

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
Bureau of Technical Services
CN 411
Trenton, N.J. 08625-0411
(609) 530-4041

June 12, 1990

MEMORANDUM

TO: Chief, Bureau of Enforcement Operations

THROUGH: Edward Choromanski *(Signature)*

FROM: Michael Pratt *M.P.*

SUBJECT: U.S. Silica Company
APC ID No. 75013
NJ Stack No. 006
P/CT Log No. 01-89-3389

Emission tests were conducted at the above referenced facility on sand silos (and auxiliary belts and an elevator) controlled by a scrubber.

The purpose of these tests was to determine particulate emissions rates and then compare them to P/CT Log No. 01-89-3389 allowables.

NOTES:

- 1) Production rate during stack testing (as explained to this writer by Harry Hornikel, SRO observer witnessing subject stack tests) was at about half P/CT Log No. 01-89-3389 submitted information. Only one, out of two, dryers is normally in operation (as during subject stack test).
- 2) According to Air Nova, Inc. stack tests report, production rate during all three (3) stack test runs was equal to 300,000 lb/hr.

Therefore (as per item above) percent of "normal" production during stack tests was equal to

$$\frac{300,000}{640,000} (100) = \text{about } 97\%$$

Debra Berman reviewed the submitted test report. Her review indicated that particulate emission rates were within P/CT Log No. 01-89-3389 allowables.

CONCLUSION:

Compliance

RECOMMENDATIONS:

- 1) SRO should resolve P/CT Log No. 01-89-3389 production rates.
- 2) Temporary certificate can be changed to permanent status pending approval by SRO.

c Milt Polakovic
Lou Mikolajczyk
Harry Hornikel
Debra Berman
Gary Andrew

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
Bureau of Technical Services
CN 411
Trenton, N.J. 08625-0411
(609) 530-4041

June 6, 1990

MEMORANDUM

TO: Michael Pratt

FROM: Debra Berman *DP*

SUBJECT: U.S. Silica Company
Newport, New Jersey
APC Plant ID No. 75013
NJ Stack No. 006
PCT No. 30934

On March 8, 1990, Air Nova Inc. conducted a stack emissions test on the sand storage silos wet scrubber system (NJ Stack No. 006) at the above referenced facility. Particulate emissions were tested to determine compliance with Permit 30934. The results as reported by Air Nova are as follows:

PARTICULATE EMISSIONS

Run No.	Location	Concentration (grains/dscf)	Emission Rate (lbs/hr)
1	Outlet	0.0018	0.23
2	Outlet	0.0021	0.26
3	Outlet	0.0007	0.09
Allowable	Outlet	---	3.3

Operation and production parameters during the stack test as reported by John Deemer, Project Manager, Air Nova, Inc. are as follows.

Run No.	Usage Rate (lbs/hr)	% Foundry Sand (by weight)
1	300,000 Avg.	100
2	300,000 Avg.	100
3	300,000 Avg.	100
As on permit 30934		99.9

CONCLUSIONS:

Calculations by the Bureau of Technical Services, using the raw data supplied produced substantially the same results.

Particulate emissions were in compliance with Permit 30934 for all three runs.

Operating conditions were acceptable for all three runs.

Project No. 1309

U. S. Silica Company
Newport, New Jersey

Emission Compliance
Test Program

Prepared for:

Mr. David Mason
U. S. Silica Company
700 Railroad Avenue
Newport, New Jersey 08345

April 1990

Table of Contents

	Page
1.0 Introduction	1
2.0 Process Description	2
3.0 Test Results	3
4.0 Description of Project	5
Appendix A - Laboratory Analytical Data	
Appendix B - Field Data Sheets	
Appendix C - Calibration Data Sheets	
Appendix D - Calculations Printouts	
Appendix E - Emission Test Production Data Form	

1.0 Introduction

AirNova, Inc. conducted an emission compliance test program at the U. S. Silica Company facility located in Newport, New Jersey for the purpose of demonstrating compliance with applicable New Jersey Department of Environmental Protection (NJDEP) regulations. The emission sampling was conducted on March 8, 1990 to evaluate the performance of a foundry sand storage silo system and its associated wet scrubber. The specific parameters determined as part of this test project include the following:

<u>Location</u>	<u>Emission Test Parameters</u>
Scrubber Outlet	Particulates

The emission test program was conducted by the following AirNova, Inc. personnel:

John J. Deemer	Project Manager
Joseph May	Testing Technician

This report contains a description of the program, as well as the results of the emission testing.

