the field data sheets in Appendix B for the results.

2.3 Average Emission Rate. The average emission rate for the testing was 0.426 pounds per hour. The average concentration was 0.00232 grains per dry standard cubic foot.

TABLE 2-1
PARTICULATE TESTS SUMMARY OF RESULTS
Rotary Dryer System Stack

	1 ----	2 ----	3 ----
Run Date	5/26/88	5/26/88	5/26/88
<u>Test Train Parameters:</u>			
Volume of Dry Gas Sampled, SCF*	60.866	60.690	58.502
Percent Isokinetic	102.4	102.4	102.5
<u>Flue Gas Parameters:</u>			
Temperature, Degrees F	168	170	174
Volumetric Air Flow Rates SCFM*, Dry	21,710	21,651	20,839
ACFM, Wet	29,433	29,358	28,632
<u>Method 5 Results:</u>			
Catch, Milligrams	9.5	9.0	8.6
Concentration, Grains/DSCF*	0.002409	0.002289	0.002269
Emission Rate, Lbs/Hour	0.4482	0.4247	0.4052

* 68 Degrees F -- 29.92 Inches of Mercury (Hg)

PROCESS DESCRIPTION AND OPERATION

3.1 General. Alliance Contracting Corporation operates a batch mix asphalt plant in Durham, North Carolina. Aggregate is heated, dried, and tumbled in a rotary dryer. From the dryer, the aggregate travels to an elevator which carries it to a screen for sizing into hot storage bins. The graded aggregate is mixed with liquid asphalt in a pug mill, and then is loaded onto trucks in 6,000-pound batches.

3.2 Source Air Flow. Figure 3-1 is an air flow schematic showing the passage of the flue gases exhausted by the rotary dryer.

3.3. Operation During Testing. According to Alliance Contracting Corporation, 150 tons per hour of asphalt were produced during testing.

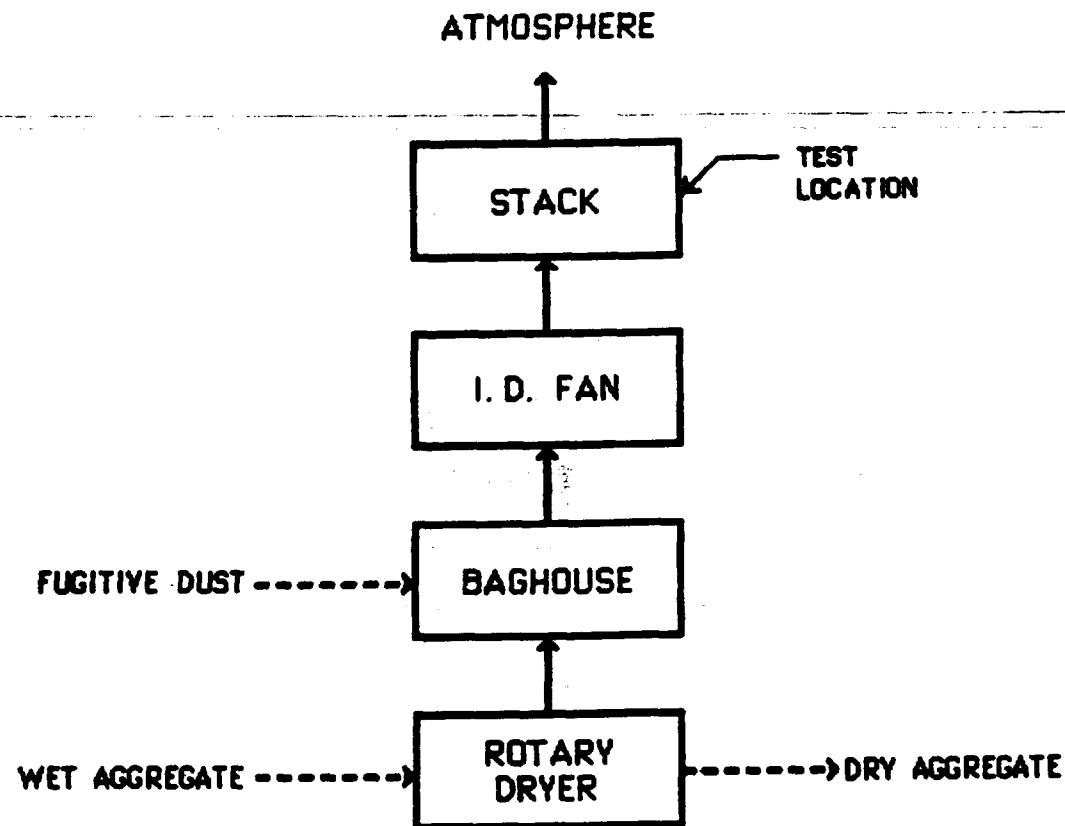


FIGURE 3-1. ROTARY DRYER SYSTEM AIR FLOW SCHEMATIC.

SAMPLING AND ANALYTICAL PROCEDURES

4.1 General. All sampling and analytical procedures were those recommended by the United States Environmental Protection Agency and the North Carolina Department of Natural Resources and Community Development. Descriptions of the sampling equipment and procedures (extracted from 40 CFR 60) are provided in Appendix D.

4.2 Sampling Points. The number and location of the sampling points were determined according to EPA Method 1. The stack cross section was divided into 18 equal areas with six sampling points on each of three traverse axes, as shown in Figure 4-1.

4.3 Volumetric Air Flow Rates

4.3.1 Flue Gas Velocity. EPA Method 2 was used to take the velocity measurements during the traverses of the stack cross section.

4.3.2 Flue Gas Composition. During run 3, a multipoint, integrated flue gas sample was collected and analyzed using EPA Method 3; the analytical results were used to determine the flue gas composition and molecular weight for all runs.

4.3.3 Flue Gas Moisture. Moisture content was determined by analyzing the sampling train impinger reagents according to the procedures outlined in EPA Method 5.

4.4 Emissions Determinations. EPA Method 5 sampling and analytical procedures were used to determine the particulate emissions. Each of the 18 points was sampled for 3.5 minutes, resulting in a net run time of 63 minutes.

4.5 Plume Opacity. The procedures outlined in EPA Method 9 were followed in determining the plume opacity.

4.6 Equipment Calibration. Pertinent calibration data are provided in Appendix C.

TRAVERSE POINTS

3 AXES
6 POINTS/AXIS
18 TOTAL POINTS

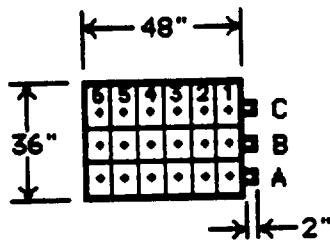
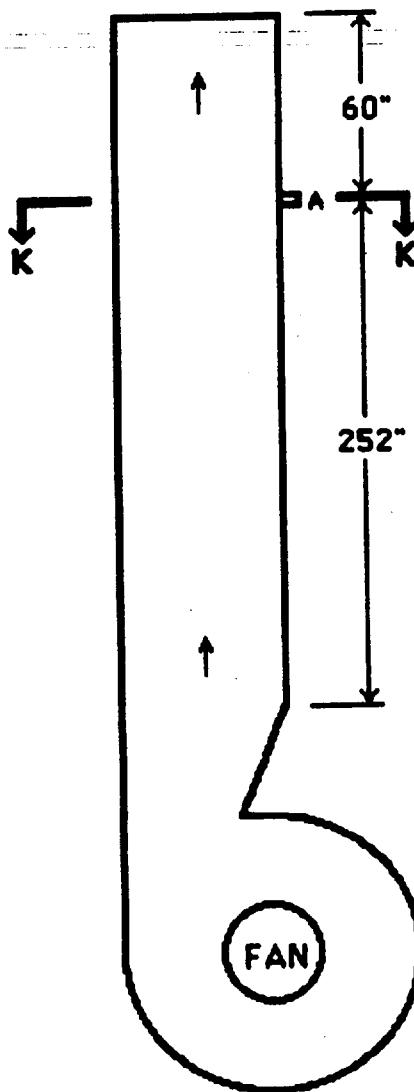


SECTION K-K

FIGURE 4-1. ROTARY DRYER SYSTEM STACK TEST LOCATION.

