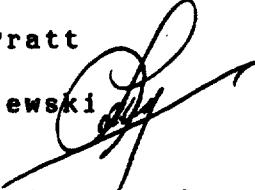


Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.


State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
Bureau of New Source Review
CN 027
Trenton, N.J. 08625-0027
1-800-441-0065

Anthony J. McMahon
Acting Director

William O'Sullivan, P.E., Assistant Director
Air Quality Engineering and Technology

January 18, 1990

MEMORANDUM

TO: Michael Pratt
FROM: Len Sobolewski
SUBJECT: The Morie Company Inc.
Mauricetown Plant
Mauricetown, New Jersey
N.J.D.E.P. ID No. 75027

Stack emission tests were conducted for Nitrogen Oxide at the subject facility on November 22, 1989, by Air Nova Inc.

The purpose of the test was to determine whether the Nitrogen Oxide emissions from the Number 2 Sand Dryer/Cooler Stack (N.J. Stack No. 002) were within the standards stated on Permit/Certificate Number 088859 as filed under the New Jersey Administrative Code 7:27-8 "Permits".

The results of the emission tests conducted by Air Nova Inc., as reported to the Bureau of Technical Services is as follows.

RUN	DATE	ALLOWABLE NO _X	ACTUAL NO _X
1	11-22-89	7.10	2.60
2	11-22-89	7.10	2.80
3	11-22-89	7.10	2.90

PRODUCTION RATES

RUN	DATE	TIME	NUMBER 2 FUEL OIL	SAND PRODUCTION FEED RATE
1	11-22-89	13:32-14:32	131 GAL/HR	180,000 LBS
2	11-22-89	15:07-16:07	137 GAL/HR	178,000 LBS
3	11-22-89	16:14-17:14	145 GAL/HR	176,000 LBS

For all test runs the Number 2 Sand Dryer/Cooler (NJ Stack No. 002) was venting the production of industrial silica sand. The Permit/Certificate Number 088859 lists a maximum production rate of 200,000 lbs/hr of silica sand.

In conclusion, the Bureau of Technical Services calculations using the submitted field test data produced essentially the same results as those reported by Air Nova Inc., during all test runs.

State of New Jersey
DEPARTMENT OF ENVIRONMENTAL PROTECTION
DIVISION OF ENVIRONMENTAL QUALITY
Bureau of New Source Review
CN 027
Trenton, N.J. 08625-0027
1-800-441-0065

Anthony J. McMahon
Acting Director

William O'Sullivan, P.E., Assistant Director
Air Quality Engineering and Technology

January 31, 1990

MEMORANDUM

TO: Joe DePierro

THROUGH: Edward Choromanski

FROM: Michael Pratt

SUBJECT: The Morie Company, Inc.
APC Plant ID No. 75027
NJ Stack No. 002
Permit/Certificate to Operate (P/CT) No. 88859

Emission tests were conducted on No. 2 sand dryer/cooler.

The purpose of these test was to determine NO_x emission rates and then to compare them with P/CT No. 88859 allowables.

NOTES:

- 1) On July 29, 1987 subject equipment was tested for particulate and NO_x emission rates. Particulate emission rates were within P/CT No. 75378 (it was superseded by present P/CT No 88859) allowables.

However, NO_x emission rates were inconclusive. Therefore, November 22, 1989 stack test was confined only to NO_x emission rates.

- 2) According to Air-Nova, Inc. submitted report, stack testing for NO_x was done during burning of No. 2 fuel oil (i.e. maximum conditions for NO_x emissions. Subject plant has the capability to burn natural gas as well).

Leonard Sobolewski reviewed the submitted test report. His review indicated the following:

- 1) Production rate during subject stack test was in the range of 88 to 90% of P/CT NO. 88859 200,000 lb/hr.
- 2) NO emission rates were well within P/CT No. 88859 allowables.

CONCLUSION:

Compliance.

RECOMMENDATION:

Temporary certificate can be changed to permanent status pending approval by SRO.

cc: Milton Polakovic
Lou Mikolajczyk
Harry Hornikel
Leonard Sobolewski

Project No. 1301

The Morie Company, Inc.
Mauricetown Plant

Emission Compliance
Test Program

Prepared for:

Mr. James Zadrozny
The Morie Company
1201 N. High Street
Millville, New Jersey 08332

November 1989

Table of Contents

	Page
1.0 Introduction	1
2.0 Site Description	2
3.0 Test Results	4
4.0 Discussion of Results	6
5.0 Description of Project	7

Appendix A - Field Data Sheets

Appendix B - Chart Recorder Print-out

Appendix C - Calibration Data Sheets

Appendix D - Calculation Printouts

Appendix E - Gas Standard Certification

Appendix F - NO_x Converter Efficiency Data

Appendix G - Emission Test Production Data Form

1.0 Introduction

AirNova, Inc. conducted an emission compliance test program at The Morie Company, Inc. Mauricetown Plant (APC ID No 75027-002) for the purpose of demonstrating compliance with applicable New Jersey Department of Environmental Protection (NJDEP) Regulations. The emission sampling was conducted to determine the emission rate of Nitrogen Oxides from the No. 2 Sand Dryer/Cooler Stack. The testing was conducted on November 22, 1989 by the following AirNova personnel:

- Mark D. Daly	President
- John J. Deemer	Project Manager
- Joseph May	Testing Technician

This report contains a description of the testing program, the results of the testing, as well as field data, calibration data, and calculation print-outs.