2.0 Process Description

The emission sampling was conducted at the outlet exhaust stack associated with a W. W. Sly impinjet gas scrubber operated at approximately 15,000 ACFM. The exhaust stack dimensions at the test location were 27 inches x 27 inches and are located a minimum of 8 equivalent diameters downstream and 2 equivalent diameters upstream from the nearest flow disturbance. Three test ports were utilized for all sampling.

3.0 Test Results

3.1 Air Flows, Temperatures, Moisture Levels

<u>Run</u>	<u>Location</u>	<u>ACFM</u>	<u>Temp. °F</u>	<u>Moisture Level %</u>	<u>DSCFM</u>
1	Outlet	14,637	57	0.8	15,179
2	Outlet	14,609	57	0.4	15,197
3	Outlet	14,773	58	0.5	15,315
Average		14,673	57	0.6	15,230

3.2 Particulate Concentrations, Particulate Emission Rates

<u>Run</u>	<u>Location</u>	<u>Concentration (grains/dscf)</u>	<u>Emission Rate (lbs/hr)</u>
1	Outlet	0.0018	0.23
2	Outlet	0.0021	0.26
3	Outlet	0.0007	0.09
Average		0.0015	0.19

Table 3-5
Cyclonic Flow Test Data

Outlet Test Location

<u>Port</u>	<u>Point</u>	<u>Rotational Index</u>
A	1	0°
	2	0°
	3	2°
	4	0°
B	1	0°
	2	0°
	3	0°
	4	0°
C	1	1°
	2	2°
	3	5°
	4	2°
Average Rotation Angle (absolute value)		1°
Average Allowable Rotational Angle		20°

3.4 Isokinetic Sampling Rates

<u>Run No.</u>	<u>Location</u>	<u>% Isokinetic</u>
1	Outlet	107.2
2	Outlet	107.4
3	Outlet	109.5

4.0 Description of Project

4.1 Methodologies

The following stationary source emission testing methodologies were utilized at the outlet sampling location for this project:

- EPA Reference Method 1 - Sample and Velocity Traverses for Stationary Sources
- EPA Reference Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)
- EPA Reference Method 3 - Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, Dry Molecular Weight
- New Jersey Air Test Method 1 - Sampling and Analytical Procedures for Determining Emissions of Particles from Manufacturing Processes and from Combustion of Fuels

4.2 Traverse Points (EPA Reference Method 2)

Outlet

The following traverse point locations were utilized at the outlet sampling location. Four (4) traverse points were employed across each of three (3) stack diameters on the 30 inch square stack.

- 1 - 3.375
- 2 - 10.125
- 3 - 16.875
- 4 - 23.625

4.3 Particulate Sampling (NJAT1)

New Jersey Air Test Method 1

A New Jersey Air Test Method 1 sampling trains was utilized to determine the particulate emission rate from the scrubber. The New Jersey Air Test Method 1 sampling train consisted of the following apparatus connected in

series to the sampling module:

- Stainless steel sampling nozzle
- Heated borosilicate glass probe
- A glass microfiber filter with bell assembly contained within a heated compartment with the gas steam temperature maintained at 225°F
- A modified Greenburg-Smith impinger containing 100 ml of water
- A Greenburg-Smith impinger - empty
- A modified Greenburg-Smith impinger containing 250 g of silica gel desiccant

Prior to the start of the sampling runs, leak checks were conducted to insure that all connections were leak free. The leak check was conducted in the following manner. The sample train was completely assembled. The sampling nozzle orifice was capped. A vacuum of at least fifteen (15) inches Mercury (Hg) was drawn on the sampling train to demonstrate that the sampling train had a leak rate which was less than 0.02 cubic feet per minute (ft³/min.). Following the leak check the sample heating system (probe and hot box) was turned on and adjusted to a sufficient temperature to maintain a sample gas temperature of 225°F. In-line thermocouples were utilized before and after the filter bell assembly to monitor the sample gas temperature.

