

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AP42 Section:	12.2
Reference:	78
Title:	<p>Compliance Demonstration No. 13 Battery Combustion Stack, USS Clairton Works, Clairton, PA, Advance Technology Systems, Inc., Monroeville, PA,</p> <p>August 1994.</p>

AP42 12 2
AP-42 Section 12.2
Reference
Report Sect. 4
Reference 78
4
14
Reference 78

USS CLAIRTON WORKS
A DIVISION OF USX CORPORATION
CLAIRTON, PENNSYLVANIA

Review

Report on

COMPLIANCE DEMONSTRATION
NO. 13 BATTERY COMBUSTION STACK

AUGUST 1994

**USS CLAIRTON WORKS
A DIVISION OF USX CORPORATION
CLAIRTON, PENNSYLVANIA**

**Report on
COMPLIANCE DEMONSTRATION
NO. 13 BATTERY COMBUSTION STACK**

AUGUST 1994

**Prepared By
Advanced Technology Systems, Inc.
3000 Tech Center Drive
Monroeville, Pennsylvania 15146**

Project No. IKM-0202

AP-42 Section 12.2
Reference 4
Report Sect. 78
Reference

U. S. Steel
Clairton Works
400 State Street
Clairton, PA 15025-1855

*Re: H. T. Standard
Re: W. C. Clark
Re: G. T. Weber*
RECEIVED
Copy files

AUG 30 1994

August 24, 1994

DEPUTY DIRECTOR'S OFFICE
Bureau of Environmental Quality

Director
Bureau of Air Quality Control
Department of Environmental Resources
P.O. Box 2063
Harrisburg, PA 17120

Deputy Director
Allegheny County Health Department
Department of Air Quality
301 Thirty-ninth Street
Pittsburgh, PA 15201

U.S. Environmental Protection Agency
Region III
841 Chestnut Building
Philadelphia, PA 19017

Office of Chief Counsel
Western Region
Department of Environmental Resources
400 Waterfront Drive
Pittsburgh, PA 15222-4745

Gentlemen:

Subject: #13 Battery Stack Compliance Demonstration
USS Clairton Works

I am enclosing with this letter the mass emission report on #13 Battery Combustion Stack. The compliance demonstration was conducted at USS Clairton Works, a division of USX Corporation, on July 28-29, 1994.

For questions regarding these reports please call William C. Graeser at (412) 233-1467

Very truly yours,

G. T. Weber, Jr.
General Manager
USS Clairton Works

GTW/BAC
Enclosure

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY.....	iii
1.0 INTRODUCTION.....	1
2.0 METHODOLOGIES.....	2
3.0 RESULTS.....	4

LIST OF TABLES

Table 1	Particulate Matter Emissions Data.....	6
----------------	--	---

APPENDICES

APPENDIX A	TEST PROTOCOL, FIELD DATA SHEETS, CALIBRATION RESULTS	
APPENDIX B	PLANT OPERATIONAL DATA	
APPENDIX C	GRAVIMETRIC AND ANALYTICAL RESULTS, EMISSIONS CALCULATIONS	

EXECUTIVE SUMMARY

On July 28 and 29, 1994, a compliance test program was conducted for USS Clairton Works, Clairton, Pennsylvania, on the #13 Battery Combustion Stack. The purpose of the testing was to determine the (1) concentration and mass emission rate of particulate matter, and (2) presence and extent of visible emissions from the stack as required by the Second Consent Decree (Civil Action Nos. 79-709, 91-329), Chapter V (Compliance Requirements - Clairton Works), Section F (Combustion Stacks), Specific Items 2 through 4.

The results of the testing showed an average particulate matter concentration and emission rate of 0.0120 grains per dry standard cubic foot (gr/dscf) and 3.43 pounds per hour (lb/hr), respectively. As promulgated by the Second Consent Decree, Chapter V, Section F.2.a, the allowable particulate matter concentration for #13 Battery Combustion Stack is 0.015 gr/dscf (a Lowest Achievable Emission Rate [LAER] standard). Thus, the particulate matter emissions from the stack are less than the allowable concentration.

During the test periods, the greatest three-minute average opacity was less than 5 percent. The maximum opacity observed was 5 percent. As promulgated by the Second Consent Decree, Chapter V, Sections F.2.b and F.3, the visible emissions shall not equal or exceed 20 percent opacity for a period or periods aggregating in excess of 3 minutes in any 60-minute period and shall never equal or exceed 60 percent opacity. Thus, the observed opacities were less than the allowable values.

1.0 INTRODUCTION

On July 28 and 29, 1994, a compliance test program was conducted for USS Clairton Works, Clairton, Pennsylvania, on the #13 Battery Combustion Stack. The purpose of the testing was to determine the (1) concentration and mass emission rate of particulate matter, and (2) presence and extent of visible emissions from the stack as required by the Second Consent Decree (Civil Action Nos. 79-709, 91-329), Chapter V (Compliance Requirements - Clairton Works), Section F (Combustion Stacks), Specific Items 2 through 4.

Testing was performed by Messrs. Richard Casselberry and Thomas Morgan of Advanced Technology Systems, Inc. (previously the Monroeville, Pennsylvania-based Air Emissions Measurement Group of Chester Environmental) and Mr. Brian Fajtak of Environmental Technical Services under the direction of Mr. Bernie Clark of Chester Environmental. All test procedures were witnessed by Mr. Phil Lawrence of the Allegheny County Health Department - Department of Air Quality (DAQ).

The test program required two days to complete the field work activities due to a delay in the operation of the Battery #13. Since no ovens in Battery #13 were pushed or charged from approximately 1000 to 1245 on July 28, 1994, no emissions testing was completed during this time period. Once normal operations of the battery resumed (about 1245), emissions testing was resumed. Since there was an insufficient amount of daylight remaining after the completion of the second test run, the third test run was conducted on the following day, July 29, 1994.

2.0 METHODOLOGIES

The compliance test program was conducted in accordance with the emissions measurement test protocol, which can be found in Appendix A.

Particulate matter sampling was performed in accordance with EPA Stationary Source Sampling Methods 1 through 5, Sections 139.11 and 139.12 of the Pennsylvania Department of Environmental Resources (PA DER) Source Testing Manual, and Appendix A of the Amended Installation Permit for USS Clairton Works Nos. 13, 14, and 15 Batteries. Three two-hour tests were executed during normal operating conditions. Greater than 50 dry standard cubic feet of sample gas was collected during each test run.

The process exhausts through a 120 inch diameter stack. A total of 24 traverse points (12 per diameter) were sampled; the traverse points were calculated in accordance with EPA Method 1. Sampling was conducted through four equally spaced ports, with six traverse points sampled per port. Each point was sampled for 5 minutes, thus bringing the total sampling time to 120 minutes.

In accordance with EPA Method 2, velocities and volumetric flow rates of the exhaust gas were determined using a calibrated S type pitot tube. Positive and negative pitot lines were leak-checked at the beginning and end of each test run. Gas velocity differential pressures along with stack gas temperatures were recorded at each sampling point.

At the beginning and end of each test, gas concentrations of carbon dioxide (CO_2), oxygen (O_2), and nitrogen (N_2 - by difference) were determined with the use of Fyrite apparatus as specified by EPA Method 3. Gas concentrations were used to obtain dry molecular weight of the process gas.

Percent moisture content, by volume, of the exhaust gas was determined by measuring the weight gain of the four sample train impingers in accordance with EPA Method 4.

As specified by EPA Method 5, each sample train was assembled as required by the method, leak-checked on site at the beginning and end of each test run, and operated such that isokinetic conditions are maintained. Clean up of the sampling train will include a

water rinse followed by an acetone rinse of both the front-half and back-half components of the sample train, as per PA DER particulate matter test methods. The water soluble and water insoluble portions of the front-half of the sampling train were determined as a total; that is, the water rinse was not filtered to determine soluble and insoluble portions. Front-half acetone and water rinses were evaporated to dryness, desiccated, and weighed to a constant weight. The water soluble and water insoluble portions of the back-half were determined separately in accordance with Section 139.12 of the PA DER Source Testing Manual. The back-half water rinses and first three impinger solutions were combined and then filtered under suction through a preweighed 0.22 micrometer membrane filter. The filter used to capture the insoluble material was dried, desiccated, and weighed to a constant weight. After filtration, the soluble back-half water was extracted with chloroform and ethyl ether. The extracts were evaporated to dryness, desiccated, and weighed to a constant weight. The filtrate, or remaining water from the extraction process, was evaporated to dryness, desiccated, and weighed to a constant weight. Following the gravimetric analyses for the filtrate residue, the residue was resolubilized and the solution submitted for sulfate analysis via ion chromatography. Back-half acetone rinses were evaporated to dryness, desiccated, and weighed to a constant weight. Sample train filters were desiccated for 24 hours, and particulate matter weight was determined gravimetrically. Rinse residue weights and filter weights were measured to the nearest 0.1 mg. One acetone blank and one deionized distilled water blank were prepared in the same manner as the test sample rinses. The blank residue weights were subtracted from the test sample residue weights. After blank correction, front-half water and acetone rinse residue weights, sample train filter weights, and back-half water insoluble filter weights were used to determine total particulate matter catch.

All visible emissions determinations were performed in accordance with EPA Stationary Source Sampling Method 9. Visible emission readings were recorded for the duration of each particulate matter test.

TABLE I-2. LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS
(Percent of stack diameter from leads and to security panel)

Traverse point number and a diameter	Number of traverse points on a diameter											
	1	2	3	4	5	6	7	8	9	10	11	12
1	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
2	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
3	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
4	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
5	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
6	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
7	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
8	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
9	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
10	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
11	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
12	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
13	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
14	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
15	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
16	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
17	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
18	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
19	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
20	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
21	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
22	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
23	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
24	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0

TABLE I-1. CROSS SECTION LAYOUT FOR
RECTANGULAR STACKS

Number of traverse points	Stack layout
6	100
12	100
18	100
20	100
24	100
32	100
40	100

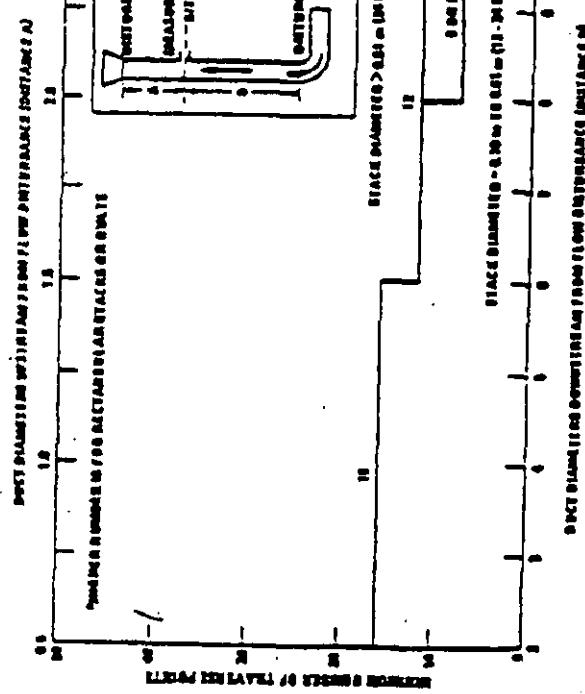
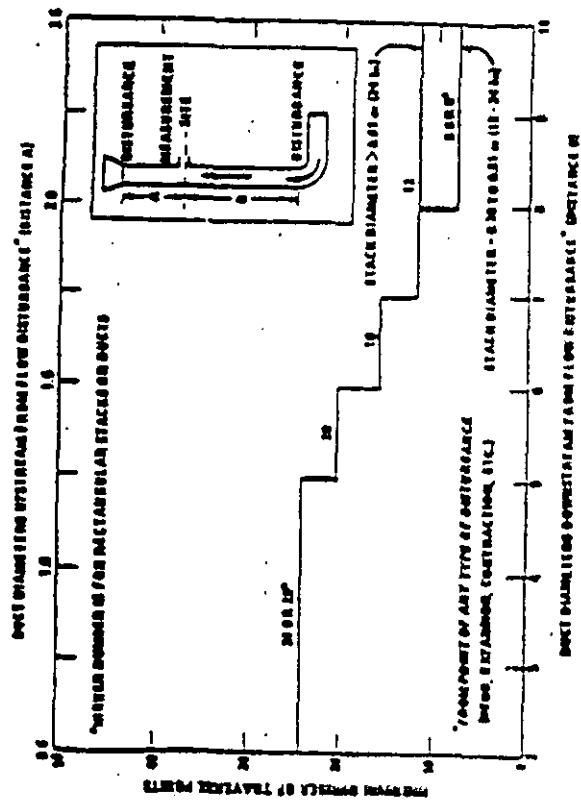