2.0 Site Description

The source which was tested was the No. 2 Sand Dryer/Cooler. The source consisted of the following components:

- Two (2) vibrating fluid bed dryers
- A vibrating fluid bed cooler
- Aeropulse dust collector

Silica sand is dried by direct heat exchange as it passes through two (2) Carrier Vibrating Fluid Bed Dryers which are connected in series. The primary fuel for the heat exchange is natural gas. The secondary fuel is No. 2 Fuel Oil. Because the combustion No. 2 Fuel Oil would have a greater potential for NO_x emissions, it was selected as the fuel for the testing program. The method of firing for the No. 2 Fuel Oil is air atomization. The dried sand then passes through a Carrier Vibrating Fluid Bed Cooler. The sand dryer/cooler system is designed to process a maximum of 200,000 pounds per hour. The actual production data is presented in Table 2-1. An Aeropulse Baghouse is utilized to capture the potential particulate emissions which are exhausted from each of the two (2) dryers and the cooler. The baghouse is designed for a flowrate of approximately 71,000 ACFM. The actual data is presented in Table 3-1. The emissions from the baghouse are exhausted to the atmosphere.

The Morie Company Inc.
No. 2 Sand Dryer/Cooler Production Data
11/22/89

Run No.	Time	No. 2 Fuel Burn Rate (gal/hr)	Product Feed Rate (lbs/hr)
1	13:32- 14:32	131	180000
2	15:07- 16:07	137	178000
3	16:14- 17:14	145	176000
<hr/>			
average		137.7	178000.0

3.0 Test Results

3.1 Air Flows, Temperature, Moisture Levels

<u>Run No.</u>	<u>Location</u>	<u>ACFM</u>	<u>Temperature</u> °F	<u>Moisture</u> <u>level %</u>	<u>DSCFM</u>
1	Outlet	52025	115	2.8	47153
2	Outlet	51870	115	4.0	46397
3	Outlet	52617	118	3.3	47167
<hr/>					
Average		52171	116	3.4	46906

3.2 Orsat Data

<u>Run No.</u>	<u>Location</u>	<u>% O₂</u>	<u>% CO₂</u>
1	Outlet	20.3	0.8
2	Outlet	20.2	0.6
3	Outlet	20.3	1.0
<hr/>			
Average		20.3	0.8

3.3 Oxides of Nitrogen Concentrations and Emission Rates

<u>Run</u>	<u>Location</u>	<u>Concentration</u> ppmd	<u>Emission Rates</u> lbs/hr
1	Outlet	7.6	2.6
2	Outlet	8.3	2.8
3	Outlet	8.6	2.9
<hr/>			
Average		8.2	2.8

3.4 Cyclonic Flow Data

<u>Port</u>	<u>Traverse Point</u>	<u>Recorded Yaw Angle</u>
A	1	-1
	2	-2
	3	0
	4	1
	5	0
	6	0
B	1	+2
	2	0
	3	1
	4	0
	5	0
	6	0
C	1	-3
	2	-1
	3	0
	4	1
	5	0
	6	0
D	1	1
	2	1
	3	0
	4	0
	5	0
	6	0

4.0 Discussion of Results

The stack gas concentrations of Nitrogen Oxides (NO_x) ranged from 7.6 ppm to 8.6 ppm with an average concentration of 8.2 ppm. The NO_x emission rate ranged from 2.6 lbs/hr to 2.9 lbs/hr with an average of 2.8 lbs/hr. The allowable NO_x emission rate, based upon the No. 2 Sand Dryer/Cooler "Permit Application" is 7.14 lbs/hr.

5.0 Description of Project

The following stationary source emission testing methodologies were utilized at the outlet No. 2 Sand Dryer/Cooler sampling location:

- EPA Method 1 - Sample and Velocity Traverses for Stationary Sources
- EPA Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate
- EPA Method 3 - Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular Weight
- EPA Method 4 - Determination of Moisture Content in Stack Gases
- EPA Method 7E - Determination of Nitrogen Oxides Emission from Stationary Sources (Instrumental Analyzer Procedure)

The absence of cyclonic flow was demonstrated at the outlet location according to section 2.4 of EPA Reference Method 1. A type S-Pitot tube was connected to a manometer. The Pitot tube was placed at each of the traverse point locations. The pitot tube was placed in a position perpendicular to the stack gas flow. An angle finder was placed on the pitot tube which was rotated until a reading of zero (0) was obtained. The "yaw" angle was then recorded.

EPA Reference Method 2

The flow rate was determined according to EPA Reference Method 2. The stack gas differential pressures (velocity heads) were determined with a type S-pitot tube simultaneously with the stack gas temperature. The stack gas temperature was determined with a thermocouple. These determinations were conducted before and after each sampling run.

EPA Reference Method 3

One (1) single point integrated gas sample was extracted from the stack and collected in Tedlar bags during each of the three (3) sample runs. The sample runs were conducted simultaneously with the moisture and Nitrogen Oxide determinations. The samples were collected by extracting stack gases through a pump and a rotometer followed by direct fill into a flexible Tedlar bag. The samples were collected at a rate of one (1) liter per minute over a 60 minute sampling period.