TEST RESULTS AND EXAMPLE CALCULATIONS

ISOKINETIC SAMPLING TRAIN FIELD DATA & RESULTS TABULATION

2

PLANT: Alliance Contracting Corporation, Durham, North Carolina

RUN #	DATE	SAMPLING LOCATION	OPERATOR		
1	5/26/88	Rotary Dryer System Stack	Willis S. Nesbit		
2	5/26/88	Rotary Dryer System Stack	Willis S. Nesbit		
3	5/26/88	Rotary Dryer System Stack	Willis S. Nesbit		
			1	2	3
			---	---	---
	Run Start Time		800	932	1105
	Run Finish Time		905	1037	1220
	Net Sampling Points		18	18	18
Theta	Net Run Time, Minutes		63.00	63.00	63.00
Dia	Nozzle Diameter, Inches		0.309	0.309	0.309
Cp	Pitot Tube Coefficient		0.840	0.840	0.840
Y	Dry Gas Meter Calibration Factor		1.010	1.010	1.010
Pbar	Barometric Pressure, Inches Hg		29.80	29.80	29.80
Delta H	Avg. Pressure Differential of Orifice Meter, Inches H2O		2.877	2.866	2.691
Vm	Volume of Metered Gas Sample, Dry ACF		61.356	61.974	60.094
tm	Dry Gas Meter Temperature, Degrees F		79	86	89
Vm(std)	Volume of Metered Gas Sample, Dry SCF*		60.866	60.690	58.502
Vlc	Total Volume of Liquid Collected in Impingers & Silica Gel, mL		174.0	169.0	172.5
Vw(std)	Volume of Water Vapor, SCF*		8.190	7.955	8.120
XH2O	Moisture Content, Percent by Volume		11.9	11.6	12.2
Mfd	Dry Mole Fraction		0.881	0.884	0.878
XCO2	Carbon Dioxide, Percent by Volume, Dry		3.1	3.1	3.1
XO2	Oxygen, Percent by Volume, Dry		16.7	16.7	16.7
XCO+N2	CO + N2, Percent by Volume, Dry		80.2	80.2	80.2
Md	Dry Molecular Weight, Lb/Lb-Mole		29.16	29.16	29.16
Ms	Wet Molecular Weight, Lb/Lb-Mole		27.84	27.87	27.80
Pg	Flue Gas Static Pressure, Inches H2O		-0.10	-0.13	-0.14
Ps	Absolute Flue Gas Press., Inches HG		29.79	29.79	29.79
ts	Flue Gas Temperature, Degrees F		168	170	174
Delta p	Average Velocity Head, Inches H2O		0.4280	0.4249	0.4006
vs	Flue Gas Velocity, Feet/Second		40.88	40.78	39.77
A	Stack/Duct Area, Square Inches		1.728	1.728	1.728
Qsd	Volumetric Air Flow Rate, Dry SCFM*		21,710	21,651	20,839
Qaw	Volumetric Air Flow Rate, Wet ACFM		29,433	29,358	28,632
zI	Isokinetic Sampling Rate, Percent		102.4	102.4	102.5

* 68 Degrees F -- 29.92 Inches of Mercury (Hg)

(continued next page)

		1	2	3
		----	----	----
<u>Method 5 Results:</u>				
mg	Catch, Milligrams	9.5	9.0	8.6
gr/DSCF	Concentration, Grains per DSCF*	0.002409	0.002289	0.002269
Lb/Hr	Emission Rate, Lbs/Hour (PMRc)	0.4482	0.4247	0.4052

* 68 Degrees F -- 29.92 Inches of Mercury (Hg)

EXAMPLE TEST CALCULATIONS NO. 1

4

Rotary Dryer System Stack

VOLUME OF DRY GAS SAMPLED AT STANDARD CONDITIONS

$$V_m(\text{std}) = 17.64 * Y * V_m * \frac{(P_{\text{bar}} + \Delta H/13.6)}{(460 + t_m)}$$

$$V_m(\text{std}) = 17.64 * 1.010 * 61.356 * \frac{(29.80 + 2.877/13.6)}{(460 + 79)} = 60.866 \text{ DSCF}$$

VOLUME OF WATER VAPOR AT STANDARD CONDITIONS

$$V_w(\text{std}) = 0.04707 * V_{1c}$$

$$V_w(\text{std}) = 0.04707 * 174.0 = 8.190 \text{ SCF}$$

PERCENT MOISTURE, BY VOLUME, AS MEASURED IN FLUE GAS

$$\%H_2O = 100 * V_w(\text{std}) / (V_w(\text{std}) + V_m(\text{std}))$$

$$\%H_2O = \frac{8.190}{8.190 + 60.866} * 100 = 11.9 \%$$

DRY MOLE FRACTION OF FLUE GAS

$$M_{fd} = 1 - \%H_2O/100$$

$$M_{fd} = 1 - 11.9/100 = 0.881$$

DRY MOLECULAR WEIGHT OF FLUE GAS

$$M_d = \%CO_2 * 0.44 + \%O_2 * 0.32 + \%CO+N_2 * 0.28$$

$$M_d = 3.1 * 0.44 + 16.7 * 0.32 + 80.2 * 0.28 = 29.16 \text{ LB/LB-MOLE}$$

WET MOLECULAR WEIGHT OF FLUE GAS

$$M_s = (M_d * M_{fd}) + (0.18 * \%H_2O)$$

$$M_s = 29.16 * 0.881 + (0.18 * 11.9) = 27.84 \text{ LB/LB-MOLE}$$

ABSOLUTE FLUE GAS PRESSURE

$$Ps = P_{bar} + Pg / 13.6$$

$$Ps = 29.80 + (-0.1 / 13.6) = 29.79 \text{ IN. HG.}$$

AVERAGE FLUE GAS VELOCITY [Note: (Delta p)avg is square of avg sq. root]

$$vs = 85.49 * Cp * \frac{(Delta p)avg * (460 + ts)}{Ps * Ms}$$

$$vs = 85.49 * 0.840 * \frac{0.4280 * (460 + 168)}{29.79 * 27.84} = 40.9 \text{ FT/SEC}$$

DRY VOLUMETRIC FLUE GAS FLOW RATE @ STANDARD CONDITIONS

$$Q_{sd} = \frac{60}{144} * M_{fd} * vs * A * \frac{T_{std}}{ts + 460} * \frac{Ps}{P_{std}}$$

$$Q_{sd} = \frac{60}{144} * 0.881 * 40.9 * 1,728.0 * \frac{528}{168 + 460} * \frac{29.79}{29.92}$$

$$Q_{sd} = 21,710 \text{ SCFM}$$

WET VOLUMETRIC STACK GAS FLOW RATE @ FLUE GAS CONDITIONS

$$Q_{aw} = 60 / 144 * vs * A$$

$$Q_{aw} = 60 / 144 * 40.9 * 1,728.0 = 29,433 \text{ ACFM}$$

PERCENT ISOKINETIC OF SAMPLING RATE

$$\%I = \frac{P_{std}}{T_{std}} * \frac{100}{60} * \frac{(ts + 460) * V_{m(std)}}{Ps * vs * M_{fd} * \text{Theta} * \text{Area-nozzle, sq.ft.}}$$

$$\%I = \frac{29.92}{528} * \frac{100}{60} * \frac{(168 + 460) * 60.866}{29.79 * 40.9 * 0.881 * 63.00 * 0.0005208}$$

$$\%I = 102.4 \%$$

GRAINS PER DRY STANDARD CUBIC FOOT

$$\text{gr/DSCF} = \frac{7000}{453,592} * \frac{\text{mgs}}{\text{Vm(std)}}$$

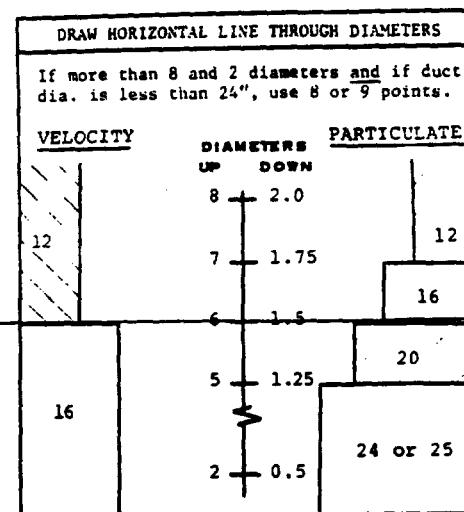
$$\text{gr/DSCF} = \frac{7000}{453,592} * \frac{9.5}{60.866} = 0.0024 \text{ gr/DSCF}$$

POUNDS PER HOUR

$$\text{Lb/Hr} = 60 / 7000 * \text{gr/DSCF} * \text{Qsd}$$

$$\text{Lb/Hr} = 60/7000 * 0.0024 * 21,710 = 0.45 \text{ LB/HR}$$

APPENDIX B.1


B. FIELD AND ANALYTICAL DATA

1. Particulate

ENTROPY

Preliminary Field Data

PLANT NAME	ALLIANCE CONTRACTING CORP.	
LOCATION	DURHAM, NC	
SAMPLING LOCATION <u>BACKHOUSE OUTLET STACK</u>		
DUCT DEPTH	50"	
FROM INSIDE FAR WALL TO OUTSIDE OF PORT	50"	
NIPPLE LENGTH	2"	
DEPTH OF DUCT	48	
WIDTH (RECTANGULAR DUCT)	36	
EQUIVALENT DIAMETER:		
$D_E = \frac{2 \times \text{DEPTH} \times \text{WIDTH}}{\text{DEPTH} + \text{WIDTH}} = \frac{2(48) \times (36)}{(48 + 36)} = 41.14$		
DISTANCE FROM PORTS TO NEAREST FLOW DISTURBANCE	UPSTREAM	DOWNSTREAM
21'	5'	
DIAMETERS	6.15	1.46
STACK AREA =	48" X 36"	= 1728 in ²

Point	% OF DUCT DEPTH	DISTANCE FROM INSIDE WALL	DISTANCE FROM OUTSIDE OF PORT
1	8.3	4"	6"
2	25.0	12	14
3	41.7	20	22
4	58.3	28	30
5	75.0	36	38
6	91.7	44	46
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

	4	6	8	10	12	14	16	18	20	22	24
1	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.5	12.5	10.9	9.7	8.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7			89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8				96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8
9					91.8	82.3	73.1	62.5	38.2	30.6	23.0
10						97.4	88.2	79.9	71.7	61.8	38.8
11							93.3	85.4	78.0	70.4	61.2
12								97.9	90.1	83.1	76.4
13									94.3	87.5	81.2
14										98.2	91.5
15											85.4
16											79.6
17											73.8
18											67.7
19											95.1
20											69.1
21											83.5
22											78.2
23											72.8
24											98.4

LOCATION OF TRAVERSE POINTS IN RECTANGULAR STACKS

	2	3	4	5	6	7	8	9	10	11	12
1	23.0	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
2	75.0	50.0	37.5	30.0	25.0	21.4	18.8	16.7	15.0	13.6	12.5
3		83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
4			87.5	70.0	58.3	50.0	43.8	38.9	35.0	31.8	29.2
5				90.0	75.0	64.3	56.3	50.0	45.0	40.9	37.5
6					91.7	78.6	68.8	61.1	55.0	50.0	45.8
7						92.9	81.3	72.2	65.0	59.1	54.2
8							93.8	83.3	75.0	68.2	62.5
9								94.4	85.0	77.3	70.8
10									95.0	86.4	79.2
11										95.5	87.5
12											95.8

Plant Name Alliance Construction Contracting
 Sampling Location Baghouse stack Fuel Type _____

Run and/or Sample No. 3 Leak Test? Date 5/26/88 Operator WSN

Time of Sample Collection	Time of Analysis	CO ₂ Reading A	O ₂ Reading B	CO Reading C	%O ₂ B-A	%CO C-B	%N ₂ 100-C
11:05	15:50	3.1	19.8	—	16.7	—	
—	—	3.1	19.8	—	16.7	—	
12:20	16:05	3.0	19.8	—	16.8	—	
Avg.		3.1		Avg.	16.7	—	80.2

Run and/or Sample No. _____ Leak Test? _____ Date _____ Operator _____

Time of Sample Collection	Time of Analysis	CO ₂ Reading A	O ₂ Reading B	CO Reading C	%O ₂ B-A	%CO C-B	%N ₂ 100-C
Avg.				Avg.			