The following information was recorded at each traverse point:

- Stack temperature
- Dry gas meter temperatures (inlet and outlet)
- Stack gas differential pressure (velocity heads)
- Differential pressure across the orifice meter

4.4 Carbon Dioxide, Oxygen Content (EPA Method 3)

The carbon dioxide and oxygen content of the stack gases was determined by extraction of a single point sample, collection in a flexible tedlar bag, and analysis by an Orsat combustion gas analyzer.

Determination of percent CO₂, O₂, and CO was performed using a Fisher Type B No. 10-605 Orsat gas analyzer. The analyzer was leak-checked by the method described in EPA Method 3 before analysis begins. A gas sample was drawn from the tedlar bag through glass manifold into the sampling chamber using a leveling bottle. The analysis is performed by drawing the sample through a series of three absorbers. The first absorber absorbs CO₂ in a potassium hydroxide solution, the second absorber absorbs O₂ in a potassium pyrogallate solution, and the final absorber absorbs CO in a cupric chloride solution.

The volume of a specific gaseous component collected in an individual absorbing solution was determined by the change in volume of sample gas in the sample chamber after the bubbling through that solution is complete. Any change in volume represents the percentage of the specific gaseous component found in the gas stream.

Appendix A
Laboratory Analytical Data

**U.S. Silica
Particulate Sample Analysis**

Glass Microfibre Filters

Run	Tare Wt (g)	Final Wt (g)	Gain Wt (g)
1	0.3304	0.3319	0.0015
2	0.3296	0.3299	0.0003
3	0.3406	0.3414	0.0008

Acetone Front -half Washes

Run	Tare Wt (g)	Final Wt (g)	Gain Wt (g)	Vol (ml)
1	95.2806	95.2836	0.003	242
2	95.9983	96.003	0.0047	216
3	102.5941	102.5954	0.0013	224
blank	98.7123	98.7125	0.0002	200

Appendix B
Field Data Sheets

AirNova, Inc.

PLANT U. S. Silica
 DATE 03/08/90
 SAMPLING LOCATION On 11'11'
 SAMPLE TYPE N1AT1
 PLATE NUMBER 2 OPERATOR J Decker
 BAROMETRIC PRESSURE 30.52 STATIC PRESSURE CO₂
 PLATE NUMBER(S) 0₂
 GEL NUMBER(S) CO
 TUNNEL NUMBER PLATE NUMBER
 N₂O pickup (cc) 0

READ AND RECORD ALL DATA EVERY

MINUTES

C FACTOR 1.00 PRESSURE ΔP 0

PRESSURE METER 1000
 THERMOCOUPLE NUMBER 1000
 PLATE NUMBER 1000
 MEASURE NUMBER 1.0
 METER BOX NUMBER ΔH₁
 PLATE NUMBER ε_p
 SAMPLE BOX NUMBER(S) 1
 ASCHER 0 MASTICE (S) 0

TRAVERSE POINT NUMBER	CLOCK TIME	GAS METER READING (V.A. N)	VELOCITY HEAD (in. H ₂ O)	DRAFTS METER		PUMP VACUUM. in. Hg	SAMPLE BOX TEMPERATURE, °F	IMPINGER TEMPERATURE, °F	PUMP VACUUM. in. Hg	SAMPLE BOX TEMPERATURE, °F	IMPINGER TEMPERATURE, °F
				DESIRED	ACTUAL						
1	00 13:25	993.872	.92	1.55	1.55	58	67.6	57.0	6.0	160	51
2	05	997.5	.90	1.50	1.50	57	71	57.0	6.0	198	44
3	10	001.0	.85	1.93	1.93	58	73	57.0	6.0	216	50
4	15	003.8	.64	1.1	1.1	57	76	57.0	5.0	226	51
5	20	006.613	.87	1.43	1.45	58	79	57.0	6.0	234	52
6	25	009.7	.83	1.93	1.93	57	75	57.0	6.0	232	52
7	30	13.2	.80	1.33	1.33	57	76	57.0	6.0	237	54
8	35	16.3	.72	1.2	1.2	56	77	57.0	5.5	234	55
9	40	19.305									
10	45	22.4	.72	1.2	1.2	57	76	57.0	5.0	236	53
11	50	25.1	.66	1.1	1.1	57	76	57.0	5.0	221	55
12	55	28.0	.64	1.05	1.05	56	74	57.0	5.0	227	59
13	60	14:28	.56	1.05	1.05	56	73	57.0	9.0	224	53
14		30.665	.94	1.44	1.44						

Appendix C
Calibration Data Sheets

PUBLIC SERVICE ELECTRIC AND GAS COMPANY
GAS METER SHOP

PROOF TEST RECORD

METER SIZE: CL175

DATE RECEIVED: 10/04/89

INSPECTOR: C. RIZZA

DATE TESTED: 10/05/89

MANUFACTURER: ROCKWELL

PROVER NO. 1264

TEMPERATURE:

OIL : 73° F.