TABLE I-2. LOCATION OF TRAVERSE PONDS IN CIRCULAR STACKS

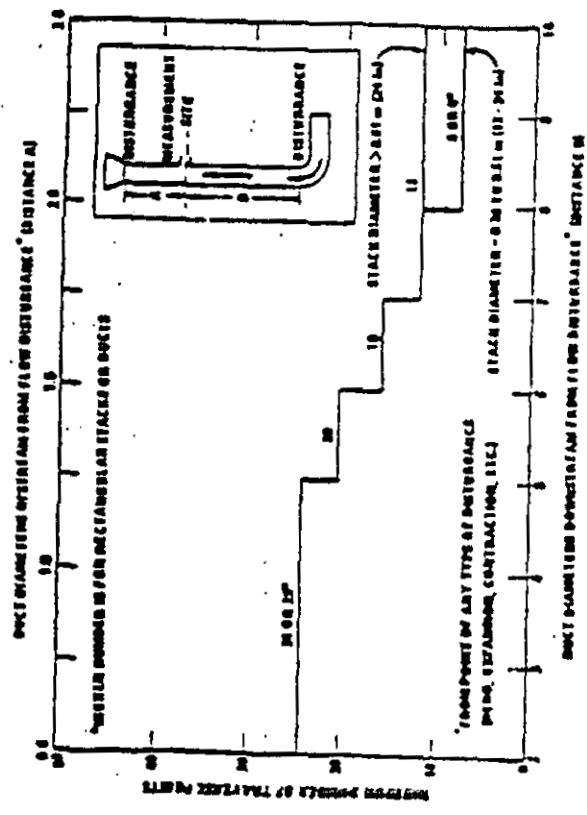
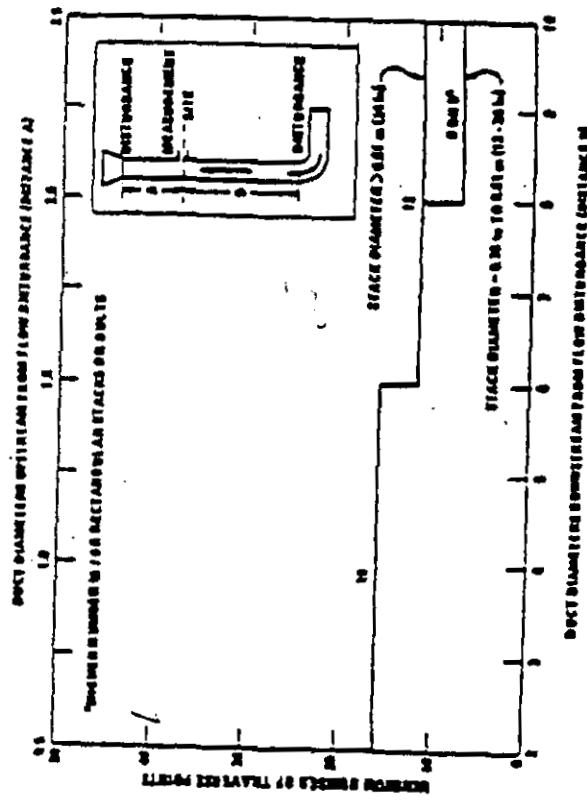


TABLE 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS

Number of hours per day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Actual hours	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15



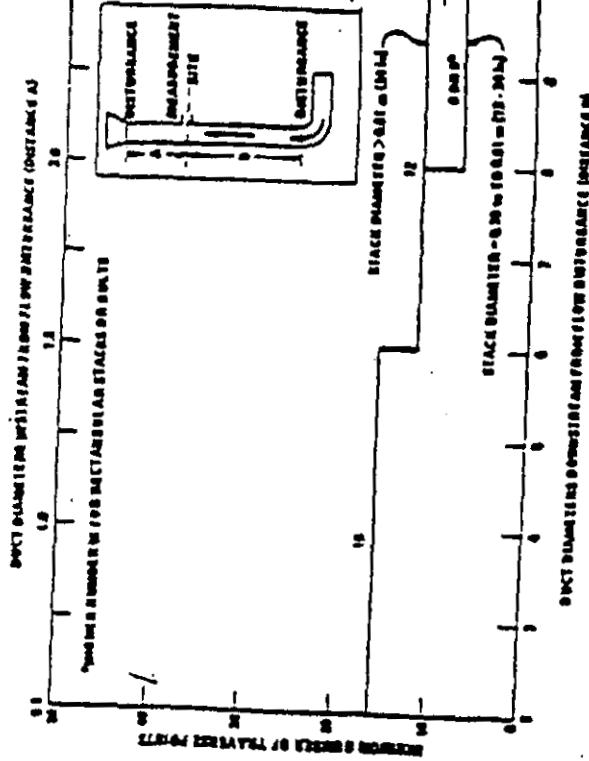
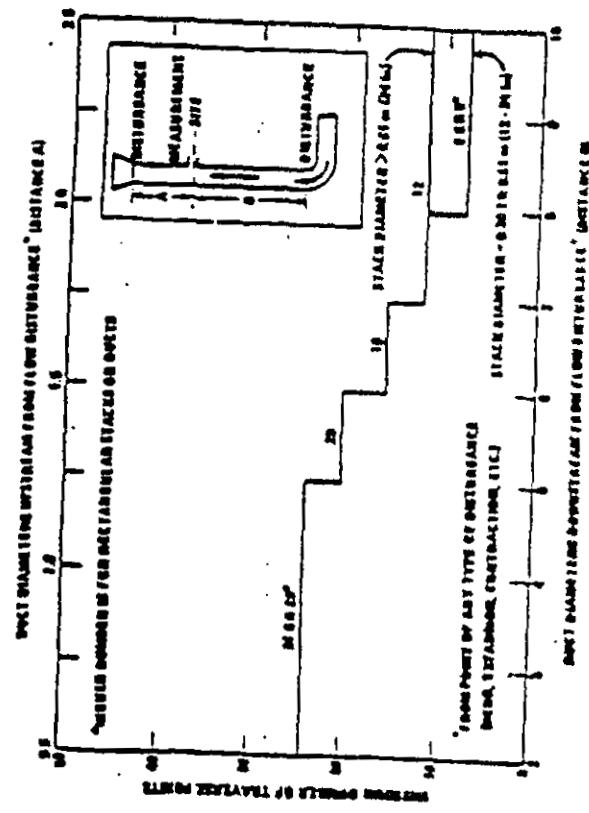



TABLE I-2. LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

Number of stack diameter & no. blocks used to form each panel		Number of traverse points on a diameter																							
Traverse point number on a diameter	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
1	104	97	91	84	77	70	63	56	49	42	35	28	21	14	7	0	0	0	0	0	0	0	0		
2	66	70	76	81	85	89	93	97	101	105	109	113	117	121	125	129	133	137	141	145	149	153	157	161	
3	63.3	70	77.2	84	91	97.8	104.6	111.4	118.2	124.9	131.7	138.5	145.3	152.1	158.9	165.7	172.5	179.3	186.1	192.9	199.7	206.5	213.3	220.1	226.9
4	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	168	174	180	186	192	198	
5	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	165	171	177	183	189	195	
6	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	168	174	180	186	192	
7	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	165	171	177	183	189	
8	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	168	174	180	186	
9	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	165	171	177	183	
10	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	168	174	180	
11	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	165	171	177	
12	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	168	174	
13	33	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	165	171	
14	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	168	
15	27	33	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	165	
16	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	162	
17	21	27	33	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	159	
18	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	156	
19	15	21	27	33	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	153	
20	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	150	
21	9	15	21	27	33	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	147	
22	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	144	
23	3	9	15	21	27	33	39	45	51	57	63	69	75	81	87	93	99	105	111	117	123	129	135	141	
24	0	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120	126	132	138	

TABLE I-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS

Number of traverse points	Stack beyond
6	12
12	18
18	24
24	30
30	36
36	42
42	48
48	54
54	60
60	66
66	72
72	78
78	84
84	90
90	96
96	102
102	108
108	114
114	120
120	126
126	132
132	138
138	144
144	150
150	156
156	162
162	168
168	174
174	180
180	186
186	192
192	198
198	204

STACK SAMPLING DATA SHEET:

Page 2 of 2

CLIENT USS-Clairton Works
 TEST UNIT Bunker 53
 PROJECT NO. T-14-1462
 TEST CREW AC, TM
 BAROMETRIC PRESSURE 29.30

TEST DATE 07-28-94 (Gauss) ORIFICE CORRECTION (ΔH₀) 1.832
 NOZZLE (SIZE, NO. 470) 10.32 PROBE NO. 2-2
 STATIC PRESSURE -10.440 FILTER NO. 1296

PORT DIRECTION SOUTHEAST

CONTROL BOX NO. 6-81 PORT SIZE 40" ~~Theatre~~ ^{new}

PORT

LEAK CHECK

% H₂O = 4.0

LEAK

LEAK

MW = 28.0

LEAK

LEAK

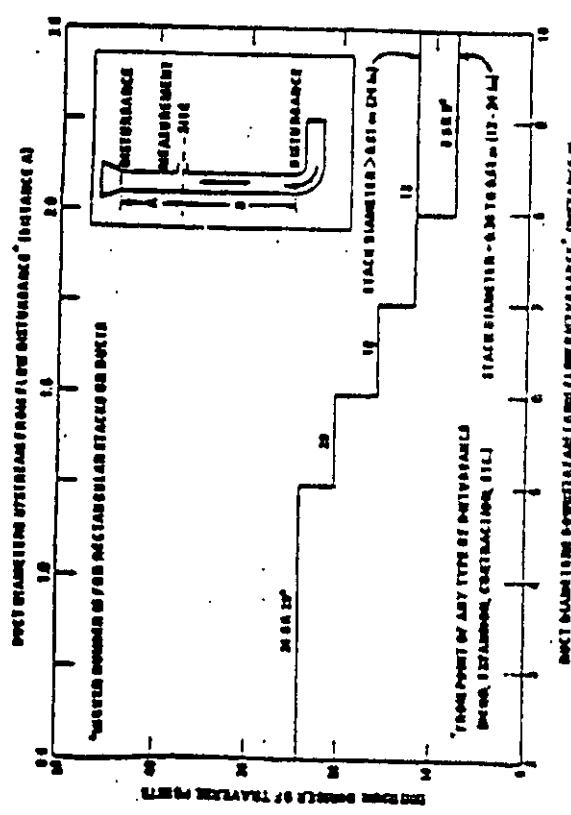
Estimate:

LEAK

LEAK

MW = 28.0

Time	Dry Gas Meter Reading (in. H ₂ O)	Pilot & P Required (in. H ₂ O)	Orifice & H Actual (in. H ₂ O)	Meter Temperature In (°F)	Meter Temperature Out (°F)	Vacuum (in. Hg)	Stack Temp. (°F)	Probe Temp. (°F)	Impinger Temp. (°F)	Hot Box Temp. (°F)	Comments
42.7	09.32	853.225	0.05	1.40	1.40	100	83	4.5	499	250	
30.0			0.05	1.40	1.40	100	83	4.5	499	250	
24.3			0.04	1.12	1.12	109	83	4.0	509	250	
14.2			0.03	0.84	0.84	109	83	3.5	506	250	
8.0			0.04	1.12	1.12	109	83	3.0	475	250	
2.6	10.24	870.827	0.03	0.84	0.84	109	84	3.0	480	250	
42.7	12.42	870.827	0.05	1.40	1.40	80	90	5.0	510	250	
30.0			0.05	1.40	1.40	94	80	5.0	516	250	
24.3			0.06	1.68	1.68	98	82	5.5	500	250	
14.2			0.05	1.40	1.40	100	85	5.0	495	250	
8.0			0.04	1.12	1.12	110	89	3.5	465	250	
2.6	13.13	890.520	0.03	0.84	0.84	110	89	3.5	465	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	
8.0			0.04	1.12	1.12	94	106	5.5	516	250	
2.6	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
42.7	14.10	910.000	0.04	1.12	1.12	94	106	5.5	516	250	
30.0			0.04	1.12	1.12	94	106	5.5	516	250	
24.3			0.04	1.12	1.12	94	106	5.5	516	250	
14.2			0.04	1.12	1.12	94	106	5.5	516	250	