Run and/or Sample No. _____ Leak Test? _____ Date _____ Operator _____

Time of Sample Collection	Time of Analysis	CO ₂ Reading A	O ₂ Reading B	CO Reading C	%O ₂ B-A	%CO C-B	%N ₂ 100-C
Avg.				Avg.			

PARTICULATE FIELD DATA

10

COMPANY NAME	Alliance Contracting Corp.		RUN NUMBER	1		
ADDRESS	Durham, NC		TIME START	08:00		
SAMPLING LOCATION	Baptist Hospital		TIME FINISH	09:05		
DATE	5/26/88	TEAM LEADER	WSN	TECHNICIANS	IWM	
BAROMETRIC PRESSURE, IN. HG		29.8	STATIC PRESSURE, IN. H ₂ O		-0.10	
SAMPLING TRAIN LEAK TEST VACUUM, IN. HG		15	6			
SAMPLING TRAIN LEAK RATE, CU. FT./MIN.		0.006	0.002			
EQUIPMENT CHECKS			IDENTIFICATION NUMBERS			
<input checked="" type="checkbox"/> PILOTS, PRE-TEST	REAGENT BOX	241	NOZZLE	407	DIAMETER	309
<input checked="" type="checkbox"/> PILOTS, POST-TEST	METER BOX	N-8	T/C READOUT	F-6		
<input checked="" type="checkbox"/> ORSAT SAMPLING SYSTEM	UMBILICAL	V-50	T/C PROBE	6.1		
<input checked="" type="checkbox"/> TEDLAR BAG	SAMPLE BOX	33	ORSAT PUMP	NA		
<input checked="" type="checkbox"/> THERMOCOUPLE @ 146 °F	PROBE	5.11	TEDLAR BAG	NA		
FILTER #	TARE	NOMOGRAPH SET-UP		NOMOGRAPH #		
E 6958	4899	AH _g	1.69	C FACTOR	0.80	
		METER TEMP	75	STACK TEMP	150	
		% MOISTURE	14	REF. AP	0.28	

61-35L .428

2.877 79

168

F-1010
8/86

10

卷之二

AM T

73

ENTROPY

COMPANY NAME Alliance Contr. Corp. RUN NUMBER 2
ADDRESS Durham, NC TIME START 09:32
SAMPLING LOCATION Reactive tank TIME FINISH 10:37
DATE 5/26/88 TEAM LEADER WSN TECHNICIANS JWM
BAROMETRIC PRESSURE, IN. HG 29.8 STATIC PRESSURE, IN. H₂O -0.13
SAMPLING TRAIN LEAK TEST VACUUM, IN. HG 15 6
SAMPLING TRAIN LEAK RATE, CU. FT./MIN. 0.002 0.005

<u>EQUIPMENT CHECKS</u>		<u>IDENTIFICATION NUMBERS</u>	
✓	PITOTS, PRE-TEST	REAGENT BOX	241 NOZZLE, 40 ⁰ DIAMETER .309
✓	PITOTS, POST-TEST	METER BOX	N-8 T/C READOUT F-6
NA	CREAT SAMPLING SYSTEM	UMBILICAL	V-50 T/C PROBE 6.3
NA	TEDLAR BAG	SAMPLE BOX	22 CREAT PUMP NA
✓	THERMOCOUPLE @ 170 °F	PROBE	5.2 TEDLAR BAG NA
<u>FILTER #</u>		<u>TARE</u>	
EG904		4918	
EG994			
<u>NOMOGRAPH SET-UP</u>		<u>NOMOGRAPH # LSN</u>	
ΔH _g	1.69	C FACTOR	0.83
METER TEMP	90	STACK TEMP	165
% MOISTURE	13	REF. AP	0.28

$$\frac{61.974}{v_M} \quad \frac{2.866}{\Delta H} \quad \frac{86}{\tau_M} \quad \frac{170}{\tau_S}$$

PARTICULATE FIELD DATA

COMPANY NAME	Alliance Constr. Corp.			RUN NUMBER	3		
ADDRESS	Durham, NC			TIME START	11:05		
SAMPLING LOCATION	Raleigh St.			TIME FINISH	12:20		
DATE	5/26/88	TEAM LEADER	WSN	TECHNICIANS	JWM		
BAROMETRIC PRESSURE, IN. HG		29.8	STATIC PRESSURE, IN. H ₂ O - 0.14				
SAMPLING TRAIN LEAK TEST VACUUM, IN. HG		15					
SAMPLING TRAIN LEAK RATE, CU. FT./MIN.		0.005	0.000				
EQUIPMENT CHECKS		IDENTIFICATION NUMBERS					
<input checked="" type="checkbox"/> PITOTS, PRE-TEST <input checked="" type="checkbox"/> PITOTS, POST-TEST <input checked="" type="checkbox"/> ORSAT SAMPLING SYSTEM <input checked="" type="checkbox"/> TEDLAR BAG <input checked="" type="checkbox"/> THERMOCOUPLE @ 172 °F		REAGENT BOX	241	NOZZLE	407	DIAMETER	.309
		METER BOX	N-8	T/C READOUT		E-6	
		UMBILICAL	U-50	T/C PROBE		6-1	
		SAMPLE BOX	33	ORSAT PUMP		4	
		PROBE	5-11	TEDLAR BAG		21	
FILTER #		TARE	NOMOGRAPH SET-UP			NOMOGRAPH #	
E 7167		4872	ΔH _g	1.69	C FACTOR	0.83	
			METER TEMP	90	STACK TEMP	165	
			% MOISTURE	13	REF. AP	0.28	

SAMPLE POINT	CLOCK TIME, MIN.	DRY GAS METER READING, CU. FT.	PITOT READING (ΔP), IN. H ₂ O	ORIFICE SETTING (ΔH), IN. H ₂ O	GAS METER TEMP. °F	PUMP VACUUM IN. HG	FILTER BOX TEMP. °F	INP. EXIT TEMP. °F	STACK TEMP. °F	LK. CHECK READINGS
A 1	01.0	980.932	0.28	1.84	1.84	82	2	248	62	172
2	31	983.72	0.28	1.84	1.84	81	2	252	62	173
3	7	986.55	0.25	1.68	1.68	82	2	256	60	176
4	10½	988.99	0.26	1.72	1.72	84	2	256	60	177
5	14	991.64	0.28	1.84	1.84	85	3	256	60	177
6	17½	994.40	0.34	2.26	2.26	87	3	260	60	175
B 1		997.50	0.43	2.86	2.86	87	3	260	60	170
2	3½	1001.03	0.44	2.90	2.90	89	3	260	62	174
3	7	4.50	0.42	2.79	2.79	91	4	262	62	173
4	10½	8.35	0.44	2.90	2.90	93	4	263	62	171
5	14	11.40	0.42	2.79	2.79	93	4	265	62	170
6	17½	14.88	0.48	3.18	3.18	94	4	265	62	170
C 1		18.57	0.44	2.90	2.90	93	4	265	63	170
2	3½	22.09	0.50	3.35	3.35	94	4	266	64	174
3	7	25.80	0.52	3.42	3.42	90	4	266	64	173
4	10½	29.70	0.52	3.42	3.42	91	4	266	64	182
5	14	33.68	0.54	3.56	3.56	93	4	264	64	181
6	17½	37.43	0.48	3.18	3.18	94	4	264	64	177
63 OFF 1041.026										
DOWN 11:54										
RE-START 12:03										

60.094 .4006

2.691 89

174

PARTICULATE SAMPLING LABORATORY RESULTS

Plant Name: ALLIANCE

EEI Ref# 5911

Sampling Location: Baghouse Stack

Date Received: 5/27 Date Analyzed: 5/31 Reagent Box(es): 0241

Run Number	1	2	3
Run Date	5/26	5/26	5/26

Sample ID/Container #	F&R 2083 =====	F&R 2103 =====	F&R 2137 =====
-----------------------	-------------------	-------------------	-------------------

Tare Weight., g.	97.6424 97.6428 97.1426 =====	97.7653 97.7655 97.2641 =====	98.7799 98.7799 98.2837 =====
SAMPLE WT., g.	0.4998	0.5012	0.4962

Sample ID/Container #	=====	=====	=====
-----------------------	-------	-------	-------

Tare Wt., g.	0.0000 =====	0.0000 =====	0.0000 =====
SAMPLE WT., g.	0.0000	0.0000	0.0000

Sum of Particulate, mg.	499.8	501.2	496.2
Total Filter Tare, mg.	489.9	491.8	487.2
Blank Residue, mg. (200 ml)	0.4 (175 ml)	0.4 (200 ml)	0.4 =====
TOTAL PARTICULATE CATCH, mg.	9.5	9.0	8.6