EPA Reference Method 4

The EPA Method 4 sampling train was utilized to determine the moisture content of the stack gases. The EPA Method 4 sampling train consisted of the following apparatus connected in series to the sampling module:

- Heated Stainless Steel sampling probe
- Cyclone bypass and filter bypass assembly contained within a heated compartment with the gas stream temperatures maintained at approximately 225°F
- A modified Greenburg-Smith impinger containing 100 ml of water
- A Greenburg-Smith impinger containing 100 ml of water
- A modified Greenburg-Smith impinger, empty
- A modified Greenburg-Smith impinger containing approximately 220 g of silica gel desiccant

Prior to the start of sampling runs, leak checks were conducted to insure that all connections were leak free. The leak check was conducted in the following manner. The sample train was completely assembled. The end of the sampling probe was capped. A vacuum of at least fifteen (15) inches Mercury (Hg) was drawn on the sampling train to demonstrate that the sampling train had a leak rate which was less than 0.02 cubic feet per minute (cfm). Following the leak check, the sample line heating system was turned on. The moisture samples were collected at an approximately rate of 0.75 cfm for a 60 minute sampling period. Three (3) sample runs were conducted.

EPA Reference Method 7E

The EPA Reference Method 7E sample train was utilized to determine the Nitrogen Oxide concentration of the stack gases by chemiluminescent analysis. The NO_x emission testing was conducted while the fluid bed dryers were utilizing No. 2 Fuel Oil. The NO_x emission potential is greater during fuel oil combustion. The sampling train consisted of the following apparatus connected in series:

- Stainless steel sampling Probe
- Heated teflon sampling line
- Condensation trap (for moisture removal)
- Sample pump
- Thermo Electron Model 10A NO/NO_x Analyzer

The following start-up and calibration procedures were utilized:

- The front-panel range switch was set at 25 ppm
- The front panel mode switch was set to "NO" mode
- The power was switched on and the analyzer was allowed to "warm-up" for approximately 12 hours.
- The Bypass needle valve will be adjusted for a flow rate of 2 liters per minute (lpm).
- The following Upscale Calibration gases were utilized: 9.2 ppm and 18.4 ppm. The span control adjustments were made accordingly.

These standards were prepared on site from a certified standard gas of 46 ppm Nitric Oxide (NO) in Nitrogen (N₂). The standards were prepared with a Standard Technology, Inc. Model S6D Non-Bleeding Gas Divider. Dilution gas (Nitrogen) and a span gas (46 ppm NO in N₂) were introduced to a gas divider with a 5 position selection cock. The following positions were utilized:

<u>Selection Cock</u>	<u>Position</u>	<u>Standard Gas/Dilution Gas Ratio</u>	<u>Corresponding NO Concentration ppm</u>
	0	0/5	0
	1	1/5	9.2
	2	2/5	18.4

The mode switch was then switched to NO_x for stack gas measurement.

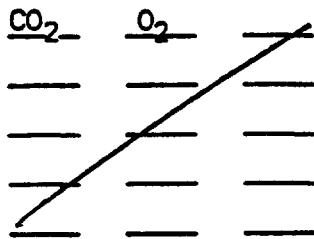
Appendix A
Field Data Sheets

Project Number _____

Test Number 3

Orsat Analysis

Plant PL226Date 11/22/29


Time _____

Sample Type (Bag, Integrated,
Continuous)

Sampling Location _____

Sample Type M+H₂ 2/4Run Number 3Operators MAD, JTMAmbient Temperature 28Barometer 30.28

Fyrite Analysis

Field Data - Moisture

Time 1616 - 1716Final Meter Vol. 690.365Initial Mtr. Vol 657.212

Total Meter Vol. _____

Meter Temp. In 49 / 53Out 48 / 52Rotameter Setting 1.2 "H₂OFinal H₂O Vol. _____Init. H₂O Vol. _____

Net Volume _____

Comments: _____

RUN GAS	1		2		3		AVERA GE NET WELL
	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	
CO ₂	1.0	1.0	1.0	1.0	1.0	1.0	1.0
O ₂ (NET IS ACTUAL O ₂ READING minus ACTUAL CO ₂ READING)	21.3	20.3	21.3	20.3	21.3	20.3	20.3
CO (NET IS ACTUAL CO READING minus ACTUAL O ₂ READING)	20.3	20.0	20.3	20.0	20.3	20.0	20.0
N ₂ (NET IS 100 minus ACTUAL CO READING)	77.7	77.7	77.7	77.7	77.7	77.7	77.7

TRaverse Point Location & Velocity Data BY

TRaverse Point Number	A=Fraction of 1.0.	B=Ax1.0. 10 ⁻³	C=+Nipple Nipple	Velocity Mean (ft./sec.)	Stack Temperature (°F.)
1	A 1	.67	113		
2	2	.91	113		
3	3	1.33	113		
4	4	1.33	114		
5	5	1.5	114		
6	6	2.1	114		
7	R 1	.68	113		
8	2	.93	115		
9	3	1.3	116		
10	4	1.4	116		
11	5	1.4	116		
12	6	1.4	118		
13	C 1	.67	115		
14	2	.86	115		
15	3	1.2	117		
16	4	1.3	118		
17	5	1.4	119		
18	6	1.5	119		
19	D 1	.56	122		
20	2	.75	122		
21	3	1.25	125		
22	4	1.7	127		
23	5	1.8	122		
24	6	2.0	122		
25	A 1	.65	121		
26	2	.83	122		
27	3	1.3	123		
28	4	1.4	123		
29	5	1.63	123		
30	6	1.8	123		
31	B 1	.65	119		
32	2	.78	124		
33	3	1.05	124		
34	4	1.3	125		
35	5	1.45	125		
36	6	1.73	127		
37	C 1	.89	122		
38	2	1.1	123		
39	3	1.2	123		
40	4	1.3	123		
41	5	1.3	123		
42	6	1.6	123		
43	D 1	.56	122		
44	2	.79	123		
45	3	1.2	124		
46	4	1.75	124		
47	5	1.8	125		
48	6	2.0	125		