METER NUMBER: 6837018

PROVER AIR: 73° F.

175 C.F.H.

TEST # 1	2.0 CU. FT.	PERCENT PROOF	100.0
TEST # 2	2.0 CU. FT.		100.0
TEST # 3	2.0 CU. FT.		100.0

35 C.F.H

TEST # 1	2.0 CU. FT.	PERCENT PROOF	100.1
TEST # 2	2.0 CU. FT.		100.0
TEST # 3	2.0 CU. FT.		100.0

A calibration and accuracy test was performed on test meter number 6837018 for:

AirNova Inc
931 Haddon Avenue
Collingswood, N.J.
08108

METER REPAIR SUPERVISOR

CARMEN RIZZA

Carmen Rizza

CALIBRATION CALCULATIONS METER BOX Calibrated by JAY

Date 2/ -10 -90

Box No. 5

P_b (Man. orifice) $(T_v + 460)t^2$	ΔH_q	$CF_v P_b (T_d \text{ avg.} + 460)$	$CF_d (P_b + \frac{\text{Man. orifice}}{13.6}) (T_w + 460)$	Man. Y
0.0317 (Man. orifice) $(T_v + 460)t^2$				
P_b (T_d avg. + 460) CF_v				
0.01585 $(T_d + 460) \frac{1}{5}$.5			
$30.11 (T_d + 460) \frac{1.925}{2}$				
0.0317 $(T_d + 460) \frac{1.74}{2}$	1.0			
$30.11 (T_d + 460) \frac{2.758}{2}$		1.80		
0.0634 $(T_d + 460) \frac{1.0}{2}$	2.0			
$30.11 (T_d + 460) \frac{2.824}{2}$		1.80		
0.0951 $(T_d + 460) \frac{1.0}{2}$	3.0			
$30.11 (T_d + 460) \frac{9.616}{2}$		1.78		
0.1268 $(T_d + 460) \frac{1.0}{2}$	4.0			
$30.11 (T_d + 460) \frac{11.155}{2}$		1.76		
0.1585 $(T_d + 460) \frac{1.0}{2}$	5.0			
$30.11 (T_d + 460) \frac{12.428}{2}$		1.76		
				1.002
				5.0
				1.002

Appendix D
Calculations Printouts

Air Nova Inc.

NJAT Methods 1 And 3 Calculations
***** * * * * *

Plant U.S. Silica

Operation Sand Silo System

Run 1

Location Newport , New Jersey

Date 03/08/90

Outlet Test Data

Vw =	6.4 cc	Vol. of H ₂ O collected (impingers)
Vm =	36.72 cf	Dry gas meter reading
Pb =	30.5 in. Hg	Barometric pressure
Ps =	30.48 in. Hg	Stack pressure
dP =	0.766 in. H ₂ O	Average differential pressures
dH =	1.287 in. H ₂ O	Average draft gauge reading
Tm =	532.63 R	Average meter temperature
Ts =	516.50 R	Average stack temperature
Y =	0.99	Meter calibration factor
t =	60 min.	Duration of sampling time
A =	5.0625 sq. ft.	Cross sectional area of stack
An =	0.00019 sq. ft.	Area of nozzle orifice
Cp =	0.84	Pitot tube correction factor

1) Volume of gas sampled at stack conditions, Vt.

$$Vt = Vm * (Ts/Tm) * (1/(1-Q)) * ((Pb+dH/13.6)/Ps) * Y$$

$$Vt = 35.67 \text{ dscf}$$

2) Volume of gas sampled at standard conditions, Vmstd

$$Vmstd = Y * Vm * (Pm/Pstd) * (Tstd/Tm)$$

$$Vmstd = 36.74 \text{ cf}$$

3) Volume of water vapor collected at meter conditions , Vv.