Blank Beaker #	2003	---Legend---	Notes and Comments
Final wt., mg.	99546.3	= Final Weight	
Tare wt., mg.	99545.9	L = Loose Particulate	
Residue, mg.	0.4	F = Filter D = Dish	
Volume, ml.	200	R = Rinse P = Pan	

Concentration, mg/ml 0.002

ENTROPY

MOISTURE SAMPLING LABORATORY RESULTS

Plant Name: ALLIANCE EEI Ref# 5911

Sampling Location: Baghouse Stack

Date Received: 5/27 Date Analyzed: 5/27 Reagent Box(es): 0241

Run Number	1	2	3
Run Date	5/26	5/26	5/26

ANALYSIS OF MOISTURE CATCH

Reagent 1 (H ₂ O)			
Final Weight, g.	350.0	337.0	340.0
Tared Weight, g.	200.0	200.0	200.0
Water Catch, g.	150.0	137.0	140.0
Reagent 2 ()			
Final Weight, g.			
Tared Weight, g.			
Water Catch, g.	0.0	0.0	0.0
Reagent 3 ()			
Final Weight, g.			
Tared Weight, g.			
Water Catch, g.	0.0	0.0	0.0
CONDENSED WATER, g.	150.0	137.0	140.0
Silica Gel:			
Final Weight, g.	224.0	232.0	232.5
Tared Weight, g.	200.0	200.0	200.0
ADSORBED WATER, g.	24.0	32.0	32.5
TOTAL WATER COLLECTED, g.	174.0	169.0	172.5

CUSTODY SHEET FOR REAGENT BOX # 0241

Date of Makeup 5/12 Initials WSN Locked?

Individual Tare of Reagent: 200 mls. of H₂O

Individual Tare of Reagent: _____ mls. of _____

Individual Silica Gel Tare Weight 200 gms.

PLANT NAME Alliance Construction

SAMPLING LOCATION BAGHOUSE STACK

Run Number	Date Used	Initials	Locked?	Date Cleanup	% S. Gel Spent	Initials	Locked?
1	5/26/88	WSN	✓	5/26/88	.70	WSN	✓
2	5/26/88	WSN	✓	5/26/88	.70	WSN	✓
3	5/26/88	WSN	✓	5/26/88	.70	WSN	✓

Received in Lab 5/27 Initials SAW Locked? Zero & Span Balance Initials

Sampling Method: M - 5 Filter # Tare Weight (grams) Used on Test

Remarks: E6958 .4899 1
E6994 .4918 2
E7176 .4872 3

APPENDIX B.2

B. FIELD AND ANALYTICAL DATA

2. Plume Opacity

ENTROPY

VISIBLE EMISSIONS EVALUATOR

This is to certify that

Paul M. Nixon

met the specifications of Federal Reference Method 9 and qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates of Raleigh, North Carolina. This certificate is valid for six months from date of issue.

Thomas H. Rose
President

219467

Certificate Number

Willie S. Lee
Vice President

Orlando

Location

David Savage
Program Manager

March 9, 1988

Date of Issue

VISIBLE EMISSION OBSERVATION FORM

No. 002

COMPANY NAME		Alliance Construction Corp	
STREET ADDRESS		Plum Ave	
CITY	STATE	ZIP	
Durham	N.C.		
PHONE (KEY CONTACT)		SOURCE ID NUMBER	

OBSERVATION DATE		START TIME	END TIME		
5-26-88		08 29	0851		
SEC	0	15	30	45	COMMENTS
MIN					
1	○	○	○	○	
2	○	○	○	○	
3	○	○	○	○	
4	○	○	○	○	
5	○	○	○	○	
6	○	○	○	○	
7	○	○	○	○	
8	○	○	○	○	
9	○	○	○	○	
10	○	○	○	○	
11	○	○	○	○	
12	○	○	5	○	
13	○	○	○	○	
14	○	○	○	○	
15	○	○	○	○	
16	○	○	○	○	
17	○	○	○	○	
18	○	○	○	○	
19	○	○	○	○	
20	○	○	○	5	
21	○	○	○	○	
22	○	○	○	○	
23	○	○	○	○	
24	○	○	○	○	
25	○	○	○	○	
26	○	○	○	○	
27	○	○	○	○	
28	○	5	○	○	
29	○	○	○	○	
30	○	○	○	○	

PROCESS EQUIPMENT		OPERATING MODE	
Asphalt Rotary Kiln		Running	
CONTROL EQUIPMENT		OPERATING MODE	
Baghouse		Running	
DESCRIBE EMISSION POINT			
3' x 4' Baghouse stack			
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER,		
28'	Start 23'	End 23'	
DISTANCE FROM OBSERVER		DIRECTION FROM OBSERVER	
Start 180'	End 180'	Start NW End NW	
DESCRIBE EMISSIONS			
Start No visible Emissions	End		
EMISSION COLOR		IF WATER DROPLET PLUME	
Start No visible	End No visible	Attached () Detached ()	
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED			
S 1' Above stack	End 1' Above stack		
DIREC PLUME BACKGROUND			
Start Clear Sky	End Clear Sky		
BACKGROUND COLOR		SKY CONDITIONS	
Start Blue Sky	End Blue Sky	Start Clear	End Clear
WIND SPEED		WIND DIRECTION	
Start 3-5	End 3-5 mph	Start N	End N
AMBIENT TEMP		WET BULB TEMP	RH, percent
Start 52°F	End 53°F	44°F	

Stack with Plume	SOURCE LAYOUT SKETCH	Draw North Arrow
Sun		
Wind		
ADDITIONAL INFORMATION		
Visible emissions light brown		
when seen	Slant Angle 7°	

OBSERVER'S NAME (PRINT)	Paul A. Minor	
OBSERVER'S SIGNATURE	Paul Minor	DATE 5-26-88
ORGANIZATION	Eastern Technical Assoc.	
CERTIFIED BY	Eastern Technical Assoc.	DATE 3-9-88
CONTINUED ON VEO FORM NUMBER		
003		

VISIBLE EMISSION OBSERVATION FORM

Test -1 - 18
No. 001

COMPANY NAME		Alliance Construction Co. Inc.		
STREET ADDRESS		Plum Ave		
CITY	STATE	ZIP		
Durham	NC			
PHONE (KEY CONTACT)	SOURCE ID NUMBER			

PROCESS EQUIPMENT	OPERATING MODE
Asphalt kiln	Running
CONTROL EQUIPMENT	OPERATING MODE
Bay house	Running

DESCRIBE EMISSION POINT				
Bay house stack 4' x 3'				

HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER
28'	Start 23' End 23'
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER
Start 180' End 180'	Start NW End NW

DESCRIBE EMISSIONS				
Start No visible emissions	End No visible emissions			
EMISSION COLOR	IF WATER DROPLET PLUME			
Start — End —	Attached <input type="checkbox"/>	Detached <input checked="" type="checkbox"/>		

POINT IN THE PLUME AT WHICH OPACTY WAS DETERMINED				
S	1' Above Stack	End	1' Above Stack	

DESCRIBE PLUME BACKGROUND				
Start Blue sky	End Blue sky			
BACKGROUND COLOR	SKY CONDITIONS			
Start Blue End Blue	Start Clear	End Clear		
WIND SPEED	WIND DIRECTION			
Start 4-7 mph	Start N	End N		
AMBIENT TEMP	WET BULB TEMP	RH, percent		
Start 50°F End 51°F	43°F			

Stack with Plume	SOURCE LAYOUT SKETCH	Draw North Arrow
		<img alt="Sketch of the

DESEVALUATOR PembertonEVALUATION DATE 5-16-93B

METHOD 5: SECONDARY EMISSIONS TEST REPORT EVALUATION

AGENCY: NCFACILITY: Alliance Contracting Corp.TEST DATE: 5-26-88

PROCESS TESTED (SCC):

Rotary Dryer → Stack → Baghouse → Stack → Atmosphere

control device → No Spec's Avail.

TEST RESULTS/PROCESS RATES/EMISSION FACTOR RATINGS:

Emission Rate (lb/hr)	Emission Factor (lb/Han)
1 0.4482	0.0025b
2 0.4247	0.00243
3 0.4052	0.00232
Any 0.4260	0.00243

PROCESS RATE

is process rate during testing
representative of normal operations3N/A175 tph

FLOW/STREAM ANALYSIS

3

Methods 1-4 or equivalent (including traverse and port illustrations, cyclonic flow determination, MW and moisture calculations) performed to allow calculation of emission rates at standard conditions

- 1 ✓ 3 ports 6 pts/port
- 2 ✓ VH, SPV, APV, TY, MW, A✓
- 3 CO₂, O₂ ✓
- 4 ✓

FIELD DATA

3is field data on standard forms, and
does raw data correspond with printout

EQUIPMENT

2

borosilicate glass probe liner, quartz fiber filter

SAMPLING DURATION

3must have at least 3 runs, each ≥ 1 hour ✓
duration, with sampling ≥ 2 minutes at each
traverse point, and total sampling volume ≥ 30 dscf3.5 min /ptCALIBRATION were both pre- and
post-test calibrations performed for
meter box✓ ✓3

pitot tube

3

temperature sensor

3

nozzle (3 #)

3

LEAK CHECKS

pretest optional; post-test, conducted at vacuum
≥ highest sampling vacuum, leakage rate < 0.02 cfm
or 4% of average sampling rate

SAMPLING TEMPERATURE

3both probe and filter must be maintained at
248 ± 25°F or other temperature specified in NSPS