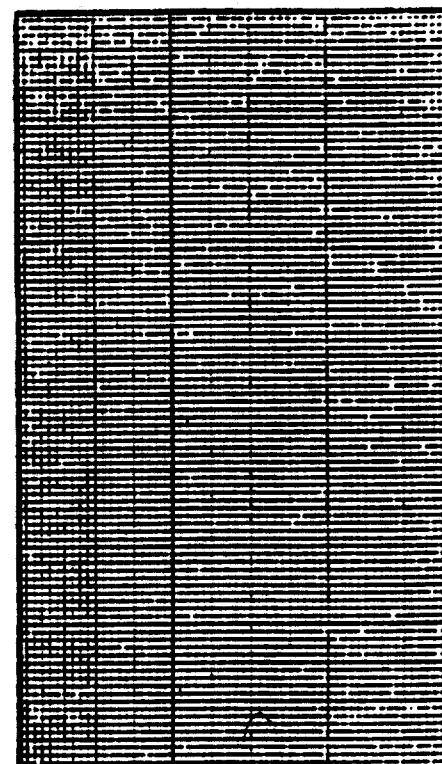


DIAGRAM OF STACK, PORTS, & TRAVERS POINTS (indicate direction of flow)

INSIDE DIMENSIONS OF SAMPLE PLANE

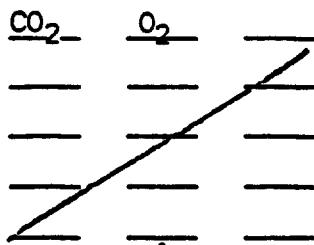
STACK GAUGE PRESSURE in. H₂O

NEAREST UPSTREAM DISTURBANCE

NEAREST DOWNSTREAM DISTURBANCE

PROCESS & CONTROL EQUIPMENT
DESCRIPTION

P.2


Project Number Test Number 7Plant MOC 16Date 11/27/89Time Sampling Location Sample Type 1/THD 2/4Run Number 2Operators MAD / JMAmbient Temperature Barometer 30.28

Orsat Analysis

Sample Type (Bag, Integrated,
Continuous)

GAS	RUN		1		2		3		AVERAGE NET VOLUME
	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	ACTUAL READING	NET	
CO ₂	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
O ₂ (NET IS ACTUAL O ₂ READING minus ACTUAL CO ₂ READING)	20.8	20.2	20.8	20.2	—	—	—	—	20.2
CO (NET IS ACTUAL CO READING minus ACTUAL O ₂ READING)	20.8	20.0	—	—	—	—	—	—	20.0
N ₂ (NET IS 100 minus ACTUAL CO READING)	—	—	—	—	—	—	—	—	—

Fyrite Analysis

TRaverse Point Location & Velocity Data

TRaverse Point Number	A = FRACTION OF I.D.	B = Axi.O. ID =	C = 0+HIPPLE NIPPLE =	VELOCITY HEAD (in. in H ₂ O)	STACK TEMPERATURE (°F, °C)
1	A1	.56	111		
2	2	.78	111		
3	3	1.3	112		
4	4	1.5	114		
5	5	1.7	114		
6	6	1.8	114		
7	C1	.62	112	DC - .25	
8	2	.73	115		
9	3	.98	116		
10	4	1.25	117		
11	5	1.50	118		
12	6	1.85	118		
13	C1	.78	117		
14	2	.89	118		
15	3	1.15	119		
16	4	1.3	118		
17	5	1.5	118		
18	6	1.65	117		
19	D1	.45	111		
20	2	.63	112		
21	3	1.4	116		
22	4	1.75	116		
23	5	2.1	118		
24	6	2.2	119		
25	D1	.68	120		
26	2	.83	122		
27	3	1.2	122		
28	4	1.45	123	PS = - .76	
29	5	1.65	123		
30	6	1.85	123		
31	D1	.62	122		
32	2	.76	122		
33	3	1.0	122		
34	4	1.3	124		
35	5	1.45	125		
36	6	1.8	123		
37	C1	.87	125		
38	2	1.0	123		
39	3	1.3	123		
40	4	1.3	123		
41	5	1.2	123		
42	6	1.6	126		
43	D1	.52	117		
44	2	.72	117		
45	3	1.2	118		
46	4	1.75	118		
47	5	1.8	122		
48	6	2.1	123		

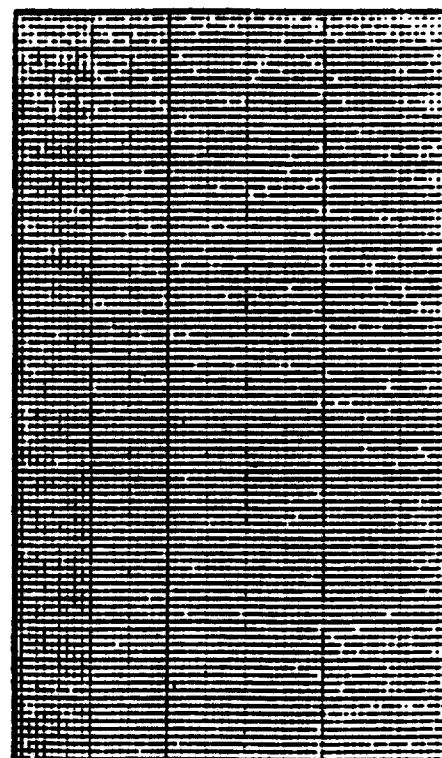


DIAGRAM OF STACK, PORTS, & TRAVERS POINTS (indicate direction of flow)