TABLE I-2. LOCATION OF INVERSE POINTS IN CIRCULAR STACKS

(Percent of stack diameter from inside wall to inverse point)

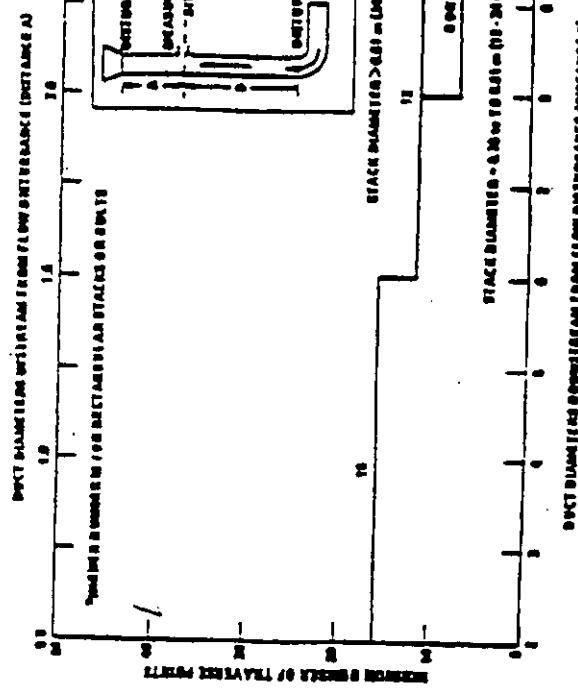

Inverse point number on a diameter	Number of inverse points on a diameter											
	6	8	10	12	14	16	18	20	22	24	26	28
1	100	67	44	34	24	18	13	10	8	6	4	3
2	80	55.6	37.5	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.4	1.8
3	67	44.9	31.6	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2
4	55.6	37.5	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.4	1.7	1.2
5	44.9	31.6	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8
6	37.5	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.4	1.7	1.2	0.8
7	31.6	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5
8	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.4	1.7	1.2	0.8	0.5
9	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3
10	19.4	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2	0.8	0.5	0.3
11	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2
12	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2	0.8	0.5	0.3	0.2
13	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1
14	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1
15	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1
16	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1
17	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1
18	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1
19	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
20	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
21	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
22	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
23	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
24	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

TABLE I-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR STACKS

Number of inverse points	Layout layout											
	6	8	10	12	14	16	18	20	22	24	26	28
1	100	67	44	34	24	18	13	10	8	6	4	3
2	80	55.6	37.5	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.4	1.8
3	67	44.9	31.6	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2
4	55.6	37.5	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2
5	44.9	31.6	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8
6	37.5	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2	0.8
7	31.6	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5
8	27.8	19.4	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2	0.8	0.5
9	22.4	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3
10	19.4	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2	0.8	0.5	0.3
11	15.6	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2
12	13.3	9.1	6.3	4.6	3.4	2.5	1.7	1.2	0.8	0.5	0.3	0.2
13	10.4	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1
14	7.1	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1
15	4.9	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1
16	3.5	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1
17	2.5	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1
18	1.7	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1
19	1.2	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1
20	0.8	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
21	0.5	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
22	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
23	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
24	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

15.5

STACK SAMPLING DATA SHEET

Page 1 of 2

CLIENT U.S.S. CLAYTON U.S.S.S.
TEST UNIT ~~8~~ ⁸ BAKER STREET #13
PROJECT NO. ITR-1 - 4202
TEST CREW
BAROMETRIC PRESSURE 79.30

TEST DATE 07-28-94 (THUR)
 TEST NO. U.S.S-CLR-B513-#1
 NOZZLE (SIZE, #) 0.490"
 STATIC PRESSURE -1.0" Hg
 PORT DIRECTION

ORIFICE CORRECTION (411@) 1.837		WOT/COLD BOX NO. 1
METER CORRECTION (Y)	1.0172	PROBE NO. 10-2
CALIBRATION DATE	06-20-94	FILTER NO. 1296
PITOT CORRECTION	0.84	STACK DIA. 120"
CONTROL BOX NO.		PORT SIZE 1/2"

	Vacuum (in. Hg)	DGM RATE (cfm)
License	5.0	10.0 LPM
After	8.0	0.0 LPM

	Positive	Negative
Before	✓✓✓✓✓✓	✗✗✗✗✗✗
After	✗✗✗✗✗✗	✓✓✓✓✓✓
OAS	1	2
CO ₂	6.0	6.6
O ₂	10.5	10.5
CO	0	0
N ₂	83.5	83.5

ADVANCED TECHNOLOGY SYSTEMS, INC.

339 Haymaker Road Suite 100
Monroeville, PA 15146

412/856-0662
FAX 412/856-0666

A report summarizing the compliance test program will be submitted within 60 days following completion of field work. The report will describe test methodologies utilized and present a textual and tabular summary of the emissions results and related sampling information. Copies of operational data will be included in the report to verify that all testing was performed during periods of normal plant operation. Also incorporated into the report will be copies of the pre-test calibration results, post-test calibration results, the results of an audit conducted with a critical orifice provided by the Allegheny County Health Department - Department of Air Quality, field data sheets for the particulate matter sampling and visible emissions determinations, emissions calculations sheets, and analytical results for each test.

water rinse followed by an acetone rinse of both the front-half and back-half components of the sample train, as per PA DER particulate matter test methods. The water soluble and water insoluble portions of the front-half of the sampling train will be determined as a total; that is, the water rinse will not be filtered to determine soluble and insoluble portions. Front-half acetone and water rinses will be evaporated to dryness, desiccated, and weighed to a constant weight. The water soluble and water insoluble portions of the back-half will be determined separately in accordance with Section 139.12 of the PA DER Source Testing Manual. The back-half water rinses and first three impinger solutions will be combined and then filtered under suction through a preweighed 0.22 micrometer membrane filter. The filter used to capture the insoluble material will be dried, desiccated, and weighed to a constant weight. After filtration, the soluble back-half water will be extracted with chloroform and ethyl ether. The extracts will be evaporated to dryness, desiccated, and weighed to a constant weight. The filtrate, or remaining water from the extraction process, will be evaporated to dryness, desiccated, and weighed to a constant weight. Following the gravimetric analyses for the filtrate residue, the residue will be resolubilized and the solution submitted for sulfate analysis via ion chromatography. Back-half acetone rinses will be evaporated to dryness, desiccated, and weighed to a constant weight. Sample train filters will be desiccated for 24 hours, and particulate matter weight will be determined gravimetrically. Rinse residue weights and filter weights will be measured to the nearest 0.1 mg. One acetone blank and one deionized distilled water blank will be prepared in the same manner as the test sample rinses. The blank residue weights will be subtracted from the test sample residue weights. After blank correction, front-half water and acetone rinse residue weights, sample train filter weights, and back-half water insoluble filter weights will be used to determine total particulate matter catch.

All visible emissions determinations will be performed in accordance with EPA Stationary Source Sampling Method 9. Visible emission readings will be recorded for the duration of each particulate matter test.

**TEST PROTOCOL
COMPLIANCE DEMONSTRATION
#13 BATTERY COMBUSTION STACK**

**USS CLAIRTON WORKS
CLAIRTON, PA**

Particulate matter sampling will be performed in accordance with EPA Stationary Source Sampling Methods 1 through 5, Sections 139.11 and 139.12 of the Pennsylvania Department of Environmental Resources (PA DER) Source Testing Manual, and Appendix A of the Amended Installation Permit for USS Clairton Works Nos. 13, 14, and 15 Batteries. Three two-hour tests will be executed during normal operating conditions. Greater than 50 dry standard cubic feet of sample gas will be collected during each test run.

The process exhausts through a 120 inch diameter stack. A total of 24 traverse points (12 per diameter) will be sampled; the traverse points will be calculated in accordance with EPA Method 1. Sampling will be conducted through four equally spaced ports, with six traverse points sampled per port. Each point will be sampled for 5 minutes, thus bringing the total sampling time to 120 minutes.

In accordance with EPA Method 2, velocities and volumetric flow rates of the exhaust gas will be determined using a calibrated S type pitot tube. Positive and negative pitot lines will be leak-checked at the beginning and end of each test run. Gas velocity differential pressures along with stack gas temperatures will be recorded at each sampling point.

At the beginning and end of each test, gas concentrations of CO₂, O₂, and N₂ (by difference) will be determined with the use of a Fyrite apparatus as specified by EPA Method 3. Gas concentrations will be used to obtain molecular weight of the process gas.

Percent moisture content, by volume, of the exhaust gas will be determined by measuring the weight gain of the four sample train impingers in accordance with EPA Method 4.

As specified by EPA Method 5, each sample train will be assembled as required by the method, leak-checked on site at the beginning and end of each test run, and operated such that isokinetic conditions are maintained. Clean up of the sampling train will include a

COMPLIANCE DEMONSTRATION
NO. 13 BATTERY COMBUSTION STACK

USS CLAIRTON WORKS
A DIVISION OF USX CORPORATION
CLAIRTON, PENNSYLVANIA

APPENDIX A

TEST PROTOCOL, FIELD DATA SHEETS, CALIBRATION
RESULTS

ADVANCED TECHNOLOGY SYSTEMS, INC.

All testing was performed during periods of normal plant operation. Copies of the plant operational data can be found in Appendix B.

The gravimetric and analytical results (including the results of the sulfate analyses of the back-half filtrate from the sample trains) and the emissions calculations for each test can be found in Appendix C.

USS CLAIRTON WORKS
CLAIRTON, PA

TABLE I

#13 BATTERY COMBUSTION STACK
PARTICULATE MATTER EMISSIONS DATA

		Run 1	Run 2	Run 3	Average
Test Number	CLR-BS#13-1	CLR-BS#13-2	CLR-BS#13-3		
Test Date	07-28-94	07-28-94	07-29-94		
<u>Mass Emissions Rate and Concentration</u>					
Particulate Matter	(lb/hr)	3.49	3.11	3.69	3.43
	(gr/dscf)	0.0121	0.0109	0.0129	0.0120
<u>Stack Conditions</u>					
Flow Rate	(acf m)	73700	73900	73500	73700
	(scfm)	39800	39800	39800	39800
	(dscfm)	33600	33200	33400	33400
Temperature	(°F)	496	498	495	496
Moisture Content	(%)	15.5	16.6	16.2	16.1
<u>Sampling Conditions</u>					
Test times		0830	1340	0740	
	to 0900	to 1410	to 0810		
	0906	1414	0813		
	to 0936	to 1444	to 0843		
	0939	1447	0846		
	to 1009	to 1517	to 0916		
	1242	1520	0919		
	to 1312	to 1550	to 0949		
Sampling Time	(minutes)	120	120	120	
Sample Volume	(dscf)	70.923	70.515	69.046	
Isokinetics	(%)	105.4	106.2	103.4	

3.0 RESULTS

The test results have been summarized in Table 1. The results of the testing showed an average particulate matter concentration and emission rate of 0.0120 grains per dry standard cubic foot (gr/dscf) and 3.43 pounds per hour (lb/hr), respectively. As promulgated by the Second Consent Decree, Chapter V, Section F.2.a, the allowable particulate matter concentration for #13 Battery Combustion Stack is 0.015 gr/dscf (a Lowest Achievable Emission Rate [LAER] standard). Thus, the particulate matter emissions from the stack are less than the allowable concentration.