$$Vv = .00267 * (Vw * (Tm + 460)) / (Pb + dH/13.6)$$

$$Vv = 0.30 \text{ cf}$$

4) Decimal fraction of moisture by volume in stack gas, Q.

$$Q = Vv / (Vv + Vm)$$

$$Q = 0.008$$

5) Molecular weight of the stack gas, Ms.

$$Ms = (1-Q) * ((44 * \%CO_2) + (28 * \%CO) + (32 * \%O_2) + (28 * \%N_2)) + (18 * Q)$$

$$Ms = 28.73$$

Orsat analysis

% CO ₂	0
% CO	0
% O ₂	20.3
% N ₂	79.7

6) Specific gravity of stack gas, Gd.

$$Gd = Ms / 28.95$$

$$Gd = 0.99$$

7) Stack gas velocity, Us in fps.

$$Us = 2.9 * Cp * (dp * Ts * (1/Gd) * (29.92/Ps))^{.5}$$

$$Us = 48.19 \text{ fps}$$

8) Actual Stack gas volumetric flow rate , Vo.

$$Vo = A * Us * 60 \text{ sec/min}$$

$$Vo = 14636.6 \text{ cfm}$$

9) Standardized volumetric flow rate , Vdscfm.

$$Vdscfm = Vo * (1 - Bws) * (Tstd/Pstd) * (Ps/Ts)$$

$$Vdscfm = 15178.9 \text{ dscfm}$$

10) Particulate sample analytical data

Gravimetric Analysis

Filter sample net wt.	0.0015 g
Filter blank net weight	0 g
Front 1/2 acetone wash	242 ml
Total wash particulate wt	0.003 g
Acetone blank volume	200 ml
Acetone blank residue wt	0.0002 g

Calculations

Acetone wash residue wt	0.000242 g
Adj Acetone wash part.wt.	0.002758 g
Tot. (gravimetric) sample wt -- Wt	0.004258 g

11) Front Half Particulate Concentration in grains/cf

$$G = (\text{Front Half Wt}) * (1/Vt) * 15.43$$

$$G = 0.0018 \text{ grains/cf}$$

12) Particulate emission rate , E.

$$E = G * Vt * A * (60 \text{ min/7000grains})$$

$$E = 0.231 \text{ lbs/hr}$$

13) Sample nozzle gas velocity , Un , in fps.

$$Un = Vt / (An*t*60)$$

$$Un = 51.67 \text{ fps}$$

14) Isokinicity

$$\% I = 100 * (Un/U_s)$$

$$\% I = 107.23$$

Air Nova Inc.

NJAT Methods 1 And 3 Calculations
***** * * * * *

Plant U.S. Silica

Operation Sand Silo System

Run 2

Location Newport, New Jersey

Date 03/08/90

Outlet Test Data

Vw =	3.2 cc	Vol. of H ₂ O collected (impingers)
Vm =	36.793 cf	Dry gas meter reading
Pb =	30.5 in. Hg	Barometric pressure
Ps =	30.48 in. Hg	Stack pressure
dP =	0.763 in. H ₂ O	Average differential pressures
dH =	1.278 in. H ₂ O	Average draft gauge reading
Tm =	532.21 R	Average meter temperature
Ts =	517.00 R	Average stack temperature
Y =	0.99	Meter calibration factor
t =	60 min.	Duration of sampling time
A =	5.0625 sq. ft.	Cross sectional area of stack
An =	0.00019 sq. ft.	Area of nozzle orifice
Cp =	0.84	Pitot tube correction factor

1) Volume of gas sampled at stack conditions, Vt.

$$Vt = Vm * (Ts/Tm) * (1/(1-Y)) * ((Pb+dH/13.6)/Ps) * Y$$

$$Vt = 35.66 \text{ dscf}$$

2) Volume of gas sampled at standard conditions, Vmstd

$$Vmstd = Y * Vm * (Pm/Pstd) * (Tstd/Tm)$$

$$Vmstd = 36.84 \text{ cf}$$

3) Volume of water vapor collected at meter conditions, Vv.

$$Vv = .00267 * (Vw * (Tm + 460)) / (Pb + dH/13.6)$$

$$Vv = 0.15 \text{ cf}$$

**EMISSION TEST PRODUCTION
REPORT FORM**

I. Company Name U. S Silica Company APC Plant ID#
Plant Location Newport, NJ
Certificate Number 99132
Designation of Equipment Foundry Sand Storage Silo

II. Emission Test Date(s) March 8, 1990

Tests Conducted By:

Name of Firm Air Nova, Inc.