ISOKINETICS

3

within 100±10% for all runs

BLANKS

acetone blank analyzed, < 0.001% residue

$$0.002 \frac{\text{mg}}{\text{m}^3} \times \frac{\text{cm}^3}{\text{m}^3} \times \frac{10^6 \text{ ml}}{10^6 \text{ ml}} \times \frac{1000 \text{ mg}}{1000 \text{ mg}} = 2.53 \times 10^{-3}$$

SAMPLE PREP

3

filter desiccation and tare weights documented

VISIBLE EMISSION OBSERVATION FORM

105
No. 003

20

COMPANY NAME		Alliance Construction Corp	
STREET ADDRESS			
CITY		STATE	ZIP
Durham		N.C.	
PHONE (KEY CONTACT)		SOURCE ID NUMBER	

PROCESS EQUIPMENT	OPERATING MODE
Rotary Kiln	Running
CONTROL EQUIPMENT	OPERATING MODE
Bag house	Running

DESCRIBE EMISSION POINT			
Bag house stack 4' x 3'			

HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER
28'	Start 23' End 23'
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER
Start 180' End 180'	Start NW End NW

DESCRIBE EMISSIONS			
Start	No visible Emissions	End	No visible emissions
EMISSION COLOR		IF WATER DROPLET PLUME	
Start	None	End	None
Attached	[]	Detached	[]

POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED			
Start	1' Above stack	End	1' Above stack

PLUME BACKGROUND			
Start	Cloudy	End	Cloudy
BACKGROUND COLOR		SKY CONDITIONS	
Start	Blue	End	Blue
Start	Clear	End	Clear
WIND SPEED		WIND DIRECTION	
Start	3.5 mph	End	3.5 mph
Start	N	End	W
AMBIENT TEMP		WET BULB TEMP	RH, percent
Start	54°F	End	54°F
49°F			

Stack with Plume	SOURCE LAYOUT SKETCH	Draw North Arrow
Sun		
Wind		

ADDITIONAL INFORMATION	
Slant Angle 7°	

OBSERVATION DATE		START TIME	END TIME		
5-26-88		0859	0905		
SEC	0	15	30	45	COMMENTS
MIN					
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
7	0	0			End of Test
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

OBSERVER'S NAME (PRINT)		Paul A. Minor
OBSERVER'S SIGNATURE		Paul Minor
		DATE 5-26-88
ORGANIZATION		Eastern Technical Associates
CERTIFIED BY		Eastern Technical Associates
		DATE 5-26-88
CONTINUED ON VEO FORM NUMBER		

VISIBLE EMISSION OBSERVATION FORM

Test 2 - 21

No. 004

COMPANY NAME
Alliance Construction Corp

STREET ADDRESS
311 Plum st.

CITY
Durham

STATE
N.C.

ZIP

PHONE (KEY CONTACT)

SOURCE ID NUMBER

PROCESS EQUIPMENT
Rotary Kiln

OPERATING MODE
Running

CONTROL EQUIPMENT
Bag house

OPERATING MODE
Running

DESCRIBE EMISSION POINT
3' x 4' Bag house stack

HEIGHT ABOVE GROUND LEVEL
28'

HEIGHT RELATIVE TO OBSERVER
Start 23' End 23'

DISTANCE FROM OBSERVER
Start 180' End 180'

DIRECTION FROM OBSERVER
Start NW End NW

DESCRIBE EMISSIONS
Start NO Visible Emission End NO Visible Emission

EMISSION COLOR
Start None End

IF WATER DROPLET PLUME
Attached Detached

POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED
Start 3' Above Stack opening End 3' Above Stack opening

DETERMINE PLUME BACKGROUND
Start Clear Sky End Clear Sky

BACKGROUND COLOR
Start Blue End Blue

SKY CONDITIONS
Start Clear End Clear

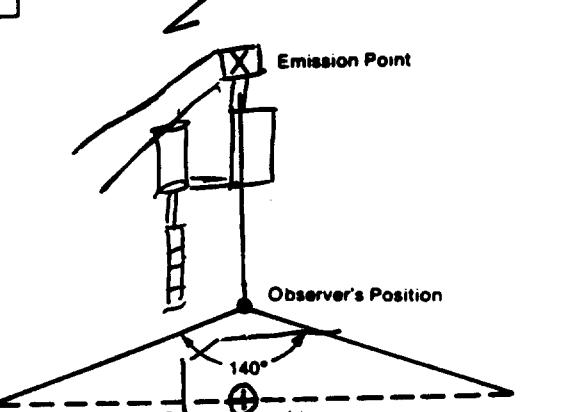
WIND SPEED
Start 3-5 mph End 3-5 mph

WIND DIRECTION
Start N End N

AMBIENT TEMP
Start 56°F End 57°F

WET BULB TEMP
49°F

RH, percent


Stack with Plume

Sun

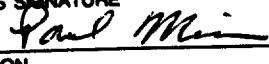
Wind

SOURCE LAYOUT SKETCH

Draw North Arrow

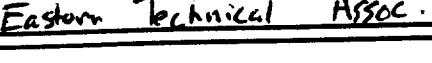
Emission Point

Observer's Position


140°

Sun Location Line

ADDITIONAL INFORMATION


OBSERVATION DATE 5-26-88				START TIME 0930	END TIME 1000
SEC MIN	0	15	30	45	COMMENTS
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
7	0	0	0	0	
8	0	0	0	0	
9	0	0	0	0	
10	0	0	0	0	
11	0	0	0	0	
12	0	0	0	0	
13	0	0	0	0	
14	0	0	0	0	
15	0	0	0	0	
16	0	0	0	0	
17	0	0	0	0	
18	0	0	0	0	
19	5	0	0	0	
20	0	0	0	0	
21	0	0	0	0	
22	0	0	0	0	
23	0	0	0	0	
24	0	0	0	0	
25	0	0	0	0	
26	0	0	0	0	
27	0	0	0	0	
28	0	0	0	0	
29	0	0	0	0	
30	0	0	0	0	

OBSERVER'S NAME (PRINT)
Paul A. Minor

OBSERVER'S SIGNATURE

DATE
5-26-88

ORGANIZATION
Eastern Technical Associates

CERTIFIED BY

DATE
3-9-88

CONTINUED ON VEO FORM NUMBER
005

VISIBLE EMISSION OBSERVATION FORM

Test #2 - 23
No. 006

COMPANY NAME	Alliance Construction Corp		
STREET ADDRESS	311 Plum St		

CITY	Richmond	STATE	N.C.
PHONE (KEY CONTACT)	SOURCE ID NUMBER		

PROCESS EQUIPMENT	OPERATING MODE
Rotary Kiln	Running
CONTROL EQUIPMENT	OPERATING MODE
Bag house	Running

DESCRIBE EMISSION POINT	3' x 4' Bag house stack
-------------------------	-------------------------

HEIGHT ABOVE GROUND LEVEL	28'	HEIGHT RELATIVE TO OBSERVER	Start 20' End 20'
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER		
Start 180° End 180°	Start NW End NW		

DESCRIBE EMISSIONS	Start NO visible emissions End No visible emissions		
EMISSION COLOR	IF WATER DROPLET PLUME NO		
Start None End None	Attached <input type="checkbox"/>	Detached <input type="checkbox"/>	
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED	Start 3' Above stack opening End 3' Above stack opening		

DESCRIBE PLUME BACKGROUND	Start Blue sky End Blue sky	
BACKGROUND COLOR	SKY CONDITIONS	
Start Blue End Blue	Start Clear End Clear	
WIND SPEED	WIND DIRECTION	
Start 3-5 mph End 3-5 mph	Start NE End NE	
AMBIENT TEMP	WET BULB TEMP	RH, percent
Start 59°F End 59°F	46°F	

Stack with Plume	SOURCE LAYOUT SKETCH	Drew North Arrow
Sun		
Wind		

ADDITIONAL INFORMATION	40° Slant Angle
------------------------	-----------------

OBSERVATION DATE	5-26-88	START TIME	10:30	END TIME	1038
SEC	0	15	30	45	COMMENTS
MIN					
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
7	0	0	0	0	
8	0				End of Test
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

OBSERVER'S NAME (PRINT)	Paul A. Minor	
OBSERVER'S SIGNATURE	Paul Mi	DATE
ORGANIZATION	Eastern Technical Associates	
CERTIFIED BY	Eastern Technical Associates	DATE
CONTINUED ON VEO FORM NUMBER		

VISIBLE EMISSION OBSERVATION FORM

Test 3 - 24
No. 007

COMPANY NAME
Alliance Construction Corp

STREET ADDRESS
311 Plum St.

CITY
Durham

STATE
N.C.