Table 1 also lists other pertinent stack and sampling parameters which include stack gas flow rate in units of actual cubic feet per minute (acf m), standard cubic feet per minute (scfm), and dry standard cubic feet per minute (dscfm), stack gas temperature ($^{\circ}$ F), moisture content of the stack gas (percent by volume), gas volume sampled for each test in units of dry standard cubic feet (dscf), and the isokinetics value for each test. The isokinetics value is equal to the ratio of the average linear gas velocity sampled through the probe nozzle to the average stack gas velocity. An isokinetics value between 90 percent and 110 percent is considered acceptable. All isokinetic values were within the acceptable range of values. The gas volume sampled for each 120 minute test was greater than 50 dry standard cubic feet. Actual test sampling times have also been included in Table 1.

Copies of all field data sheets, including the visible emissions readings, can be found in Appendix A. As promulgated by the Second Consent Decree, Chapter V, Sections F.2.b and F.3, the visible emissions shall not equal or exceed 20 percent opacity for a period or periods aggregating in excess of 3 minutes in any 60-minute period and shall never equal or exceed 60 percent opacity. During the test periods, the greatest three-minute average opacity was less than 5 percent. The maximum opacity observed was 5 percent. Thus, the observed opacities were less than the allowable values.

All sampling equipment was calibrated and operated in accordance with EPA Stationary Source Sampling Methods 1 through 5. Copies of the pre-test calibration results, post-test calibration results, and the results of an audit conducted with a critical orifice provided by the Allegheny County Health Department DAQ can be found in Appendix A.

TABLE 1-2. LOCATION OF TRAVERSE POINTS IN CIRCULAR STACKS

Percent of stack diameter from front end to traverse point

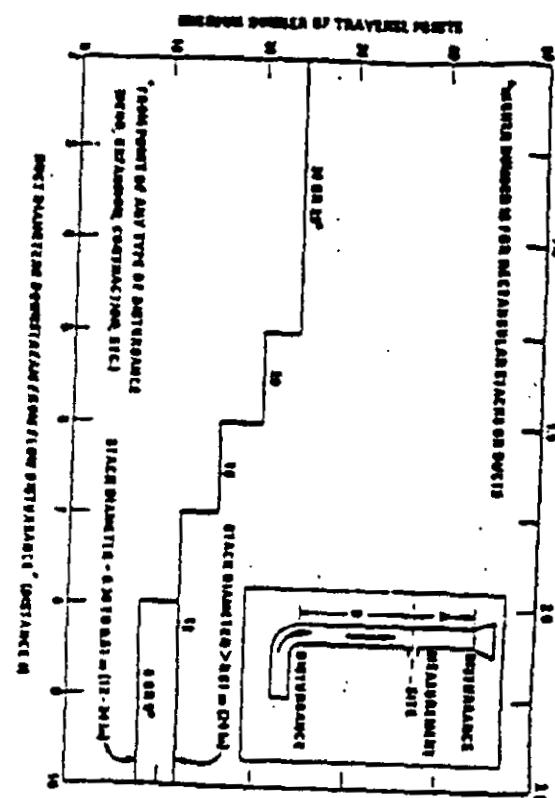
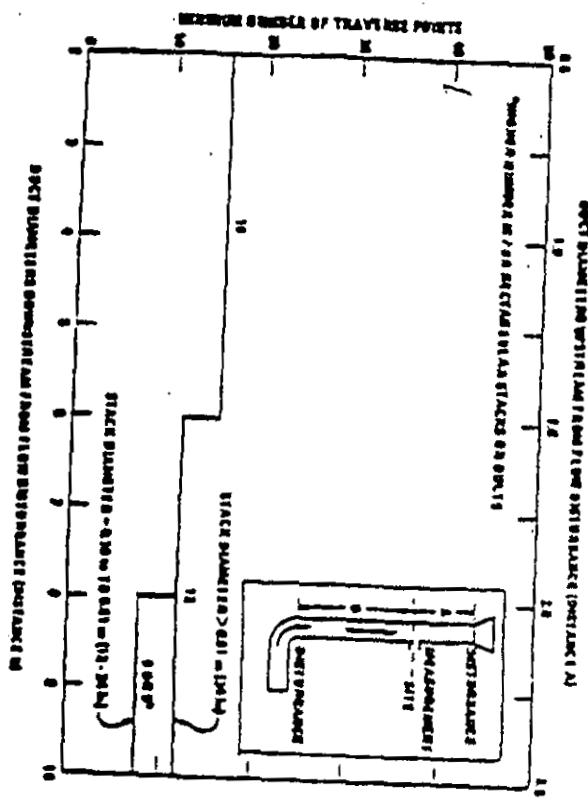



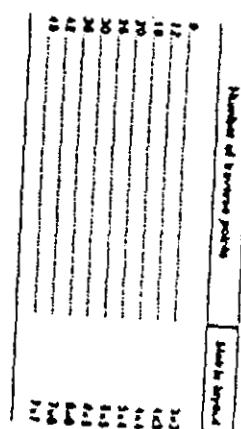
TABLE 1-3. CROSS SECTION LAYOUT FOR
RECTANGULAR STACKS

Number of traverse points	Number of points
7	7
12	12
16	16
20	20
24	24
30	30
36	36
48	48
60	60

STACK SAMPLING DATA SHEET

STACK SAMPLING DATA SHEET

CLIENT USS-CLARK NO. 4005	TEST DATE 07-29-94 (EEI)	ORIFICE CORRECTION (A11@) 1.837	HOT/COLD BOX NO. 4
TEST UNIT <i>Rubber stack</i> #13	TEST NO. 055- 4740 -1385-23	METER CORRECTION (Y) 1.9172	PROBE NO. 10-2
PROJECT NO. 244-0242	NOZZLE (SIZE) 1/2" 420"	CALIBRATION DATE 06-20-94	FILTER NO. 1305
TEST CREW <i>EEI</i> TA	STATIC PRESSURE -1.1" H2O	PILOT CORRECTION 0 .84	STACK DIA. 1/20"
BAROMETRIC PRESSURE 29.40	PORT DIRECTION <i>south</i> AEST	CONTROL BOX NO. 516	PORT SIZE 10


412/350-0002
FAX 412/856-0666

ADVANCED TECHNOLOGY SYSTEMS, INC.

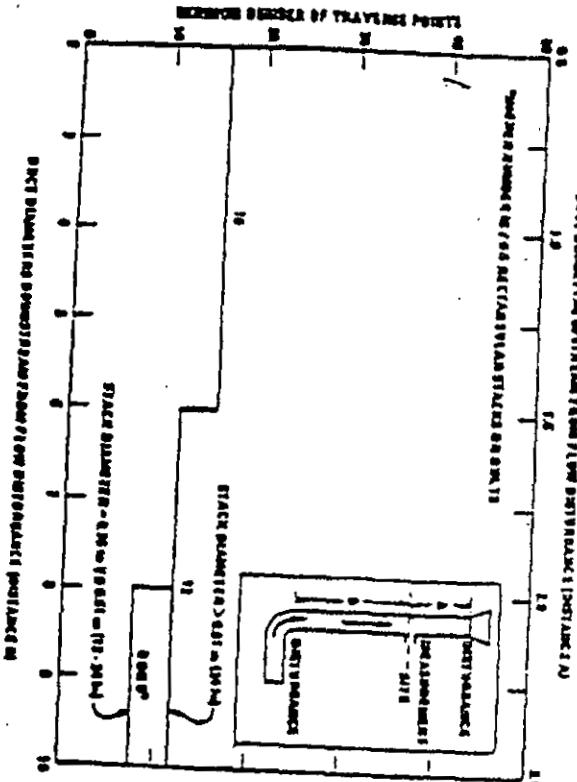

Periódico de la Universidad de Valencia. ISSN 0213-9490. ISSN digital 1699-5339. ISSN en línea 1699-5347. ISSN en línea en abierto 1699-5355.

FIGURE 1-2. LOCATION OF FAUCETE POINT IN CIRCULAR STACKS
Percent of stack diameter from bottom used to determine point

TABLE 1-1. CROSS-SECTION LAYOUT FOR
RECTANGULAR SLEEVES

1. CROSS-SECTION LAYOUT FOR RECTANGULAR STACKS

CONTROL BOX CALIBRATION

THREE POINT CALIBRATION

BOX #	6	BP	28.95	In. HQ
DATE	06-20-94	OPERATOR	RPC	

POST TEST

BOX # 6 BP 29.00 In. Hg
DATE 08-03-94 OPERATOR RPC

PRE-TEST MAGNEHELIC CALIBRATION

BOX# 6
 DATE 06-09-94
 OPERATOR RPC

0 to 3.0" H2O RANGE

PYROMETER CALIBRATION

MAGNEHELIC	ΔP	MANOMETER
0.50	0.50	
1.00	1.00	
2.00	2.00	
3.00	3.00	

0 to 0.50" H2O RANGE
SLANT TUBE

PRIMARY STANDARD

MAGNEHELIC	ΔH	MANOMETER
0.50	4.00	4.00
1.00	3.00	3.00
2.00	2.00	2.00
3.00	1.00	1.00
	0.50	0.50

0 to 5" H2O RANGE

PRE-TEST LEAK CHECK

DATE	06-20-94	OPERATOR	RPC	START CF	STOP CF	VOLUME CF	TIME (min)	LEAK RATE
DRY	394.400			394.619		0.219	10.000	0.000
WET	0.000			0.222		0.222		

PYROMETER CALIBRATION

DATE	04-28-88	OPERATOR	AGL
------	----------	----------	-----

VOLTAGE INPUT (mV)	ARGE TEMP (°F)	TEMP READING (°F)	VOLTAGE INPUT (mV)	TARGET TEMP (°F)	TEMP READING (°F)
0.18	40	40.0	0.18	40	40.0
0.40	50	50.0	0.40	50	50.0
0.84	70	70.0	0.84	70	70.0
1.29	90	90.0	1.29	90	90.0
1.74	110	110.0	1.74	110	110.0
2.66	150	150.0	2.66	150	150.0
3.82	200	200.0	3.82	200	200.0
6.09	300	301.0	6.09	300	301.0
8.31	400	400.0	8.31	400	402.0
10.57	500	500.0	10.57	500	502.0

PRE-TEST PYROMETER CHECK

DATE	06-09-94	OPERATOR	RPC
------	----------	----------	-----

0 to 5" H2O RANGE

SLANT TUBE

PRIMARY STANDARD

MAGNEHELIC

MANOMETER

POST-TEST MAGNEHELIC CALIBRATION

BOX# 6

DATE 08-03-94

OPERATOR RPC

0 to 3.0" H2O RANGE

0 to 0.50" H2O RANGE

SLANT TUBE

PRIMARY STANDARD

MAGNEHELIC	MANOMETER	0 to 5" H2O RANGE		
<u>ΔP</u>	<u>ΔH</u>	MANOMETER	MAGNEHELIC	MANOMETER
0.50	0.50		4.00	4.00
1.00	1.00		3.00	3.00
2.00	2.00		2.00	2.00
3.00	3.00		1.00	1.00
			0.50	0.50

POST-TEST LEAK CHECK

DATE 08-03-94

OPERATOR RPC

	START CF	STOP CF	VOLUME CF	TIME (min)	LEAK RATE
DRY	62.400	62.590	0.190	10.000	0.0000
WET	0.000	0.190	0.190		

PYROMETER CALIBRATION

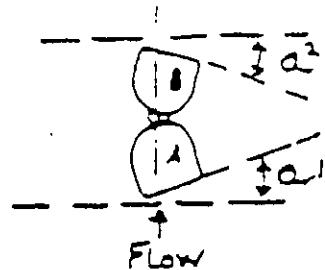
DATE 04-28-86

OPERATOR AGL

VOLTAGE INPUT (mV)	ARGE TEMP (°F)	TEMP READING (°F)	VOLTAGE INPUT (mV)	TARGET TEMP (°F)	TEMP READING (°F)
0.18	40	40.0	0.18	40	40.0
0.40	50	50.0	0.40	50	50.0
0.84	70	70.0	0.84	70	70.0
1.29	90	90.0	1.29	90	90.0
1.74	110	110.0	1.74	110	110.0
2.66	150	150.0	2.66	150	150.0
3.82	200	200.0	3.82	200	200.0
6.09	300	301.0	6.09	300	302.0
8.31	400	400.0	8.31	400	402.0
10.57	500	500.0	10.57	500	502.0