INSIDE DIMENSIONS OF SAMPLE PLANE

STACK GAUGE PRESSURE in. H₂O

NEAREST UPSTREAM DISTURBANCE

NEAREST DOWNSTREAM DISTURBANCE

PROCESS & CONTROL EQUIPMENT
DESCRIPTIONComments: 6" H₂S

LICCK 20.001

P3

Appendix B
Chart Recorder Printout

Appendix C
Calibration Data

PUBLIC SERVICE ELECTRIC AND GAS COMPANY
GAS METER SHOP

PROOF TEST RECORD

METER SIZE: CL175

DATE RECEIVED: 10/04/89

INSPECTOR: C. RIZZA

DATE TESTED: 10/05/89

MANUFACTURER: ROCKWELL

PROVER NO. 1264

TEMPERATURE:

OIL : 73° F.

METER NUMBER: 6837018

PROVER AIR: 73° F.

175 C.F.H.

TEST #	1	2.0 CU. FT.	PERCENT PROOF	100.0
TEST #	2	2.0 CU. FT.		100.0
TEST #	3	2.0 CU. FT.		100.0

35 C.F.H

TEST #	1	2.0 CU. FT.	PERCENT PROOF	100.I
TEST #	2	2.0 CU. FT.		100.0
TEST #	3	2.0 CU. FT.		100.0

A calibration and accuracy test was performed on test meter number 6837018 for:

AirNova Inc
931 Haddon Avenue
Collingswood, N.J.
08108

METER REPAIR SUPERVISOR

CARMEN RIZZA

Carmen Rizza

C1

AirNova Inc., Quality Assurance Program
Results of EPA Method 5 Meter Box Audit

INTER-LABORATORY STUDY RESULTS

DATE: 11/03/88

(JUNE 1988)

POLLUTANT - SO₂

C34011
MR. ROBERT NOONAN
AIRNOVA, INC.
931 HADDON AVE. / P.O. BOX 97
COLLINGSWOOD, NJ 08108

ORIGINATOR NUMBER	REPORTED VALUE	EPA VALUE	PERCENT DIFFERENCE
442	.2639	.2639	.46
442	.2641	.2634	.25
442	.2636	.2641	.34

STACK SAMPLER CALIBRATION SHEET

Calibrated by Joe May

Date 5-9-89 Box No. 5

Bump ✓ Pump Oil ✓

Clean Quick Connects ✓ Valves ✓

Manometers ✓ Dry Test Meter ✓

Thermometers

Lights Buzzer

Electrical Check - Amphenol

Barriac Vacuum Gauge

Leak Check at 27" Hg. - Leakage 0.00 CFM

Remarks

CALIBRATION - ORIFICE AND METER

Man Orifice	CF _w	CF _d	T _w	IT _d	OT _d	T _d avg.	Pb	Time _c
0.5	2.031	2.040	525	520	320	530	30.10	5
1.0	2.856	2.864	526			532	30.18	5
2.0	7.933	7.964	530			538	30.10	10
3.0	9.650	9.618	531			539	30.16	10
4.0	11.161	11.091	532			542	30.10	10
5.0	12.416	12.359	532			544	30.16	10

Tolerances

$$Y = 0.99 - 1.00 - 1.01$$

$$\Delta H = 1.6 - 1.84 - 2.1$$

P_b (T_d avg. + 460)	CF_w	ΔH_q	$CF_w P_b (T_d$ avg. + 460)	CF_d (P_b + $\frac{\text{Man. orifice}}{13.6}$) (T_w + 460)	Man.	Y
0.0317 (Man. orifice) $(T_w + 460) t^2$				$1.967 \times 0.0317 (T_w + 460)$		
P_b (T_d avg. + 460)	CF_w		CF_d (P_b + $\frac{\text{Man. orifice}}{13.6}$) (T_w + 460)			
0.01585	$(6.5 + 460) t^2$			$1.967 (0.01585 + 0.0368) (T_w + 460)$.5	
$29.68 (6.5 + 460)$	1.189			$1.967 (1.189 + 0.0368) (T_w + 460)$		
0.0317	$(6.5 + 460) t^2$	1.0	1.76	$2.746 \times 29.66 (T_w + 460)$	1.0	
$29.66 (6.5 + 460)$	2.746			$2.746 (2.746 + 0.0735) (T_w + 460)$		
0.0634	$(6.5 + 460) t^2$	2.0	1.85	$7.621 \times 29.66 (T_w + 460)$	1.0	
$29.66 (6.5 + 460)$	7.671			$7.621 (7.671 + 0.147) (T_w + 460)$	2.0	
0.0951	$(6.5 + 460) t^2$	3.0	1.89	$9.845 \times 29.68 (T_w + 460)$	1.0	
$29.68 (6.5 + 460)$	9.819			$9.845 (9.819 + 0.221) (T_w + 460)$	3.0	
0.1268	$(6.5 + 460) t^2$	4.0	1.95	$10.854 \times 29.68 (T_w + 460)$	1.0	
$29.68 (6.5 + 460)$	10.809			$10.854 (10.809 + 0.294) (T_w + 460)$	4.0	
0.1585	$(6.5 + 460) t^2$	5.0	1.89	$12.083 \times 29.68 (T_w + 460)$	1.0	
$29.68 (6.5 + 460)$	12.043			$12.083 (12.043 + 0.368) (T_w + 460)$	5.0	

Appendix D
Calculation Print-outs

Air Nova Inc.