ZIP

PHONE (KEY CONTACT)

SOURCE ID NUMBER

PROCESS EQUIPMENT
Rotary Kiln

OPERATING MODE
Running

CONTROL EQUIPMENT
Bag house

OPERATING MODE
Running

DESCRIBE EMISSION POINT
3' x 4' Baghouse stack

HEIGHT ABOVE GROUND LEVEL
28'

HEIGHT RELATIVE TO OBSERVER
Start 20' End 20'

DISTANCE FROM OBSERVER
Start 100' End 100'

DIRECTION FROM OBSERVER
Start NW End NW

DESCRIBE EMISSIONS
Start NONE End NONE

EMISSION COLOR
Start NONE End NONE

IF WATER DROPLET PLUME NO
 Attached Detached

POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED
Start 3' Above stack opening End 3' Above stack opening

SKY PLUME BACKGROUND
Start Clear Sky End Clear Sky

BACKGROUND COLOR
Start Blue End Blue

SKY CONDITIONS
Start Clear End Clear

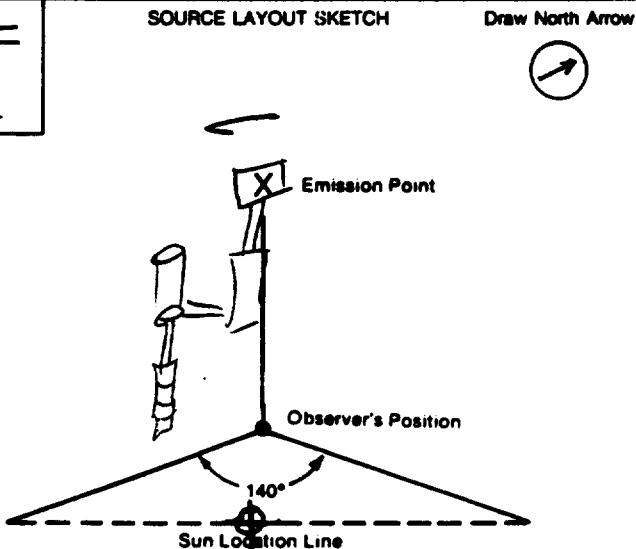
WIND SPEED
Start 4-7 End 3-5

WIND DIRECTION
Start NE End NE

AMBIENT TEMP
Start 62°F End 54°F

WET BULB TEMP
Start 54°F End

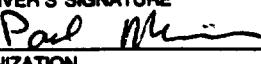
RH. percent


Stack with Plume

Sun

Wind

SOURCE LAYOUT SKETCH


Draw North Arrow

ADDITIONAL INFORMATION
4° sight Angle

OBSERVATION DATE 5-26-88					START TIME 1103	END TIME 1133
SEC MIN	0	15	30	45	COMMENTS	
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4	0	0	0	0		
5	0	0	0	0		
6	0	0	0	0		
7	0	0	0	0		
8	0	0	0	0		
9	0	0	0	0		
10	0	0	0	0		
11	0	0	0	0		
12	0	0	0	0		
13	0	0	0	0		
14	0	0	0	0		
15	0	0	0	0		
16	0	0	0	0		
17	0	0	0	0		
18	0	0	0	0		
19	0	0	0	0		
20	0	0	0	0		
21	0	0	0	0		
22	0	0	0	0		
23	0	0	0	0		
24	0	0	0	0		
25	0	0	0	0		
26	0	0	0	0		
27	0	0	0	0		
28	0	0	0	0		
29	0	0	0	0		
30	0	0	0	0		

OBSERVER'S NAME (PRINT)
Paul A. Minor

OBSERVER'S SIGNATURE

DATE
5-26-88

ORGANIZATION
Eastern Technical Associates

CERTIFIED BY
Eastern Technical Associates

DATE
3-9-88

CONTINUED ON VEO FORM NUMBER
008

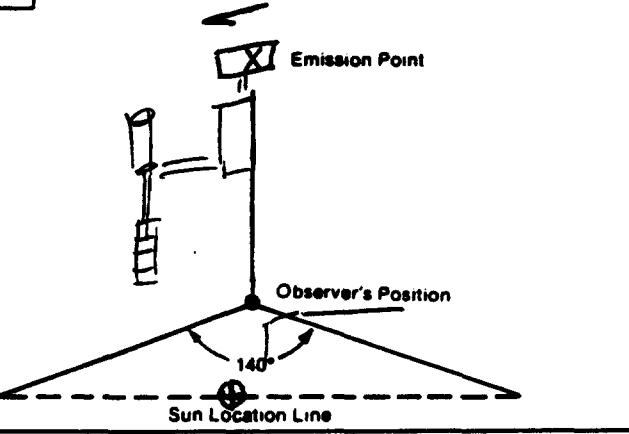
VISIBLE EMISSION OBSERVATION FORM

1251
No. 008

25

COMPANY NAME	Alliance Construction Corp.		
STREET ADDRESS	311 Plum St.		
CITY	STATE	N.C.	
PHONE (KEY CONTACT)	SOURCE ID NUMBER		

PROCESS EQUIPMENT	Rotary Kiln Asphalt	OPERATING MODE	Running
CONTROL EQUIPMENT	Bay house	OPERATING MODE	Running


DESCRIBE EMISSION POINT	3' x 4' Bay house stack		
-------------------------	-------------------------	--	--

HEIGHT ABOVE GROUND LEVEL	28'		
DISTANCE FROM OBSERVER	Start 20' End 20'		
Start 180' End 180'	DIRECTION FROM OBSERVER		
Start NW End NW			

DESCRIBE EMISSIONS					
Start	NONE		End	NONE	
EMISSION COLOR	IF WATER DROPLET PLUME NO				
Start	NONE		End	Attached <input type="checkbox"/>	Detached <input type="checkbox"/>

POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED					
S	3' above Stack opening			End	3' above Stack opening

ABOVE PLUME BACKGROUND					
Start	Clear sky		End	Clear sky	
BACKGROUND COLOR	SKY CONDITIONS				
Start	Blue		End	Blue	
WIND SPEED	Start Clear End Clear				
Start 4-7 mph	End	4-7	Start	NE	End NE
AMBIENT TEMP	WET BULB TEMP			RH, percent	
Start 64°F	End	65°F	58°F		

Stack with Plume	SOURCE LAYOUT SKETCH			Draw North Arrow
Sun				
Wind				

OBSERVATION DATE					START TIME	END TIME
	5-26-88				11 33	12 13
SEC	0	15	30	45	COMMENTS	
MIN						
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4	0	0	0	0		
5	0	0	0	0		
6	0	0	0	0		
7	0	0	0	0		
8	0	0	0	0		
9	0	0	0	0		
10	0	0	0	0		
11	0	0	0	0		
12	0	0	0	0		
13	0	0	0	0		
14	0	0	0	0		
15	0	0	0	0		
16	0	0	0	0		
17	0	0	0	0		
18	0	0	0	0		
19	0	0	0	0		
20	0	0*	0	0	11 54 stop	
21	0	0	0	0	*1202 START	
22	0	0	0	0		
23	0	0	0	0		
24	0	0	0	0		
25	0	0	0	0		
26	0	0	0	0		
27	0	0	0	0		
28	0	0	0	0		
29	0	0	0	0		
30	0	0	0	0		

OBSERVER'S NAME (PRINT)	Paul A. Minor	
OBSERVER'S SIGNATURE	Paul Min	DATE
		5-26-88
ORGANIZATION	Eastern Technical Associates	
CERTIFIED BY	Eastern Technical Associates	DATE
		3-9-88
CONTINUED ON VEO FORM NUMBER	009	

40° Slant Angle

VISIBLE EMISSION OBSERVATION FORM

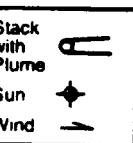
Test 5 8 26
No. 609

COMPANY NAME
Alliance Construction Corp.
STREET ADDRESS
311 Plum St

CITY
Durham
PHONE (KEY CONTACT)
SOURCE ID NUMBER

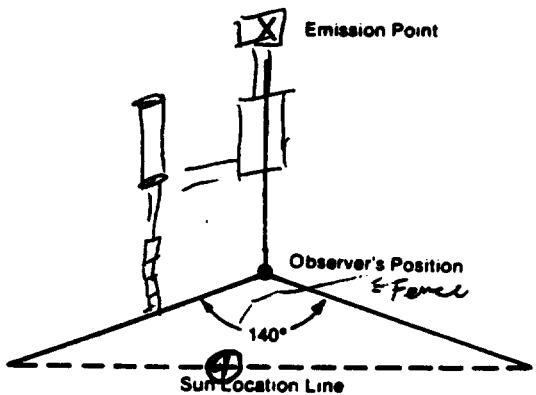
PROCESS EQUIPMENT
Asphalt Rotary kiln
CONTROL EQUIPMENT
Bag house

DESCRIBE EMISSION POINT
3'x4 Bag house stack


HEIGHT ABOVE GROUND LEVEL
23'
HEIGHT RELATIVE TO OBSERVER
Start 20' End 20'

DISTANCE FROM OBSERVER
Start 180' End 180'
DIRECTION FROM OBSERVER
Start NW End NW

DESCRIBE EMISSIONS
Start NO visible emissions End NO visible emissions
EMISSION COLOR
Start None End None
IF WATER DROPLET PLUME NO
Attached Detached


POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED
Start 3' above stack opening End 3' above stack opening

DETERMINE PLUME BACKGROUND
Start Clear sky End Clear sky
BACKGROUND COLOR
Start Blue End Blue
SKY CONDITIONS
Start Clear End Clear
WIND SPEED
Start 3-5 mph End 3-5 mph
WIND DIRECTION
Start NE End NE
AMBIENT TEMP
Start 66°F End 66°F
WET BULB TEMP
Start 62°F End 62°F
RH, percent

SOURCE LAYOUT SKETCH

Draw North Arrow

ADDITIONAL INFORMATION
40° slant Angle

OBSERVATION DATE		START TIME		END TIME	
SEC	0	15	30	45	COMMENTS
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
7	0	0	0	0	
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					

OBSERVER'S NAME (PRINT)	Paul A. Minor
OBSERVER'S SIGNATURE	Paul Mi
DATE	5-26-88
ORGANIZATION	Eastern Technical Associates
CERTIFIED BY	DATE
Eastern Technical Associates	3-7-88
CONTINUED ON VEO FORM NUMBER	

APPENDIX C

CALIBRATION DATA

QUALITY ASSURANCE PROCEDURES

General. Each item of field test equipment purchased or constructed by Entropy is assigned a unique, permanent identification number. New items for which calibration is required are calibrated before initial field use. Equipment whose calibration status may change with use or with time is inspected in the field before testing begins, and again upon return from each field use. When an item of equipment is found to be out of calibration, it is adjusted and recalibrated or retired from service. All equipment is periodically recalibrated in full, regardless of the outcome of these regular inspections.