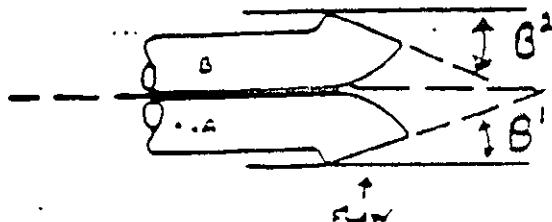
QA OFFICE AUDIT

ORIFICE BAPC-3
OPERATOR RPC DATE 06-09-94
BOX# 6 B.P. 29.00


RUN	1	2	3
INITIAL CF	110.300	118.300	126.300
FINAL CF	117.825	125.828	133.810
DIFFERENCE	7.525	7.528	7.510
TEMP INITIAL	IN 105	OUT 100	IN 102
TEMP 5 MIN	102	99	98
TEMP 10 MIN	102	98	97
TEMP 15 MIN	102	98	97
TEMP AVG	100.75	560.75	TEMP R.
TIME (MIN.)	15.00	15.00	99.5
ORIFICE	IN WATER 0.75	IN HG 0.06	IN HG 0.75
METER PRESSURE	29.06	IN WATER 0.75	IN HG 0.06
AMBIENT TEMP.	°F 78.0	°C 25.6	°F 78.0
VACUUM IN HG	21.0	78.0	25.6
DGM CAL Y	1.0128	21.0	21.0
STD CF	6.995	7.014	1.0128
STD CUBIC METERS	0.1981	0.1986	6.991
			0.1980

GEOMETRIC PITOT CALIBRATION

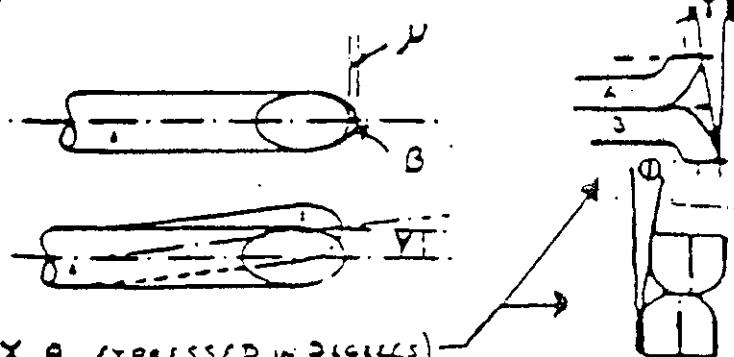
Caliper # X6F-59
 Precheck _____
 Post Check _____


Probe # 10.2
 Date: 6-10-94
 Initials: RPC

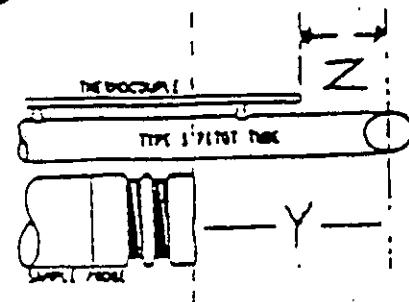
(1)

$a^1 = 3^\circ$ $a^2 = < 10^\circ$
 $a^2 = 0^\circ$
 $B^1 = 0^\circ$ $B^2 = < 5^\circ$
 $B^2 = 1^\circ$
 $F = .93$

(2)

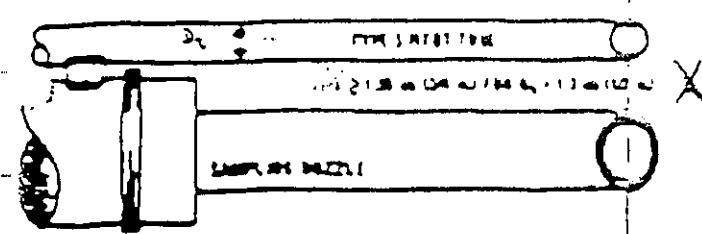

$\mu = 16$ $\beta \leq 0.1250^\circ$ ($\mu = F \tan \beta$)
 $V = 0$ $V \leq 0.03125^\circ$ ($V = F \tan \beta$)
 $W = 194$ $W \geq 0$
 $X = 0.97$ $X \geq 0.750^\circ$
 (3/4" using 1/2" nozzle)

(3)

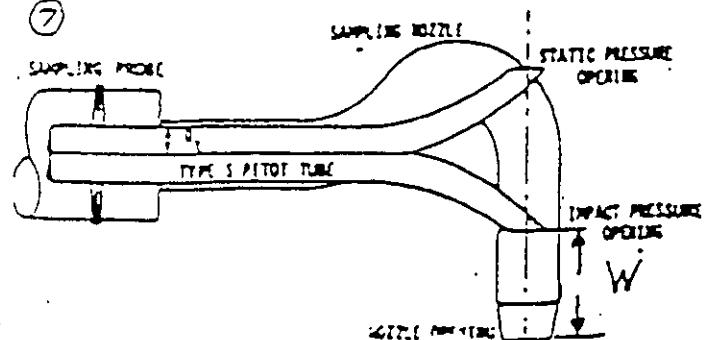


$Y = 5.6$ $Y \geq 3.0^\circ$
 $Z = 3.6$ $Z > 20^\circ$
 $D_t = 375$ $D_t > .1875^\circ$

(4)



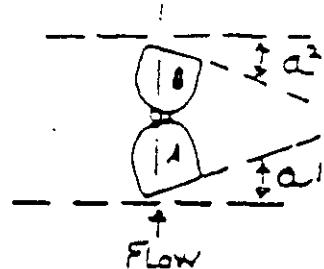
(5)



(Y, Z expressed in degrees)

(6)

(7)



GEOMETRIC PITOT CALIBRATION

Caliper # YCO - 59
 Precheck _____
 Post Check _____

Probe # 10-2
 Date: 0P-03-74
 Initials: KR

①

$$\alpha_1 = 3^\circ \quad \alpha_1, \alpha_2 < 10^\circ$$

$$\alpha_2 = 0^\circ \quad \alpha_1, \alpha_2 < 10^\circ$$

$$\beta_1 = 0^\circ \quad \beta_1, \beta_2 < 10^\circ$$

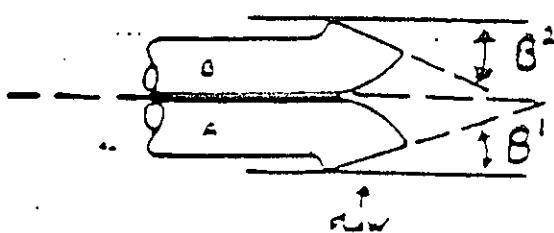
$$\beta_2 = 1^\circ \quad \beta_1, \beta_2 < 10^\circ$$

$$F = .94" \quad F \geq .90"$$

$$\mu = .16 \quad \mu \leq 0.1250^\circ (\mu = F \pi)$$

$$V = 0 \quad V \leq 0.03125" (V = F \pi)$$

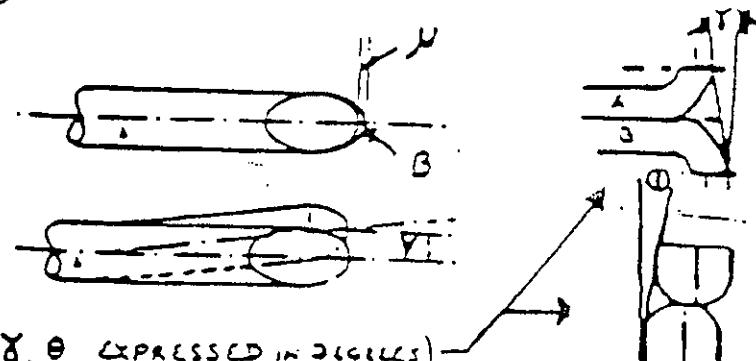
$$W = .1941" \quad W \geq 0"$$


$$X = 0.97 \quad X \geq 0.750^\circ \\ (3/4" using 1/2" nozzle)$$

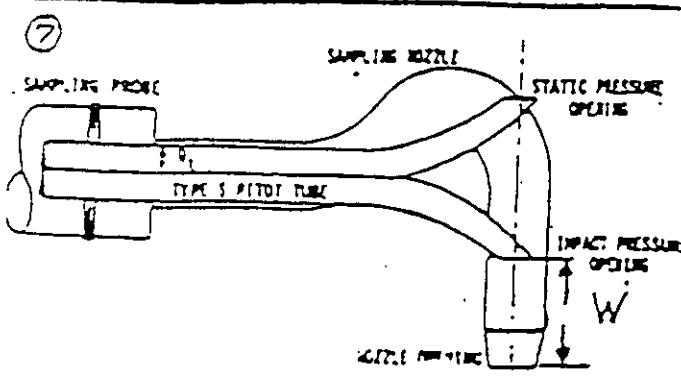
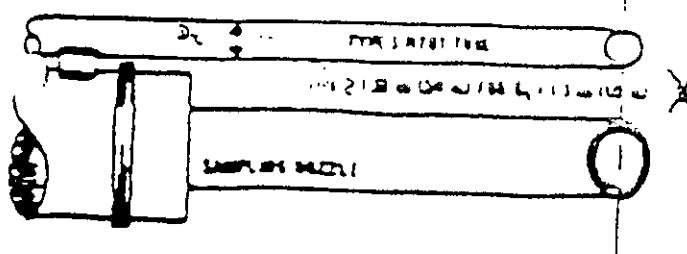
$$Y = 5.6 \quad Y \geq 3.0^\circ$$

$$Z = 3.8 \quad Z > 2.0^\circ$$

$$D_t = .376 \quad D_t > .1875"$$


②

③

④

(α, θ EXPRESSED IN DEGREES)

⑤

VISIBLE EMISSIONS OBSERVATION FORM

13 STACK

①

OBSERVER: R. BRIAN Fajtak

DATE: 7/28/94

FACILITY: USX/CLAIRTON

OBSERVATION START TIME: 0830

END TIME: 0930

OBSERVATION POINT:

100' south of #19 Batt.

SOURCE:

DISTANCE: \approx 300'

DIRECTION FROM: S-W

HEIGHT: \approx 150'

VIND:

SPEED: < 5 mph

DIRECTION: SOUTL

TEMPERATURE: 66°F

SKY CONDITION: OVERCAST

BACKGROUND: SKY

SEEING CONDITIONS: GOOD

COLOR OF EMISSIONS: -

TOTAL # OF READINGS: 240

NO. READINGS 0 - 15% 240

16. READINGS 20% -

NO. READINGS 25 - 50% -

17. READINGS 60 - 100% -

NO. READINGS > 20% -

18. GREATEST OPACITY: 0

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○	○	○
11	○	○	○	○
12	○	○	○	○
13	○	○	○	○
14	○	○	○	○
15	○	○	○	○
16	○	○	○	○
17	○	○	○	○
18	○	○	○	○
19	○	○	○	○
20	○	○	○	○
21	○	○	○	○
22	○	○	○	○
23	○	○	○	○
24	○	○	○	○
25	○	○	○	○
26	○	○	○	○
27	○	○	○	○
28	○	○	○	○
29	○	○	○	○

	:00	:15	:30	:45
30	○	○	○	○
31	○	○	○	○
32	○	○	○	○
33	○	○	○	○
34	○	○	○	○
35	○	○	○	○
36	○	○	○	○
37	○	○	○	○
38	○	○	○	○
39	○	○	○	○
40	○	○	○	○
41	○	○	○	○
42	○	○	○	○
43	○	○	○	○
44	○	○	○	○
45	○	○	○	○
46	○	○	○	○
47	○	○	○	○
48	○	○	○	○
49	○	○	○	○
50	○	○	○	○
51	○	○	○	○
52	○	○	○	○
53	○	○	○	○
54	○	○	○	○
55	○	○	○	○
56	○	○	○	○
57	○	○	○	○
58	○	○	○	○
59	○	○	○	○

VISIBLE EMISSIONS OBSERVATION FORM

#13 STACK

(2)

OBSERVER: R. BRIAN FAYAKDATE: 7/28/94FACILITY: USX/CLAIRTONOBSERVATION START TIME: 0930END TIME: 1010

OBSERVATION POINT:

100' south of 19 Batt.