Business Address 5845-A Clayton Ave Pennsauken, NJ 08109

Phone Number (609) 486 - 1500

Test Team Representatives John J. Deemor

Joseph May

Length of Test 11:28 - 16:13 4 hours 45 min

	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>
Test Time (Start/Finish)	11:28 / 12:32	13:25 / 14:28	15:16 / 16:13

III. Certificate Operating Conditions

A. List Conditions

Achieved (Yes or No)

Particulate Emission Rate < 3.0 lbs/hr

Yes

**B. Log of Certificate Conditions During Stack Test
(Record at least every 15 minutes)**

Condition **Run #** **Readout** **Time of Recording**

Not Applicable

IV. Equipment Operation/Process Parameters

Number of Sources Connected _____
Number of Sources Operating _____

Production Rate: Normal _____
Maximum _____

A. Raw Materials:

	Test Run #1	Test Run #2	Test Run #3
Usage Rate (lbs/hr)	<u>300,000</u>	<u>300,000</u>	<u>300,000</u>
Breakdown (% by weight)	Foundry Sand <u>100%</u>	Foundry Sand <u>100%</u>	Foundry Sand <u>100%</u>

B. Surface Coating:

Material Being Coated Not Applicable
Type of Coating _____
Coating Rate (Gals/Hr) _____
Is Coating Altered (Yes or No) _____
With _____

Distance From Coating Head to Exhaust Duct _____

C. Fuel Burning - Incineration:

Type of Fuel Not Applicable
Fuel Burning Rate _____ (lbs/hr), (gals/hr), (ft/hr)
Fuel Additives _____, % _____

Meter Reading
(if available) _____ Time _____

_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Type of Waste Constituents Not Applicable
Auxiliary Fuel _____
Burning Rate _____

D. Other:

Description of Operation and Process Rate

The process involves the loading of foundry sand from a silo system into trucks. A wet scrubber is utilized as the pollution control device.

V. Control Equipment Parameters

CEMs Required (Yes/No) No

Contaminant? _____

STACK TEST CEM READING

A. Control Equipment performance Parameter

B. Additional Observations

Fugitive Emissions (Yes/No) No

Equipment Location _____

Visible Emissions From Stack (Yes/No) No

Odors Noticeable

Vicinity of Equipment (Yes/No) No

Near Exhaust Stack (Yes/No) No

Off Property (Yes/No) No

VI. Samples

Type of Sample _____

Time of Sampling _____

Sampled By _____

Sample Taken From _____

To Be Analyzed For _____

Analyzed By _____

Form Information Supplied by: Name/Title (Please Print)

John J. Deemer / Project Manager

Signature(s)/Date

John J. Deemer 05/03/90

DEP Usage Only

Rec'd By Sample Rec'd Rev'd By
Date/Time

4) Decimal fraction of moisture by volume in stack gas, Q.

$$Q = Vv / (Vv + Vm)$$

$$Q = 0.004$$

5) Molecular weight of the stack gas, Ms.

$$Ms = (1-Q) * ((44*\%CO_2) + (28*\%CO) + (32*\%O_2) + (28*\%N_2)) + (18*Q)$$

$$Ms = 28.77$$

Orsat analysis

% CO ₂	0
% CO	0
% O ₂	20.3
% N ₂	79.7

6) Specific gravity of stack gas, Gd.

$$Gd = Ms/28.95$$

$$Gd = 0.99$$

7) Stack gas velocity, Us in fps.

$$Us = 2.9 * Cp * (dp * Ts * (1/Gd) * (29.92/Ps))^{.5}$$

$$Us = 48.09 \text{ fps}$$

8) Actual Stack gas volumetric flow rate , Vo.

$$Vo = A * Us * 60 \text{ sec/min}$$

$$Vo = 14608.7 \text{ cfm}$$

9) Standardized volumetric flow rate , Vdscfm.