Calibrations are conducted in a manner and at a frequency which meet or exceed U. S. EPA specifications. Entropy follows the calibration procedures outlined in EPA Reference Methods, and those recommended within the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III (EPA-600/4-77-027b, August, 1977). When the Reference Methods are inapplicable, Entropy uses methods such as those prescribed by the American Society for Testing and Materials (ASTM).

Data obtained during calibrations are recorded on standardized forms, which are checked for completeness and accuracy by the Quality Assurance Manager or the Quality Assurance Director. Data reduction and subsequent calculations are performed using Entropy's in-house computer facilities. Calculations are generally performed at least twice as a check for accuracy. Copies of calibration data are included in the test or project reports.

Inspection and Maintenance. An effective preventive maintenance program is necessary to ensure data quality. Each item of equipment returning from the field is inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned, and recalibrated where necessary.

Each item of equipment transported to the field for this test program was inspected again before being packed. Entropy performs these quality assurance activities prior to departure for the job site to detect equipment problems which may originate during periods of storage. This minimizes lost time on site due to equipment failure.

Occasional equipment failure in the field is unavoidable despite the most rigorous inspection and maintenance procedures. For this reason, Entropy routinely transports sufficient backup equipment to the job site to have complete redundancy of all critical sampling train components.

Calibration. Emissions sampling equipment that requires calibration includes the nozzle, pitot tube, pressure gauges, thermometers, flow meters, dry gas meters, and barometers. The following sections elaborate on the calibration procedures followed by Entropy for these items of equipment. Calibration data for the specific items of equipment used for this test program follow the text.

Nozzles. Each probe nozzle is uniquely and permanently identified at the time of purchase, and calibrated before initial field use. The inside diameter of the nozzle is measured to the nearest 0.001 in. using a micrometer. Five measurements are made using different diameters each time. If the difference between the high and the low numbers does not exceed 0.004 inch, the average of the five measurements is used. If the difference exceeds this amount, or when the nozzle becomes nicked, dented, or corroded, the nozzle is reshaped, sharpened, and recalibrated.

Pitot Tubes. All Type S pitot tubes used by Entropy, whether separate or attached to a sampling probe, are constructed in-house or by Nutech Corporation. Each pitot is calibrated when new in accordance with the geometry standards contained in EPA Reference Method 2. A Type S pitot tube, constructed and positioned according to these standards, will have a coefficient of 0.84 ± 0.02 . This coefficient should not change as long as the pitot tube is not damaged.

Each pitot tube is inspected visually before it is transported to the field. If this inspection indicates damage or raises doubt that the pitot remains in accordance with the EPA geometry standards, the pitot tube is not used until it has been refurbished and recalibrated.

Differential Pressure Gauges. Some meter consoles used by Entropy are equipped with 10 in. W.C. inclined-vertical manometers. Fluid manometers

do not require calibration other than leak checks. Manometers are leak-checked in the field prior to each test series, and again upon return from the field.

Most of Entropy's meter consoles are equipped with Magnehelic differential pressure gauges. Each set of gauges is calibrated initially over its full range, 0-10 inches W.C. After each field use, the calibration of the gauge set is checked against an inclined manometer at the average delta p encountered during the test. If the agreement is within \pm 5 percent, the calibration is acceptable.

Thermometers

Impinger Thermometer. On site, prior to the start of testing, the thermometer used to monitor the temperature of the gas leaving the last impinger is compared with a mercury-in-glass thermometer which meets ASTM E-1 specifications. The impinger thermometer is adjusted if necessary until it agrees within 2° F of the reference thermometer. (If the thermometer is not adjustable, it is labeled with a correction factor).

Dry Gas Meter Thermometer. The thermometer used to measure the temperature of the metered gas sample is checked prior to each field trip against an ASTM mercury-in-glass thermometer. The dry gas meter thermometer is acceptable if the values agree within 5.4° F. Thermometers not meeting this requirement are adjusted or labeled with a correction factor.

Flue Gas Temperature Sensor. All thermocouples employed by Entropy for the measurement of flue gas temperatures are calibrated upon receipt. Initial calibrations are performed at three points (ice bath, boiling water, and hot oil). An ASTM mercury-in-glass thermometer is used as a reference. The thermocouple is acceptable if the agreement is within 1.5 percent (absolute) at each of the three calibration points.

On site, prior to the start of testing, the reading from the stack gas thermocouple-potentiometer combination is compared with a mercury-in-glass reference thermometer. If the two agree within 1.5 percent (absolute), the thermocouple and potentiometer are considered to be in proper working order for the test series.

After each field use, the thermocouple-potentiometer system is compared with an ASTM mercury-in-glass reference thermometer at a temperature within 10 percent of the average absolute flue gas temperature. If the absolute temperatures agree within 1.5 percent, the temperature data are considered valid.

Dry Gas Meter and Orifice. The dry gas meter and orifice are calibrated simultaneously. There are two calibration procedures. The full calibration is a complete laboratory procedure used to obtain the calibration factor of the dry gas meter before its first use and periodically thereafter. Full calibrations are performed at three different orifice settings (flow rates). A simpler procedure, the posttest calibration, is designed to check whether the calibration factor has changed. Posttest calibrations are performed after each field test series at an intermediate orifice setting (based on the test data) and at the maximum vacuum reached during the test.

Entropy uses as a transfer standard a dry gas meter that is calibrated annually against a spirometer. During the annual calibration, triplicate calibration runs are performed at seven flow rates ranging from 0.25 to 1.40 cfm.

Dry Gas Meter. Each metering system receives a full calibration at the time of purchase, and a posttest calibration after each field use. If the calibration factor, Y , deviates by less than five percent from the initial value, the test data are acceptable. If Y deviates by more than five percent, the meter is recalibrated and the meter coefficient (initial or recalibrated) that yields the lowest sample volume for the test runs is used.

EPA Reference Method 5 calls for another full calibration anytime the posttest calibration check indicates that Y has changed by more than five percent. Standard practice at Entropy is to recalibrate the dry gas meter anytime Y is found to be outside the range $0.98 \leq Y \leq 1.02$.

Orifice. An orifice calibration factor is calculated for each flow setting during a full calibration. If the range of values does not vary by more than 0.15 in. H_2O over the range of 0.4 to 4.0 in. H_2O , the arithmetic average of the values obtained during the calibration is used.

Barometer. Each field barometer is adjusted before each test series to agree within \pm 0.1 inches of a reference aneroid barometer. The reference barometer is checked weekly against the station pressure value (corrected for elevation difference) reported by the National Weather Service station at the Raleigh-Durham airport, approximately 2.5 miles from Entropy's location.

Dry Gas Meter Identification: 6138323

Calibration by: N. Andra

Date: 3-26-86

Barometric Pressure (P_b): 30.12 in. Hg

*Date: _____
 *Barometric Pressure (P_b): _____ in. Hg
 *Dry Gas Meter Identification: _____

Approx. Flow Rate (Q) cfm	Spirometer Gas Volume (V_s) ft ³	Dry Gas Meter			Pressure (Δp) in. H ₂ O	Time (θ) min.	Flow Rate (Q) cfm	Meter Coeff. (\bar{V}_{ds})	Avg. Meter Coeff. (\bar{V}_{ds})
		Gas Volume (V_{ds}) ft ³	Temp. (t_s) °F	Temp. (t_{ds}) °F					
0.3	2.924	2.924	2.906	81	0.40	10.0	0.284	1.0016	
	2.969	2.928	2.849	81	0.40	10.0	0.290	1.0304	
3.452	3.452	3.501	81	0.40	10.0	0.3571	1.0377		
4.235	4.235	4.330	77	0.85	10.0	0.4125	0.9700		
4.345	4.345	4.370	78	0.85	10.0	0.4427	1.0329		
4.417	4.417	4.345	79	0.85	10.0	0.4302	1.0114		
5.328	5.328	5.206	75	1.10	10.0	0.5271	1.0135		
5.383	5.383	5.212	77	1.15	10.0	0.5299	1.0248		
5.301	5.301	5.164	78	1.15	10.0	0.529	1.020		
8.288	8.288	8.214	74	2.65	10.0	0.8067	0.9985		
8.397	8.397	8.214	80	2.65	10.0	0.8158	1.0119		
8.352	8.352	8.24	8.199	80	2.65	10.0	0.8108	1.0076	
10.638	10.638	8.33	10.442	81	4.15	10.0	1.040	1.0014	
10.654	10.654	8.33	10.534	81.5	4.15	10.0	1.042	0.9981	
10.528	10.528	8.33	10.450	81.5	4.15	10.0	1.0296	0.9941	
1.0									

$$Y_{ds} = \frac{(V_s) (t_{ds} + 460) (P_b)}{(V_{ds}) (t_s + 460) (P_h + (p / 13.6))}$$

$$Q = \frac{(17.64) (P_b) (V_s)}{(t_s + 460) (g)}$$

Dry Gas Meter Identification:

Calibration by:

Date: Barometric Pressure (Pb): in. Hg

"Barometric Pressure (P_b): _____ in. Hg

Date: _____ Barometric Pressure (P_b): _____ in. Hg
Date: _____ Barometric Pressure (P_b): _____ in. Hg

$$Y_{ds} = \frac{(V_s) (t_{ds} + 460) (P_b)}{(V_{ds}) (t_s + 460) (P_b + (P / 13.6))}$$

$$Q = (17.64) \frac{(P_B) (V_s)}{(t_s + 460) (\theta)}$$

Dry Gas Meter Identification: 6838323

Calibration by: T. M. Donatell Page 1 of 2

Date: 2-26-88

Barometric Pressure (P_b): 29.26 in. Hg

Date: 2-29-88

*Barometric Pressure (P_b): 29.74 in. Hg

ENTROPY

ENVIRONMENTALISTS, INC.