SOURCE:

DISTANCE: ~300'DIRECTION FROM: S-WHEIGHT: ~150'

WIND:

SPEED: < 5 mphDIRECTION: southTEMPERATURE: 68°FSKY CONDITION: OVERCASTBACKGROUND: SKYREADING CONDITIONS: GOODCOLOR OF EMISSIONS: -TOTAL # OF READINGS: 162NO. READINGS 0 - 15% -NO. READINGS 20% -NO. READINGS 25 - 50% -NO. READINGS 60 - 100% -NO. READINGS > 20% -GREATEST OPACITY: 0

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○	○	○
11	○	○	○	○
12	○	○	○	○
13	○	○	○	○
14	○	○	○	○
15	○	○	○	○
16	○	○	○	○
17	○	○	○	○
18	○	○	○	○
19	○	○	○	○
20	○	○	○	○
21	○	○	○	○
22	○	○	○	○
23	○	○	○	○
24	○	○	○	○
25	○	○	○	○
26	○	○	○	○
27	○	○	○	○
28	○	○	○	○
29	○	○	○	○

	:00	:15	:30	:45
30	○	○	○	○
31	○	○	○	○
32	○	○	○	○
33	○	○	○	○
34	○	○	○	○
35	○	○	○	○
36	○	○	○	○
37	○	○	○	○
38	○	○	○	○
39	○	○	○	○
40	○	○	○	○
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				

VISIBLE EMISSIONS OBSERVATION FORM

(3)

#13 STACK

OBSERVER: R. BRIAN FAYTAK

DATE: 7/28/94

FACILITY: USX/CLAIRTON

OBSERVATION START TIME: 1242 hrs

END TIME: 1342 hrs

OBSERVATION POINT:
-10' south of -19 Batt.

SOURCE: ≈ 300'

DISTANCE: ≈ 300'

DIRECTION FROM: S-W

HEIGHT: ≈ 150'

WIND:

SPEED: ≈ 5-10 mph

DIRECTION: S

TEMPERATURE: 76°

SKY CONDITION: 80% cloudy

BACKGROUND: SKY

READING CONDITIONS: Good

COLOR OF EMISSIONS: -

TOTAL # OF READINGS: 240

NO. READINGS 0 - 15% 240

16. READINGS 20% -

NO. READINGS 25 - 55% -

17. READINGS 60 - 100% -

NO. READINGS > 20% -

18. GREATEST OPACITY: 0

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○	○	○
11	○	○	○	○
12	○	○	○	○
13	○	○	○	○
14	○	○	○	○
15	○	○	○	○
16	○	○	○	○
17	○	○	○	○
18	○	○	○	○
19	○	○	○	○
20	○	○	○	○
21	○	○	○	○
22	○	○	○	○
23	○	○	○	○
24	○	○	○	○
25	○	○	○	○
26	○	○	○	○
27	○	○	○	○
28	○	○	○	○
29	○	○	○	○

	:00	:15	:30	:45
30	○	○	○	○
31	○	○	○	○
32	○	○	○	○
33	○	○	○	○
34	○	○	○	○
35	○	○	○	○
36	○	○	○	○
37	○	○	○	○
38	○	○	○	○
39	○	○	○	○
40	○	○	○	○
41	○	○	○	○
42	○	○	○	○
43	○	○	○	○
44	○	○	○	○
45	○	○	○	○
46	○	○	○	○
47	○	○	○	○
48	○	○	○	○
49	○	○	○	○
50	○	○	○	○
51	○	○	○	○
52	○	○	○	○
53	○	○	○	○
54	○	○	○	○
55	○	○	○	○
56	○	○	○	○
57	○	○	○	○
58	○	○	○	○
59	○	○	○	○

VISIBLE EMISSIONS OBSERVATION FORM

#13 STACK

④

OBSERVER: R. BRIAN Fajtak

DATE: 7-28-94

ACILITY: USX / CLARION

OBSERVATION START TIME: 1342 hrs.

END TIME: 1442 hrs

OBSERVATION POINT:

≈ 100' south of #19 Batt.

SOURCE:

DISTANCE: ≈ 300'

DIRECTION FROM: S-W

HEIGHT: ≈ 100'

IND:

SPEED: ≈ 5-10 mph

DIRECTION: South

TEMPERATURE: 78°

SKY CONDITION: 90% clouds

BACKGROUND: SKY

WEATHER CONDITIONS: GOOD

COLOR OF EMISSIONS: —

TOTAL # OF READINGS: 240

NO. READINGS 0 - 15% 240

NO. READINGS 20% —

NO. READINGS 25 - 55% —

NO. READINGS 60 - 100% —

NO. READINGS > 20% —

GREATEST OPACITY: 0

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○	○	○
11	○	○	○	○
12	○	○	○	○
13	○	○	○	○
14	○	○	○	○
15	○	○	○	○
16	○	○	○	○
17	○	○	○	○
18	○	○	○	○
19	○	○	○	○
20	○	○	○	○
21	○	○	○	○
22	○	○	○	○
23	○	○	○	○
24	○	○	○	○
25	○	○	○	○
26	○	○	○	○
27	○	○	○	○
28	○	○	○	○
29	○	○	○	○

	:00	:15	:30	:45
30	○	○	○	○
31	○	○	○	○
32	○	○	○	○
33	○	○	○	○
34	○	○	○	○
35	○	○	○	○
36	○	○	○	○
37	○	○	○	○
38	○	○	○	○
39	○	○	○	○
40	○	○	○	○
41	○	○	○	○
42	○	○	○	○
43	○	○	○	○
44	○	○	○	○
45	○	○	○	○
46	○	○	○	○
47	○	○	○	○
48	○	○	○	○
49	○	○	○	○
50	○	○	○	○
51	○	○	○	○
52	○	○	○	○
53	○	○	○	○
54	○	○	○	○
55	○	○	○	○
56	○	○	○	○
57	○	○	○	○
58				
59				

VISIBLE EMISSIONS OBSERVATION FORM

(5)

OBSERVER: R. BRIAN FAJTAKDATE: 7-28-94ACILITY: USX / CliftonOBSERVATION START TIME: 1442 hrsEND TIME: 1542 hrs

OBSERVATION POINT:

~100' south of 19 Batt.

SOURCE:

DISTANCE: ~300'DIRECTION FROM: S-WHEIGHT: ~150'

IND:

SPEED: ~5-10 mphDIRECTION: STEMPERATURE: 77°SKY CONDITION: 80% cloudBACKGROUND: SKYSEEING CONDITIONS: GOODCOLOR OF EMISSIONS: -TOTAL # OF READINGS: 240NO. READINGS 0 - 15%: 240NO. READINGS 20%: -NO. READINGS 25 - 50%: -NO. READINGS 60 - 100%: -NO. READINGS > 20%: -GREATEST OPACITY: 0

COMMENTS:

13 STACK

	:00	:15	:30	:45
00	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
01	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
02	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
03	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
04	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
05	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
06	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
07	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
08	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
09	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
10	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
11	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
12	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
13	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
14	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
15	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
16	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
17	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
18	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
19	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
20	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
21	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
22	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
23	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
24	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
25	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
26	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
27	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
28	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
29	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>

	:00	:15	:30	:45
30	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
31	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
32	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
33	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
34	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
35	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
36	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
37	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
38	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
39	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
40	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
41	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
42	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
43	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
44	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
45	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
46	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
47	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
48	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
49	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
50	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
51	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
52	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
53	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
54	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
55	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
56	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
57	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
58	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>
59	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>	<input type="radio"/>

VISIBLE EMISSIONS OBSERVATION FORM

(6)

OBSERVER: R. BRIAN FAYHAKDATE: 7-28-94Facility: USX/CLARIONOBSERVATION START TIME: 1542 hrsEND TIME: 1552 hrs

OBSERVATION POINT:

"100' south of "19 Batt.

SOURCE:

DISTANCE: ~300'DIRECTION FROM: S-WHEIGHT: ~100'

IND:

SPEED: ~5-10 mphDIRECTION: STEMPERATURE: 79°SKY CONDITION: 80% cloudyBACKGROUND: SKYSEEING CONDITIONS: GOODCOLOR OF EMISSIONS: whiteTOTAL # OF READINGS: 42NO. READINGS 0 - 15% 4216. READINGS 20% -NO. READINGS 25 - 55% -NO. READINGS 60 - 100% -NO. READINGS > 20% -GREATEST OPACITY: 0

COMMENTS:

#13 STACK

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○		
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				

	:00	:15	:30	:45
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				

VISIBLE EMISSIONS OBSERVATION FORM

①

OBSERVER: R. BRIAN FAJTAKDATE: 7/29/94FACILITY: USX/CLAIRTONOBSERVATION START TIME: 0740 Ls.END TIME: 0840 Ls.

OBSERVATION POINT:

~100' south of #19 BAH.

SOURCE:

DISTANCE: ~300'DIRECTION FROM: S-WHEIGHT: ~150'

WIND:

SPEED: ~5-10 mphDIRECTION: N-ETEMPERATURE: 65°SKY CONDITION: 10% cloudsBACKGROUND: SKYREADING CONDITIONS: GOODCOLOR OF EMISSIONS: -TOTAL # OF READINGS: 240NO. READINGS 0 - 15% 240NO. READINGS 20% -NO. READINGS 25 - 50% -NO. READINGS 60 - 100% -NO. READINGS > 100% -GREATEST OPACITY: 0

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○	○	○
11	○	○	○	○
12	○	○	○	○
13	○	○	○	○
14	○	○	○	○
15	○	○	○	○
16	○	○	○	○
17	○	○	○	○
18	○	○	○	○
19	○	○	○	○
20	○	○	○	○
21	○	○	○	○
22	○	○	○	○
23	○	○	○	○
24	○	○	○	○
25	○	○	○	○
26	○	○	○	○
27	○	○	○	○
28	○	○	○	○
29	○	○	○	○

	:00	:15	:30	:45
30	○	○	○	○
31	○	○	○	○
32	○	○	○	○
33	○	○	○	○
34	○	○	○	○
35	○	○	○	○
36	○	○	○	○
37	○	○	○	○
38	○	○	○	○
39	○	○	○	○
40	○	○	○	○
41	○	○	○	○
42	○	○	○	○
43	○	○	○	○
44	○	○	○	○
45	○	○	○	○
46	○	○	○	○
47	○	○	○	○
48	○	○	○	○
49	○	○	○	○
50	○	○	○	○
51	○	○	○	○
52	○	○	○	○
53	○	○	○	○
54	○	○	○	○
55	○	○	○	○
56	○	○	○	○
57	○	○	○	○
58	○	○	○	○
59	○	○	○	○

VISIBLE EMISSIONS OBSERVATION FORM

(2)

OBSERVER: R. BRIAN FAYHAK

DATE: 7/29/94

FACILITY: USX / Clifton

OBSERVATION START TIME: 0840 hrs

END TIME: 0940 hrs

OBSERVATION POINT:

≈ 100' south of 49 Brth.