$$Vdscfm = Vo * (1-Bws) * (Tstd/Pstd) * (Ps/Ts)$$

$$Vdscfm = 15196.5 \text{ dscfm}$$

10) Particulate sample analytical data

Gravimetric Analysis

Filter sample net wt.	0.0003 g
Filter blank net weight	0 g
Front 1/2 acetone wash	0 g
Total wash particulate wt	216 ml
Acetone blank volume	0.0047 g
Acetone blank residue wt	200 ml
	0.0002 g

Calculations

Acetone wash residue wt	0.000216 g
Adj Acetone wash part.wt.	0.004484 g
Tot. (gravimetric) sample wt -- Wt	0.004784 g

11) Front Half Particulate Concentration in grains/cf

$$G = (\text{Front Half Wt}) * (1/Vt) * 15.43$$

$$G = 0.0021 \text{ grains/cf}$$

12) Particulate emission rate , E.

$$E = G * Vt * A * (60 \text{ min}/7000grains)$$

$$E = 0.259 \text{ lbs/hr}$$

13) Sample nozzle gas velocity , Un , in fps.

$$Un = Vt / (An*t*60)$$

$$Un = 51.66 \text{ fps}$$

14) Isokinectiy

$$\% I = 100 * (Un/Us)$$

$$\% I = 107.40$$

Air Nova Inc.

NJAT Methods 1 And 3 Calculations
***** ***** * *** * *****

Plant U.S. Silica
Operation Sand Silo System
Run 3
Location Newport, New Jersey
Date 03/08/90

Outlet Test Data

Vw =	4 cc	Vol. of H2O collected (impingers)
Vm =	36.856 cf	Dry gas meter reading
Pb =	30.5 in. Hg	Barometric pressure
Ps =	30.48 in. Hg	Stack pressure
dP =	0.778 in. H2O	Average differential pressures
dH =	1.304 in. H2O	Average draft gauge reading
Tm =	519.00 R	Average meter temperature
Ts =	518.33 R	Average stack temperature
Y =	0.99	Meter calibration factor
t =	60 min.	Duration of sampling time
A =	5.0625 sq. ft.	Cross sectional area of stack
An =	0.00019 sq. ft.	Area of nozzle orifice
Cp =	0.84	Pitot tube correction factor

1) Volume of gas sampled at stack conditions, Vt.

$$Vt = Vm * (Ts/Tm) * (1/(1-Q)) * ((Pb+dH/13.6)/Ps) * Y$$

$$Vt = 36.76 \text{ dscf}$$

2) Volume of gas sampled at standard conditions, Vmstd

$$Vmstd = Y * Vm * (Pm/Pstd) * (Tstd/Tm)$$

$$Vmstd = 37.84 \text{ cf}$$

3) Volume of water vapor collected at meter conditions, Vv.

$$Vv = .00267 * (Vw * (Tm + 460)) / (Pb + dH/13.6)$$

$$Vv = 0.18 \text{ cf}$$

4) Decimal fraction of moisture by volume in stack gas, Q.

$$Q = Vv / (Vv + Vm)$$

$$Q = 0.005$$

5) Molecular weight of the stack gas, Ms.

$$Ms = (1-Q) * ((44 * \%CO_2) + (28 * \%CO) + (32 * \%O_2) + (28 * \%N_2)) + (18 * Q)$$

$$Ms = 28.76$$

Orsat analysis

* CO ₂	0
* CO	0
* O ₂	20.3
* N ₂	79.7

6) Specific gravity of stack gas, Gd.

$$Gd = Ms / 28.95$$

$$Gd = 0.99$$

7) Stack gas velocity, Us in fps.

$$Us = 2.9 * Cp * (dp * Ts * (1/Gd) * (29.92/Ps))^{.5}$$

$$Us = 48.64 \text{ fps}$$

8) Actual Stack gas volumetric flow rate , Vo.

$$Vo = A * Us * 60 \text{ sec/min}$$

$$Vo = 14773.0 \text{ cfm}$$

9) Standardized volumetric flow rate , Vdscfm.