Approx. Flow Rate (Q) cfm	Spirometer Gas Volume (V _s) ft ³	Dry Gas Meter			Time (t) min.	Flow Rate (Q) cfm	Heter Meter Coeff. (Y _{ds})	Avg. Meter Coeff. (Y _{ds})
		Gas Volume (V _{ds}) ft ³	Temp. (t _{ds}) °F	Pressure (ΔP) in. H ₂ O				
2.404	28.8	2.515	76	0.32	10:00	0.2303	0.9425	
2.532	28.8	2.523	76.5	0.34	10:00	0.2426	0.9984	
2.572	28.8	2.527	73	0.38	10:00	0.2478	1.0194	
4.135	28.8	4.035	75	0.67	10:00	0.4026	1.0059	
4.171	28.8	4.052	75	0.65	10:00	0.4061	1.0205	
4.162	28.8	4.019	25.5	0.65	10:00	0.4052	1.0276	
5.036	28.8	4.887	76	0.95	10:00	0.4824	1.0227	
5.044	80.0	4.900	76	0.95	10:00	0.4800	1.0234	
5.027	80.0	4.839	76	0.95	10:00	0.4840	1.0276	
7.282	78.8	7.211	75	2.04	10:00	0.7582	0.9977	
7.851	78.8	7.894	75	2.03	10:00	0.7644	1.0095	
7.814	78.8	7.724	75	2.03	10:00	0.7608	0.9995	
9.900	78.8	9.845	75	3.17	10:00	0.9639	0.9980	
9.905	78.8	9.773	75	3.17	10:00	0.9639	0.9980	
10.018	78.8	9.462	76	3.12	10:00	0.9754	1.0005	

$$(V_s) (t_{ds} + 160) (P_b)$$

$$(P_b) (V_s)$$

$$0 = (117.64)$$

Dry Gas Meter Identification: 6838323

Calibration by: T. McDonald

Page 2 of 2

Date: 2-16-88

Barometric Pressure (P_b): 29.26 in. Hg

*Date: 2-29-88

*Barometric Pressure (P_b): 29.74 in. Hg

ENTROPY
ENVIRONMENTALISTS, INC.

$$Y_{ds} = \frac{(V_s)(t_{ds} + 460)(P_b)}{-----}$$

$$Q = (17.64) \frac{(P_b)}{(V_s)}$$

Meter Box Number: 18Calibration by: DBStandard Meter Number: 6838323 Standard Meter Gamma: 1.0042Date: 1-5-88 Barometric Pressure (P_b): 29.95 in. Hg*Date: _____ *Barometric Pressure (P_b): _____ in. Hg

METERBOX CALIBRATION

Standard Meter			Meter Box Metering System				
Gas Volume (V_{ds}) ft ³	Temp. (t_{ds}) °F	Time (θ) min.	Orifice Setting (ΔH) in. H ₂ O	Gas Volume (V_d) ft ³	Temp. (t_d) °F	Coeff. (Y_d)	$\Delta H_{@}$ in. H ₂ O
4.015	66	10	0.50	4.199	85	0.9937	1.653
4.008	66	10	0.50	4.176	84	0.9956	1.662
8.127	66	10	2.10	8.364	86	1.0077	1.691
8.111	66	10	2.10	8.331	88	1.0134	1.691
12.162	66	10	4.80	12.321	91	1.0263	1.710
12.142	66	10	4.80	12.317	93	1.0286	1.709
			Average		1.0109		1.686

$$Y_d = \frac{Y_{ds} * V_{ds} * (t_d + 460) * P_b}{V_d * (t_{ds} + 460) * (P_b + H/13.6)}$$

$$\Delta H_{@} = \frac{0.0317 * \Delta H}{P_b * (t_d + 460)} * \left[\frac{(t_{ds} + 460) * \theta}{Y_{ds} * V_{ds}} \right]^2$$

Meter Box Number: 18Calibration by: JGMeter Box Vacuum: 4 in. HgJob 5911AllianceStandard Meter Number: 6838323 Standard Meter Gamma: 1.00Date: 6-3-88 Barometric Pressure (P_b): 29.34 in. Hg

POST TEST CALIBRATION

Standard Meter			Meter Box Metering System				
Gas Volume (V_{ds}) ft ³	Temp. (t_{ds}) °F	Time (θ) min.	Orifice Setting (ΔH) in. H ₂ O	Gas Volume (V_d) ft ³	Temp. (t_d) °F	Coeff. (Y_d)	$\Delta H_{@}$ in. H ₂ O
9.376	74	10	2.80	9.502	91	1.012	1.22
9.384	74	10	2.80	9.533	94	1.015	1.26
9.399	74	10	2.80	9.521	97	1.023	1.25
Average						1.016	1.26

$$Y_d = \frac{Y_{ds} * V_{ds} * (t_d + 460) * P_b}{V_d * (t_{ds} + 460) * (P_b + \Delta H/13.6)}$$

$$\Delta H_{@} = \frac{0.0317 * \Delta H}{P_b * (t_d + 460)} * \frac{(t_{ds} + 460) * \theta}{Y_{ds} * V_{ds}}^2$$

NOZZLE NUMBER:

407

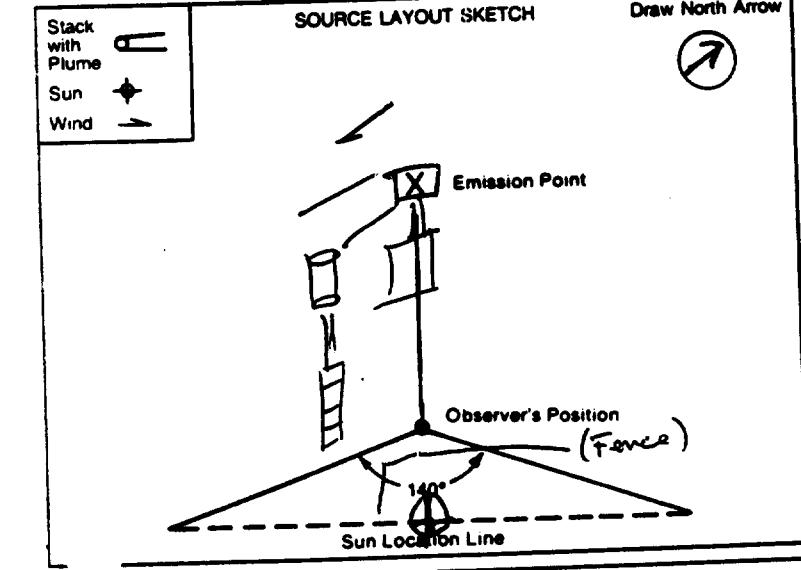
NOTE: All diameters measured in inches.

APPENDIX D

SAMPLING AND ANALYTICAL PROCEDURES

ENTROPY

VISIBLE EMISSION OBSERVATION FORM


TEST #2 - ??
No. 005

COMPANY NAME	Alliance Construction Corp		
STREET ADDRESS	311 Plum St		
CITY	STATE	ZIP	
Durham	N.C.		
PHONE (KEY CONTACT)	SOURCE ID NUMBER		
PROCESS EQUIPMENT	OPERATING MODE		
Rotary kiln	Running		
CONTROL EQUIPMENT	OPERATING MODE		
	Running		

DESCRIBE EMISSION POINT
4' x 3' stack from Baghouse

HEIGHT ABOVE GROUND LEVEL 28'	HEIGHT RELATIVE TO OBSERVER Start 23' End 28'
DISTANCE FROM OBSERVER Start 180' End 180'	DIRECTION FROM OBSERVER Start NW End NW

DESCRIBE EMISSIONS Start None End NO visible Emissions	
EMISSION COLOR Start None End None	IF WATER DROPLET PLUME NO Attached <input type="checkbox"/> Detached <input checked="" type="checkbox"/>
POINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED Start 3' Above Stack opening End 3' Above stack opening	
DESCRIBE PLUME BACKGROUND Start Clear Sky End Clear Sky	
BACKGROUND COLOR Start Blue End Blue	SKY CONDITIONS Start Clear End Clear
WIND SPEED Start 3-5 mph End 3-5 mph	WIND DIRECTION Start NNE End NNE
AMBIENT TEMP Start 53°F End 57°F	WET BULB TEMP 45°F RH, percent

ADDITIONAL INFORMATION
7° stack angle

OBSERVATION DATE 5/26/88					START TIME 1000	END TIME 1030
SEC	0	15	30	45	COMMENTS	
MIN						
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4	0	0	0	0		
5	0	0	0	0		
6	0	0	0	0		
7	0	0	0	0		
8	0	0	0	0		
9	0	0	0	0		
10	0	0	0	0		
11	0	0	0	0		
12	0	0	0	0		
13	0	0	0	0		
14	0	0	0	0		
15	0	0	0	0		
16	0	0	0	0		
17	0	0	0	0		
18	0	0	0	0		
19	0	0	0	0		
20	0	0	0	0		
21	0	0	0	0		
22	0	0	0	0	Position shift due	
23	0	0	0	0	to truck (top of	
24	0	0	0	0	10' pile (gravel)	
25	0	0	0	0		
26	0	0	0	0		
27	0	0	0	0		
28	0	0	0	0		
29	0	0	0	0		
30	0	0	0	0		

OBSERVER'S NAME (PRINT)	Paul A. Minor	
OBSERVER'S SIGNATURE	Paul Min	DATE 5-26-88
ORGANIZATION	Eastern Technical Associates	
CERTIFIED BY	Eastern Technical Associates	DATE 3/9/88
CONTINUED ON VEO FORM NUMBER	006	