EPA Methods 2,3,4,7E Calculations

Plant Marie Company

Operation No. 2 Sand Dryer Exhaust

Run 1

Location Mauricetown, New Jersey

Date 11/22/89

Outlet Test Data

V_{WC} = 12 cc Vol. of H₂O collected (impingers)
V_{WSG} = 9.3 g Wt of water collected in silica gel
V_m = 34.682 cf Dry gas meter reading
P_b = 30.28 in. Hg Barometric pressure
P_s = 30.25 in. Hg Stack pressure
dP^{0.5} = 1.091 in. H₂O Average square of delta p
dH = 1.500 in. H₂O Average draft gauge reading
T_m = 506.25 R Average meter temperature
T_s = 574.58 R Average stack temperature
Y = 0.99 Meter calibration factor
t = 60 min. Duration of sampling time
A = 13.5000 sq.ft. Cross sectional area of stack
C_p = 0.85 Pitot tube correction factor
K_p = 85.49 Pitot tube constant

1) Volume of gas sampled at standard conditions, V_{mstd}.

$$V_{mstd} = V_m * Y * (P_m * T_{std}) / (P_{std} * T_m)$$

$$V_{mstd} = 36.38 \text{ dscf}$$

2) Volume of water vapor collected at standard conditions, V_{wstd}.

$$V_{wstd} = K_1 * V_{wc} \quad V_{wsstd} = K_2 * V_{wsq}$$

$$V_{wstd} = 0.56 \text{ scf} \quad V_{wsstd} = 0.44$$

3) Decimal fraction of moisture by volume in stack gas , B_{ws}

$$B_{ws} = V_{wstd} + V_{wsstd} / (V_{wstd} + V_{wsstd} + V_{mstd})$$

$$B_{ws} = 0.028$$

4) Molecular weight of the stack gas, Ms.

$$Md = (44*\%CO_2) + (28*\%CO) + (32*\%O_2) + (28*\%N_2)$$

$$Ms = 28.94$$

Orsat analysis

% CO ₂	0.8
% CO	0
% O ₂	20.3
% N ₂	78.9

5) Stack gas velocity, Us in fps.

$$vs = K_p * C_p * (dp^{.5}) * (Ts / (Ps * Ms))^{.5}$$

$$vs = 64.23 \text{ fps}$$

6) Actual Stack gas volumetric flow rate ,Qa

$$Qa = A * vs * 60 \text{ sec/min}$$

$$Qa = 52024.6 \text{ cfm}$$

7) Standardized volumetric flow rate ,Qstd.

$$Qstd = Qa * (1 - Bws) * (Tstd/Ts) * (Ps/Pstd)$$

$$Qstd = 47153.1 \text{ dscfm}$$

8) Oxides of Nitrogen Emission Rate (as nitrogen dioxide)

$$\text{lbs NOx/hr} = (C_{gas} * DSCFH * MW) / 387 * 10^6$$

MW =	46.01 g/g-mole	Molecular weight of NO ₂
C =	8.100 ppm (dry)	Concentration indicated by analyzer
CO =	0.8 ppm	Avg. initial, final zero bias check
Cm =	18.4 ppm	Avg. initial, final upscale bias check
Cma =	18.4 ppm	Actual conc. of upscale gas

$$C_{gas} = (C - CO) * (Cma / (Cm - CO))$$

$$C_{gas} = 7.6318181 \text{ ppm}$$

$$\text{lbs NOx/hr} = 2.57$$

Air Nova Inc.

EPA Methods 2,3,4,7E Calculations

Plant Morie Company

Operation No. 2 Sand Dryer Exhaust

Run 2

Location Mauricetown, New Jersey

Date 11/22/89

Outlet Test Data

Vwc =	26 cc	Vol. of H ₂ O collected (impingers)
Vwsg =	11.6 g	Wt of water collected in silica gel
Vm =	42.742 cf	Dry gas meter reading
Pb =	30.28 in. Hg	Barometric pressure
Ps =	30.26 in. Hg	Stack pressure
dP^.5 =	1.086 in. H ₂ O	Average square of delta p
dH =	1.500 in. H ₂ O	Average draft gauge reading
Tm =	510.50 R	Average meter temperature
Ts =	575.42 R	Average stack temperature
Y =	0.99	Meter calibration factor
t =	60 min.	Duration of sampling time
A =	13.5000 sq.ft.	Cross sectional area of stack
Cp =	0.85	Pitot tube correction factor
Kp =	85.49	Pitot tube constant

1) Volume of gas sampled at standard conditions, Vmstd.

$$Vmstd = Vm * Y * (Pm*Tstd) / (Pstd*Tm)$$

$$Vmstd = 44.46 \text{ dscf}$$

2) Volume of water vapor collected at standard conditions, Vwstd.

$$Vwstd = K1 * Vwc \quad Vwsgstd = K2 * Vwsg$$

$$Vwstd = 1.22 \text{ scf} \quad Vwsgstd = 0.55$$

3) Decimal fraction of moisture by volume in stack gas , Bws

$$Bws = Vwstd + Vwsgstd / (Vwstd + Vwsgstd + Vmstd)$$

$$Bws = 0.040$$

4) Molecular weight of the stack gas, Ms.