$$Vdscfm = Vo * (1 - Bws) * (Tstd/Pstd) * (Ps/Ts)$$

$$Vdscfm = 15314.5 \text{ dscfm}$$

10) Particulate sample analytical data

Gravimetric Analysis

Filter sample net wt.	0.0008 g
Filter blank net weight	0 g
Front 1/2 acetone wash	224 ml
Total wash particulate wt	0.0011 g
Acetone blank volume	200 ml
Acetone blank residue wt	0.0002 g

Calculations

Acetone wash residue wt	0.000224 g
Adj Acetone wash part.wt.	0.000876 g
Tot. (gravimetric) sample wt -- Wt	0.001676 g

11) Front Half Particulate Concentration in grains/cf

$$G = (\text{Front Half Wt}) * (1/Vt) * 15.43$$

$$G = 0.0007 \text{ grains/cf}$$

12) Particulate emission rate , E.

$$E = G * Vt * A * (60 \text{ min/7000grains})$$

$$E = 0.089 \text{ lbs/hr}$$

13) Sample nozzle gas velocity , Un , in fps.

$$Un = Vt / (An*t*60)$$

$$Un = 53.25 \text{ fps}$$

14) Isokinecty

$$\% I = 100 * (Un/Us)$$

$$\% I = 109.48$$

Appendix E
Emission Test Production Data Form

**EMISSION TEST PRODUCTION
REPORT FORM**

I. Company Name U. S Silica Company APC Plant ID#
Plant Location Newport, NJ
Certificate Number 99132
Designation of Equipment Foundry Sand Storage Silo

II. Emission Test Date(s) March 8, 1990
Tests Conducted By:
Name of Firm Air Nova, Inc.
Business Address 5845-A Clayton Ave Pennsauken, NJ 08109
Phone Number (609) 486-1500
Test Team Representatives John J. Deemor
Joseph May

Length of Test 11:28 - 16:13 4 hours 45 min

	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>
Test Time (Start/Finish)	11:28 / 12:32	13:25 / 14:28	15:14 / 16:13

III. Certificate Operating Conditions

A. List Conditions

Particulate Emission Rate < 3.0 lbs/hr

Achieved (Yes or No)

Yes

**B. Log of Certificate Conditions During Stack Test
(Record at least every 15 minutes)**

Condition Run # Readout Time of Recording
Not Applicable

IV. Equipment Operation/Process Parameters

Number of Sources Connected _____
Number of Sources Operating _____

Production Rate: Normal _____
Maximum _____

A. Raw Materials:

	Test Run #1	Test Run #2	Test Run #3
Usage Rate (lbs/hr)	<u>300,000</u>	<u>300,000</u>	<u>300,000</u>
Breakdown (% by weight)	Foundry Sand 100%	Foundry Sand 100%	Foundry Sand 100%

B. Surface Coating:

Material Being Coated Not Applicable
Type of Coating _____
Coating Rate (Gals/Hr) _____
Is Coating Altered (Yes or No) _____
With _____

Distance From Coating Head to Exhaust Duct _____

C. Fuel Burning - Incineration:

Type of Fuel Not Applicable
Fuel Burning Rate _____ (lbs/hr), (gals/hr), (ft/hr)
Fuel Additives _____, % _____

Meter Reading
(if available) _____ Time _____

_____	_____
_____	_____
_____	_____
_____	_____
_____	_____

Type of Waste Constituents Not Applicable
Auxiliary Fuel _____
Burning Rate _____

D. Other:

Description of Operation and Process Rate

The process involves the loading of foundry sand from a silo system into trucks. A wet scrubber is utilized as the pollution control device.

V. Control Equipment Parameters

CEMs Required (Yes/No) No

Contaminant?

STACK TEST CEM READING

A. Control Equipment performance Parameter

B. Additional Observations

Fugitive Emissions (Yes/No) No

Equipment Location _____

Visible Emissions From Stack (Yes/No) No

Odors Noticeable

Vicinity of Equipment (Yes/No) No
 Near Exhaust Stack (Yes/No) No
 Off Property (Yes/No) No

VI. Samples

Type of Sample _____

Time of Sampling _____

Sampled By _____

Sample Taken From _____

To Be Analyzed For _____

Analyzed By _____

Form Information Supplied by: Name/Title (Please Print)

John J. Deemer / Project Manager

Signature(s)/Date

John J. Deemer 05/03/90

DEP Usage Only

Rec'd By Sample Rec'd Rev'd By
 Date/Time