SOURCE:

≈ 300'

DISTANCE:

DIRECTION FROM: S-W

HEIGHT: ≈ 150'

WIND:

SPEED: ≈ 5-10 mph

DIRECTION: N-E

TEMPERATURE: 68

SKY CONDITION: 25% clouds

BACKGROUND: SKY

READING CONDITIONS: Good

COLOR OF EMISSIONS: Gray/Black

TOTAL # OF READINGS: 240

NO. READINGS 0 - 15% 240

10. READINGS 20% -

NO. READINGS 25 - 55% -

0. READINGS 60 - 100% -

NO. READINGS > 20% -

GREATEST OPACITY: 5%

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	5
10	5	5	○	○
11	○	○	○	○
12	○	○	○	○
13	○	○	○	○
14	○	○	○	○
15	○	○	○	○
16	○	○	○	○
17	○	○	○	○
18	○	○	○	○
19	○	○	○	○
20	○	○	○	○
21	○	○	○	○
22	○	○	○	○
23	○	○	○	○
24	○	○	○	○
25	○	○	○	○
26	○	○	○	○
27	○	○	○	○
28	○	○	○	○
29	○	○	○	○

	:00	:15	:30	:45
30	○	○	○	○
31	○	○	○	○
32	○	○	○	○
33	○	○	○	○
34	○	○	○	○
35	○	○	○	○
36	○	○	○	○
37	○	○	○	○
38	○	○	○	○
39	○	○	○	○
40	○	○	○	○
41	○	○	○	○
42	○	○	○	○
43	○	○	○	○
44	○	○	○	○
45	○	○	○	○
46	○	○	○	○
47	○	○	○	○
48	○	○	○	○
49	○	○	○	○
50	○	○	○	○
51	○	○	○	○
52	○	○	○	○
53	○	○	○	○
54	○	○	○	○
55	○	○	○	○
56	○	○	○	○
57	○	○	○	○
58	○	○	○	○
59	○	○	○	○

VISIBLE EMISSIONS OBSERVATION FORM

(3)

OBSERVER: R. BRIAN FAJTAK

DATE: 7/29/94

FACILITY: USX/CLARKETON

OBSERVATION START TIME: 0940

END TIME: 0951

OBSERVATION POINT:

≈100' south of #19 Batt.

SOURCE:

DISTANCE: ≈300'

DIRECTION FROM: S-W

HEIGHT: ≈150'

WIND:

SPEED: ≈5-10 mph

DIRECTION: N-E

TEMPERATURE: 69°

SKY CONDITION: 10% clouds

BACKGROUND: SKY

SEEING CONDITIONS: GOOD

COLOR OF EMISSIONS:

TOTAL # OF READINGS: 46

NO. READINGS 0 - 15% 46

0. READINGS 20% -

NO. READINGS 25 - 50% -

1.0. READINGS 60 - 100% -

NO. READINGS > 20% -

GREATEST OPACITY: -

COMMENTS:

	:00	:15	:30	:45
00	○	○	○	○
01	○	○	○	○
02	○	○	○	○
03	○	○	○	○
04	○	○	○	○
05	○	○	○	○
06	○	○	○	○
07	○	○	○	○
08	○	○	○	○
09	○	○	○	○
10	○	○	○	○
11	○	○		
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				

	:00	:15	:30	:45
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				

**COMPLIANCE DEMONSTRATION
NO. 13 BATTERY COMBUSTION STACK**

**USS CLAIRTON WORKS
A DIVISION OF USX CORPORATION
CLAIRTON, PENNSYLVANIA**

APPENDIX B

PLANT OPERATIONAL DATA

PUSHING SCHEDULE

Thursday, July 28, 1994 Turn 1

Batteries: 13-15_2

	Oven	Last Pushed	Earliest	Desired	Latest
	A5/15	11:11am	12:49am	11:08am	11:11am
	B6/13	11:11am	12:55am	11:08am	11:12am
	A7/15	11:11am	12:00am	11:11am	11:12am
	B8/13	11:11am	12:05am	11:17am	11:25am
	A9/15	11:11am	12:12am	11:23am	11:34am
	B10/13	11:11am	12:18am	11:29am	11:46am
	A11/15	11:11am	12:24am	11:37am	11:45am
	B12/13	11:11am	12:29am	11:40am	11:51am
	A13/15	11:11am	12:35am	11:45am	11:57am
	B14/13	11:11am	12:41am	11:52am	12:02am
	A15/15	11:11am	12:47am	11:56am	12:09am
	B16/13	11:11am	12:53am	12:03am	12:15am
	A17/15	11:11am	12:59am	12:10am	12:21am
	B18/13	11:11am	12:53am	12:15am	12:27am
	A19/15	11:11am	12:19am	12:21am	12:24am
	B20/13	11:11am	12:15am	12:17am	12:36am
	A21/15	11:11am	12:22am	12:33am	12:44am
	B22/13	11:11am	12:28am	12:39am	12:50am
	A23/15	11:11am	12:34am	12:43am	12:56am
	B24/13	11:11am	12:40am	12:51am	12:02am
	A25/15	11:11am	12:46am	12:57am	1:08am
	B26/13	11:11am	12:51am	1:02am	1:13am
	A27/15	11:11am	12:57am	1:05am	1:19am
	B28/13	11:11am	1:03am	1:12am	1:25am
	A29/15	11:11am	1:09am	1:20am	1:34am
	B30/13	11:11am	1:15am	1:26am	1:37am
	A31/15	11:11am	1:21am	1:32am	1:43am
	A2/14	11:11am	1:27am	1:38am	1:45am
	B2/15	11:11am	1:33am	1:43am	1:54am
	A4/14	11:11am	1:39am	1:47am	1:56am
	B4/15	11:11am	1:44am	1:55am	1:59am
	A6/14	11:11am	1:50am	1:01am	1:23am
	B6/15	11:11am	1:56am	1:07am	1:06am
	A8/14	11:11am	2:02am	2:13am	2:44am
	B8/15	11:11am	2:08am	2:19am	2:22am
	A10/14	11:11am	2:14am	2:24am	2:41am
	B10/15	11:11am	2:20am	2:30am	2:49am
	A12/14	11:11am	2:25am	2:35am	2:47am
	B12/15	11:11am	2:31am	2:41am	2:51am
	A14/14	11:11am	2:37am	2:47am	2:58am
	B14/15	11:11am	2:43am	2:54am	2:58am
	A16/14	11:11am	2:49am	2:59am	3:08am
	B16/15	11:11am	2:54am	2:55am	3:16am
	A18/14	11:11am	3:00am	3:11am	3:28am
	B18/15	11:11am	3:06am	3:17am	3:31am
	A19/14	11:11am	3:12am	3:23am	3:41am
	B19/15	11:11am	3:18am	3:29am	3:45am
	A20/14	11:11am	3:24am	3:35am	3:51am
	B20/15	11:11am	3:30am	3:41am	3:59am
	A22/14	11:11am	3:36am	3:47am	3:46am
	B22/15	11:11am	3:42am	3:42am	3:51am
	A24/14	11:11am	3:48am	3:49am	3:57am
	B24/15	11:11am	3:54am	3:55am	3:57am
	A26/14	11:11am	4:04am	3:59am	4:05am
	B26/15	11:11am	4:10am	4:04am	4:15am
	A28/14	11:11am	4:16am	4:19am	4:24am
	B28/15	11:11am	4:22am	4:16am	4:24am
	A30/14	11:11am	4:28am	4:21am	4:26am
	B30/15	11:11am	4:34am	4:27am	4:35am
	A2/13	11:11am	4:40am	4:33am	4:44am
	B1/14	11:11am	4:46am	4:37am	4:50am
	A4/13	11:11am	4:52am	4:45am	4:56am
	B3/14	11:11am	4:48am	4:51am	4:52am
	A6/13	11:11am	4:46am	4:53am	4:58am
	B5/14	11:11am	4:51am	4:52am	5:16am
	A8/13	11:11am	4:57am	5:05am	5:17am
	B7/14	11:11am	5:03am	5:15am	5:22am
	A10/13	11:11am	5:09am	5:20am	5:16am
	B9/14	11:11am	5:15am	5:28am	5:35am
	A12/13	11:11am	5:21am	5:33am	5:42am
	B11/14	11:11am	5:27am	5:40am	5:47am
	A14/13	11:11am	5:33am	5:43am	5:54am
	B13/14	11:11am	5:39am	5:47am	5:56am
	A16/13	11:11am	5:44am	5:55am	5:59am
	B15/14	11:11am	5:50am	5:51am	5:57am
	A18/13	11:11am	5:56am	5:57am	5:57am
	B17/14	11:11am	6:30am	5:57am	5:56am
	A20/13	11:11am	6:36am	6:19am	5:56am
	B19/14	11:11am	6:42am	6:14am	5:56am
	A22/13	11:11am	6:48am	6:24am	5:56am
	B21/14	11:11am	6:54am	6:34am	5:57am
	A24/13	11:11am	6:32am	6:43am	5:59am

PUSHING SCHEDULE

Thursday, July 28, 1994 Turn 1

Batteries: 13-15_2

	Oven	Last Pushed	Earliest	Desired	Latest
	B23/14	11:11am	9:37am	6:58am	6:57am
	A26/13	11:11am	8:43am	6:56am	7:09am

PUSHING SCHEDULE

Thursday, July 28, 1994 Turn 2

Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
B25/14	17:48	6:55am	7:08am	7:15am
A29/13	17:48	6:51am	7:06am	7:21am
B27/14	17:48	6:57am	7:12am	7:27am
A38/13	17:48	7:03am	7:18am	7:35am
B29/14	17:48	7:09am	7:24am	7:39am
B1 /13	17:48	7:17am	7:38am	7:45am
A2 /15	17:48	7:21am	7:36am	7:51am
B3 /13	17:48	7:27am	7:42am	7:57am
A4 /13	17:48	7:33am	7:48am	8:03am
B5 /13	17:48	7:39am	7:54am	8:09am
A6 /15	17:48	7:45am	8:00am	8:15am
B7 /13	17:48	7:51am	8:06am	8:21am
A8 /15	17:48	7:57am	8:12am	8:27am
B9 /13	17:48	8:03am	8:18am	8:33am
A10/15	17:48	8:09am	8:24am	8:39am
B11/13	17:48	8:15am	8:30am	8:45am
A12/15	17:48	8:21am	8:36am	8:51am
B13/13	17:48	8:27am	8:42am	8:57am
A13/14	17:54	8:33am	8:48am	9:03am
A14/15	17:54	8:39am	8:54am	9:09am
B15/13	17:55	8:45am	9:00am	9:15am
A16/15	17:55	8:51am	9:06am	9:21am
B17/13	17:55	8:57am	9:12am	9:27am
A18/15	17:55	9:03am	9:18am	9:33am
B19/13	17:55	9:09am	9:24am	9:39am
A20/13	17:55	9:15am	9:30am	9:45am
B21/13	17:56	9:21am	9:36am	9:51am
A22/15	17:56	9:27am	9:42am	9:57am
B23/13	17:56	9:33am	9:48am	10:03am
A24/15	17:56	9:39am	9:54am	10:09am
B25/13	17:56	9:45am	10:00am	10:15am
A26/15	17:56	9:51am	10:06am	10:21am
B27/13	17:56	9:57am	10:12am	10:27am
A28/13	17:57	10:03am	10:18am	10:33am
B29/13	17:57	10:09am	10:24am	10:39am
A38/13	17:57	10:15am	10:30am	10:45am
A1 /14	17:57	10:21am	10:36am	10:51am
B1 /15	17:57	10:27am	10:42am	10:57am
A3 /14	17:57	10:33am	10:48am	11:03am
B3 /15	17:57	10:39am	10:54am	11:09am
A5 /14	17:58	10:45am	10:58am	11:13am
B5 /15	17:58	10:51am	11:06am	11:21am
A7 /14	17:58	10:57am	11:12am	11:27am
B7 /15	17:58	11:03am	11:18am	11:33am
A9 /14	17:58	11:09am	11:24am	11:49am
B9 /13	17:58	11:15am	11:30am	11:55am
A11/14	17:58	11:21am	11:36am	12:01am
B11/13	17:59	11:27am	11:42am	12:07am
A13/14	17:59	11:33am	11:48am	12:03pm
B13/15	17:59	11:39am	11:54am	12:09pm
B15/15	17:59	11:45am	12:00pm	12:15pm
A17/14	17:59	11:51am	12:06pm	12:31pm
B17/15	17:59	11:57am	12:11pm	12:36pm
A19/14	17:59	12:03pm	12:18pm	12:43pm
B19/13	18:00	12:09pm	12:34pm	12:59pm
A21/14	18:02	12:15pm	12:30pm	12:45pm
B21/15	18:02	12:31pm	12:38pm	12:53pm
A22/14	18:02	12:37pm	12:42pm	12:57pm
B23/15	18:02	12:43pm	12:48pm	1:03pm
A25/14	18:02	12:49pm	12:54pm	1:09pm
B25/15	18:01	12:45pm	12:50pm	1:15pm
A27/14	18:01	12:51pm	12:56pm	1:31pm
B27/15	18:01	12:57pm	1:02pm	1:37pm
A29/14	18:01	1:03pm	1:08pm	1:43pm
B29/15	18:01	1:09pm	1:14pm	1:59pm
A31/14	18:01	1:15pm	1:20pm	1:55pm
A1 /13	18:01	1:21pm	1:26pm	1:41pm
B2 /14	18:01	1:27pm	1:32pm	1:47pm
A3 /13	18:02	1:33pm	1:38pm	1:53pm
B4 /14	18:02	1:39pm	1:44pm	1:59pm
A5 /13	18:02	1:45pm	1:50pm	1:55pm
B6 /14	18:02	1:51pm	1:56pm	2:11pm
A7 /13	18:02	1:57pm	1:58pm	2:02pm
B8 /14	18:02	2:03pm	2:04pm	2:37pm
A9 /13	18:02	2:09pm	2:14pm	2:42pm
B10/14	18:02	2:15pm	2:20pm	2:47pm
A11/13	18:02	2:21pm	2:26pm	2:51pm
B12/14	18:02	2:27pm	2:42pm	2:57pm
A13/13	18:02	2:33pm	2:48pm	2:52pm
B14/14	18:02	2:39pm	2:54pm	2:56pm