$$Md = (44*\%CO_2) + (28*\%CO) + (32*\%O_2) + (28*\%N_2)$$

$$Ms = 28.90$$

Orsat analysis

% CO ₂	0.6
% CO	0
% O ₂	20.2
% N ₂	79.2

5) Stack gas velocity, Vs in fps.

$$vs = K_p * C_p * (dp^{.5}) * (Ts / (Ps * Ms))^{.5}$$

$$vs = 64.04 \text{ fps}$$

6) Actual Stack gas volumetric flow rate ,Qa

$$Qa = A * vs * 60 \text{ sec/min}$$

$$Qa = 51870.4 \text{ cfm}$$

7) Standardized volumetric flow rate ,Qstd.

$$Qstd = Qa * (1 - Bws) * (Tstd/Ts) * (Ps/Pstd)$$

$$Qstd = 46397.1 \text{ dscfm}$$

8) Oxides of Nitrogen Emission Rate (as nitrogen dioxide)

$$\text{lbs NOx/hr} = (C_{gas} * DSCFH * MW) / 387 * 10^6$$

MW =	46.01 g/g-mole	Molecular weight of NO ₂
C =	8.800 ppm (dry)	Concentration indicated by analyzer
CO =	1 ppm	Avg. initial, final zero bias check
Cm =	18.3 ppm	Avg. initial, final upscale bias check
Cma =	18.4 ppm	Actual conc. of upscale gas

$$C_{gas} = (C - CO) * (Cma / (Cm - CO))$$

$$C_{gas} = 8.2959537 \text{ ppm}$$

$$\text{lbs NOx/hr} = 2.75$$

Air Nova Inc.

EPA Methods 2,3,4,7E Calculations

Plant Marie Company

Operation No. 2 Sand Dryer Exhaust

Run 3

Location Mauricetown, New Jersey

Date 11/22/89

Outlet Test Data

Vwc =	22 cc	Vol. of H ₂ O collected (impingers)
Vwsg =	9.3 g	Wt of water collected in silica gel
Vm =	42.742 cf	Dry gas meter reading
Pb =	30.28 in. Hg	Barometric pressure
Ps =	30.25 in. Hg	Stack pressure
dP ^{.5} =	1.101 in. H ₂ O	Average square of delta p
dH =	1.500 in. H ₂ O	Average draft gauge reading
Tm =	510.50 R	Average meter temperature
Ts =	577.83 R	Average stack temperature
Y =	0.99	Meter calibration factor
t =	60 min.	Duration of sampling time
A =	13.5000 sq.ft.	Cross sectional area of stack
Cp =	0.85	Pitot tube correction factor
Kp =	85.49	Pitot tube constant

1) Volume of gas sampled at standard conditions, V_{mstd} .

$$V_{mstd} = V_m * Y * (P_m * T_{std}) / (P_{std} * T_m)$$

Vmstd = 44.46 dscf

2) Volume of water vapor collected at standard conditions. Vwstd.

$$V_{wstd} = K_1 * V_{wc} \quad V_{wsqstd} = K_2 * V_{wsq}$$

Vwstd = 1.04 scf Vwsenstd = 0.44

3) Decimal fraction of moisture by volume in stack gas - Btu

$$B_{ws} = V_{wsstd} + V_{wsnstd} / (V_{wsstd} + V_{wsnstd} + V_{nstd})$$

RWS = 0.033

4) Molecular weight of the stack gas, M_s .

$$M_d = (44*\%CO_2) + (28*\%CO) + (32*\%O_2) + (28*\%N_2)$$

$$M_s = 28.97$$

Orsat analysis

% CO ₂	1
% CO	0
% O ₂	20.3
% N ₂	78.7

5) Stack gas velocity, V_s in fps.

$$V_s = K_p * C_p * (dp^{.5}) * (T_s / (P_s * M_s))^{.5}$$

$$V_s = 64.96 \text{ fps}$$

6) Actual Stack gas volumetric flow rate, Q_a

$$Q_a = A * V_s * 60 \text{ sec/min}$$

$$Q_a = 52617.3 \text{ cfm}$$

7) Standardized volumetric flow rate, Q_{std} .

$$Q_{std} = Q_a * (1 - B_{ws}) * (T_{std} / T_s) * (P_s / P_{std})$$

$$Q_{std} = 47167.2 \text{ dscfm}$$

8) Oxides of Nitrogen Emission Rate (as nitrogen dioxide)

$$\text{lbs NOx/hr} = (C_{gas} * DSCFH * MW) / 387 * 10^6$$


MW =	46.01 g/g-mole	Molecular weight of NO ₂
C =	8.300 ppm (dry)	Concentration indicated by analyzer
CO =	-0.5 ppm	Avg. initial, final zero bias check
C _m =	18.3 ppm	Avg. initial, final upscale bias check
C _{ma} =	18.4 ppm	Actual conc. of upscale gas

$$C_{gas} = (C - CO) * (C_{ma} / (C_m - CO))$$

$$C_{gas} = 8.6127659 \text{ ppm}$$

$$\text{lbs NOx/hr} = 2.90$$

Appendix E
Gas Standard Certification

atheson[®] Gas Products

World Leader in Specialty Gases & Equipment

RECEIVED NOV 03 1989

POST OFFICE BOX 85
EAST RUTHERFORD, NEW JERSEY 07073
TELEPHONE: (201) 933-2400

Air Nova
931 Haddon Avenue
Collingswood, NJ 08108

Date November 2, 1989

Our invoice # _____

Your P.O. # AN481

Lot No. 102489-2S

Gentlemen:

Below are the results of the analysis you requested, as reported by our laboratory. Results are in volume percent, unless otherwise indicated.

LABORATORY REPORT ON GAS ANALYSIS

CYL. # SX12862
MIXTURE REQ.45PPM NO/N2 **ANALYSIS**

46 PPM Nitric Oxide

Balance Nitrogen

CYL. # SX13373
MIXTURE REG. 900PPM NO/N2 ANALYSIS

94 ppm Nitric Oxide

~~Balance Nitrogen~~

CYL. #
MIXTURE REQ.

ANALYSIS

CYL. #
MIXTURE REQ.

ANALYSIS

E-1

Appendix F
NO_x Converter Efficiency Data

NO_x CONVERTER EFFICIENCY

Mode	Chart Deflection	Reference
ND Span Response.	90.0	
ND mode with 10% dilution by Air	79.3	a
ND mode. Ozone on.	17.5	b
NDx Mode.	78.5	c
NDx mode. Ozone off.	79.7	d
NDx mode. Air off.	90.7	
	1.01 (1.05-0K)	

$$\text{NOx Eff} = [1 + (c-d)/(a-b)] \times 100$$

Technicians

ciac

**EMISSION TEST PRODUCTION
REPORT FORM**

I. Company Name The Morie Company Inc. APC Plant ID# 75027-002
Plant Location Maurice town, NJ
Certificate Number
Designation of Equipment No 2 Sand Dryer/Cooler

II. Emission Test Date(s) 11/22/89

Tests Conducted By:

Name of Firm Air Nova, Inc
Business Address 5845-A Clayton Avenue, Pennsauken, NJ 08109
Phone Number (609) 486-1500
Test Team Representatives Mark D. Daly
John J. Deemer
Joseph May

Length of Test 13:32 - 17:14 (3 hours 42 min)

	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>
Test Time (Start/Finish)	13:32 / 14:32	15:07 / 16:07	16:14 / 17:14

III. Certificate Operating Conditions

A. List Conditions

Achieved (Yes or No)

NO_x emission rate of
7.14 lbs/hr during No. 2
Fuel Combustion

**B. Log of Certificate Conditions During Stack Test
(Record at least every 15 minutes)**

Condition	Run #	Readout	Time of Recording
-----------	-------	---------	-------------------

NO _x stack conc.	1	8.1 (avg)	13:32 - 14:32
NO _x stack conc.	2	8.8 (avg)	15:07 - 16:07
NO _x stack conc	3	8.3 (avg)	16:14 - 17:14

Type of Waste Constituents N/A
Auxiliary Fuel N/A
Burning Rate N/A

D. Other:

Description of Operation and Process Rate

Silica Sand is dried by direct heat exchange in
2 Vibrating Fluid Bed Dryer. Dried Sand then passes
through a Fluid Bed Coker.

V. Control Equipment Parameters

CEMs Required (Yes/No) No

Contaminant?

STACK TEST CEM READING

Parameter Cont/Read	Parameter Cont/Read	Parameter Cont/Read	Time	Test Run #
<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>

A. Control Equipment performance Parameter

Parameter	Reading	Time	Run #
<u>N/A</u>	<u>N/A</u>	<u>N/A</u>	<u>N/A</u>

IV. Equipment Operation/Process Parameters

Number of Sources Connected _____
Number of Sources Operating _____

Production Rate: Normal _____
Maximum _____

A. Raw Materials:

	Test Run #1	Test Run #2	Test Run #3
Usage Rate (lbs/hr)	180,000	178,000	176,000
Breakdown (% by weight)	100%	100%	100%
Industrial Sand (silica)	Industrial Silica Sand	Industrial Silica Sand	Industrial Silica Sand

B. Surface Coating:

Material Being Coated _____ N/A
Type of Coating _____ N/A
Coating Rate (Gals/Hr) _____ N/A
Is Coating Altered (Yes or No) _____ N/A
With _____ N/A

Distance From Coating Head to Exhaust Duct _____ N/A

C. Fuel Burning - Incineration: (For Direct Heat Exchange)

Type of Fuel _____ No. 2 Fuel Oil
Fuel Burning Rate _____ See below (lbs/hr), (gals/hr), (ft/hr)
Fuel Additives _____ % _____

Meter Reading
(if available)

Time

131 gals/hr	13:32 - 14:32
137 gals/hr	15:07 - 16:07
145 gals/hr	16:14 - 17:14

Emission Report Form
page 4 of 4

B. Additional Observations

Fugitive Emissions (Yes/No) No

Visible Emissions From Stack (Yes/No) No

Odors Noticeable **No**

Vicinity of Equipment (Yes/No) _____
Near Exhaust Stack (Yes/No) _____
Off Property (Yes/No) _____

VI. Samples

Type of Sample Origt (EPA Method 3)
Time of Sampling during Runs 1, 2, 3
Sampled By Mark Daly
Sample Taken From Stack outlet

To Be Analyzed For Carbon Dioxide, Oxygen
Analyzed By Mark Daly

Form Information Supplied by: Name/Title (Please Print)

John J. Decker / Project Manager

Signature(s)/Date

John J. Deemer 11/30/89