14/ - A 15

A 15/14 after B 13/13

PUSHING SCHEDULE

Thursday, July 28, 1994 Turn 3

Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
A15/13	18:03	2:49ca	3:08ca	3:11ca
B16/14	18:03	2:55ca	3:05ca	3:16ca
A17/13	18:03	3:08ca	3:11ca	3:22ca
B18/14	18:03	3:08ca	3:11ca	3:26ca
A19/13	18:03	3:12ca	3:22ca	3:34ca
B20/14	18:03	3:13ca	3:21ca	3:40ca
A21/13	18:03	3:14ca	3:25ca	3:46ca
B22/14	18:03	3:19ca	3:48ca	3:51ca
A23/13	18:03	3:35ca	3:46ca	3:57ca
B24/14	18:03	3:41ca	3:51ca	4:03ca
A25/13	18:03	3:47ca	3:56ca	4:07ca
B26/14	18:03	3:53ca	4:04ca	4:15ca
A27/13	18:03	3:57ca	4:18ca	4:21ca
B28/14	18:03	4:05ca	4:16ca	4:27ca
A29/13	18:02	4:10ca	4:21ca	4:30ca
B30/14	18:03	4:16ca	4:27ca	4:36ca
A31/13	18:03	4:22ca	4:33ca	4:44ca
A1/13	18:03	4:26ca	4:39ca	4:59ca
B2/13	18:03	4:34ca	4:45ca	4:56ca
A3/13	18:03	4:49ca	4:51ca	5:02ca
B4/13	18:03	4:46ca	4:57ca	5:08ca
A5/13	35:05	4:51ca	5:08ca	5:13ca
B6/13	36:06	4:57ca	5:08ca	5:17ca
A7/15	36:06	5:02ca	5:14ca	5:27ca
B8/15	36:06	5:05ca	5:11ca	5:22ca
A9/15	36:06	5:11ca	5:19ca	5:34ca
B10/13	76:02	5:17ca	5:26ca	5:45ca
A11/15	72:02	5:22ca	5:36ca	5:45ca
B12/13	72:02	5:28ca	5:47ca	5:54ca
C13/15	35:06	5:35ca	5:45ca	5:59ca
D14/15	35:06	5:44ca	5:55ca	6:02ca
A15/15	36:06	5:50ca	6:01ca	6:11ca
B16/13	36:06	5:55ca	6:07ca	6:18ca
A17/15	36:06	6:02ca	6:15ca	6:24ca
B18/13	36:06	6:02ca	6:19ca	6:30ca
A19/15	36:06	6:13ca	6:24ca	6:35ca
B20/13	36:05	6:19ca	6:30ca	6:41ca
A21/15	36:06	6:24ca	6:36ca	6:47ca
B22/13	36:06	6:31ca	6:42ca	6:53ca
A23/15	36:06	6:37ca	6:48ca	6:59ca
B24/13	36:06	6:42ca	6:54ca	7:03ca
A25/15	36:05	6:48ca	6:59ca	7:08ca
B26/13	36:06	6:54ca	7:05ca	7:15ca
A27/15	36:05	7:00ca	7:11ca	7:24ca
B28/13	36:05	7:06ca	7:17ca	7:33ca
A29/15	36:05	7:12ca	7:23ca	7:43ca
B30/13	36:05	7:18ca	7:29ca	7:49ca
A31/13	36:05	7:24ca	7:35ca	7:55ca
A2/14	36:04	7:29ca	7:42ca	7:51ca
B2/15	35:04	7:35ca	7:46ca	7:57ca
A4/14	36:04	7:41ca	7:52ca	7:58ca
B4/15	36:04	7:47ca	7:58ca	8:07ca
A6/14	36:04	7:53ca	8:04ca	8:15ca
B6/15	36:04	7:59ca	8:10ca	8:24ca
A8/14	36:04	8:25ca	8:35ca	8:51ca
B8/15	35:07	8:41ca	8:51ca	8:55ca
A10/14	26:03	1:06ca	1:17ca	1:25ca
B10/15	36:03	1:22ca	1:33ca	1:44ca
A12/14	36:03	1:28ca	1:39ca	1:50ca
B12/15	36:03	1:34ca	1:45ca	1:55ca
A14/14	36:03	1:40ca	1:51ca	1:52ca
R14/15	36:03	1:46ca	1:57ca	1:58ca
A16/14	36:03	1:51ca	1:52ca	1:53ca
B16/15	36:03	1:57ca	1:58ca	1:59ca
A18/14	36:03	1:58ca	1:59ca	1:59ca
B18/15	36:03	1:59ca	1:59ca	1:59ca
A20/14	36:02	9:15ca	9:26ca	9:37ca
B20/15	36:02	9:21ca	9:32ca	9:43ca
A22/14	36:02	9:27ca	9:38ca	9:49ca
B22/15	36:01	9:32ca	9:43ca	9:54ca
A24/14	36:01	9:38ca	9:49ca	1:00ca
B24/15	36:01	9:44ca	9:55ca	1:06ca
A26/14	36:01	9:50ca	1:01ca	1:12ca
B26/15	36:01	9:56ca	1:07ca	1:18ca
A28/14	36:01	10:02ca	1:13ca	1:21ca
B28/15	36:01	10:08ca	1:19ca	1:28ca
A30/14	36:00	10:14ca	1:24ca	1:33ca
B30/15	35:54	10:17ca	1:30ca	1:42ca
A2/13	35:54	12:25ca	1:35ca	1:47ca
B1/14	35:54	18:31ca	18:42ca	18:53ca

PUSHING SCHEDULE

Thursday, July 28, 1994 Turn 3

Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
A4/13	35:54	10:37ca	10:46ca	10:59ca
B3/14	35:54	12:43ca	10:59ca	11:05ca

PUSHING SCHEDULE

Friday, July 29, 1994 Turn 1

Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
A6 /13	35:54	18:49aa	11:08aa	11:11aa
B5 /14	35:53	18:55aa	11:05aa	11:16aa
AB /13	35:53	11:00aa	11:10aa	11:22aa
B7 /14	35:53	11:06aa	11:17aa	11:28aa
A10/13	35:53	11:12aa	11:23aa	11:34aa
B9 /14	35:53	11:18aa	11:29aa	11:40aa
A12/13	35:53	11:24aa	11:35aa	11:46aa
B11/14	35:52	11:29aa	11:40aa	11:51aa
A14/13	35:52	11:35aa	11:46aa	11:57aa
B13/14	35:52	11:41aa	11:52aa	12:03aa
A16/13	35:52	11:47aa	11:58aa	12:09aa
B15/14	35:52	11:53aa	12:04aa	12:15aa
A18/13	35:52	11:59aa	12:08aa	12:21aa
B17/14	35:52	12:05aa	12:16aa	12:27aa
A20/13	35:51	12:10aa	12:21aa	12:32aa
B19/14	35:51	12:16aa	12:27aa	12:38aa
A22/13	35:51	12:22aa	12:33aa	12:44aa
B21/14	35:51	12:28aa	12:39aa	12:50aa
A24/13	35:51	12:34aa	12:45aa	12:56aa
B23/14	35:51	12:40aa	12:51aa	12:02aa
A26/13	35:51	12:46aa	12:57aa	12:08aa
B25/14	18:02	12:51aa	1:02aa	1:13aa
A28/13	18:02	12:57aa	1:03aa	1:15aa
B27/14	18:02	1:03aa	1:14aa	1:25aa
A30/13	18:02	1:09aa	1:20aa	1:31aa
B29/14	18:02	1:15aa	1:26aa	1:37aa
B1 /13	18:03	1:21aa	1:32aa	1:43aa
A2 /15	18:02	1:27aa	1:38aa	1:49aa
B3 /13	18:01	1:32aa	1:43aa	1:50aa
A4 /15	18:01	1:38aa	1:49aa	2:00aa
B5 /13	18:01	1:44aa	1:55aa	2:01aa
A6 /15	18:01	1:50aa	2:01aa	2:12aa
B7 /13	18:01	1:56aa	2:07aa	2:13aa
A8 /15	18:01	2:02aa	2:13aa	2:43aa
B9 /13	18:01	2:08aa	2:19aa	2:52aa
A10/15	19:00	2:15aa	2:26aa	2:53aa
B11/13	19:00	2:15aa	2:26aa	2:53aa
A12/15	19:00	2:21aa	2:32aa	2:57aa
B13/13	19:00	2:27aa	2:42aa	2:59aa
A14/15	17:54	2:33aa	2:49aa	2:55aa
B15/13	17:54	2:40aa	2:54aa	2:55aa
A16/15	17:53	2:46aa	2:55aa	3:02aa
B17/13	17:53	2:54aa	3:05aa	3:02aa
A18/15	17:53	3:00aa	3:11aa	3:24aa
B19/13	17:53	3:06aa	3:17aa	3:29aa
A20/15	17:53	3:12aa	3:23aa	3:42aa
B21/13	17:53	3:18aa	3:29aa	3:49aa
A22/15	17:53	3:24aa	3:35aa	3:46aa
B23/13	17:53	3:30aa	3:42aa	3:51aa
A24/15	17:53	3:35aa	3:46aa	3:57aa
B25/13	17:53	3:41aa	3:52aa	3:58aa
A26/15	17:53	3:47aa	3:59aa	4:09aa
B27/13	17:53	3:53aa	4:04aa	4:19aa
A28/15	17:53	3:59aa	4:10aa	4:21aa
B29/13	17:52	4:05aa	4:16aa	4:21aa
A30/15	17:52	4:10aa	4:21aa	4:32aa
A1 /14	17:52	4:16aa	4:27aa	4:38aa
B1 /15	17:52	4:22aa	4:33aa	4:44aa
A3 /14	17:52	4:28aa	4:39aa	4:50aa
B2 /15	17:52	4:34aa	4:45aa	4:56aa
A5 /14	17:52	4:40aa	4:51aa	5:02aa
B5 /15	17:52	4:46aa	4:57aa	5:09aa
A7 /14	17:52	4:51aa	4:02aa	5:13aa
B7 /15	17:52	4:57aa	4:08aa	5:15aa
A9 /14	17:52	5:03aa	4:14aa	5:16aa
B9 /15	17:52	5:09aa	4:20aa	5:31aa
A11/14	17:52	5:15aa	4:26aa	5:37aa
B11/15	17:52	5:21aa	4:32aa	5:43aa
A13/14	17:52	5:27aa	4:38aa	5:49aa
B13/15	17:52	5:32aa	4:43aa	5:54aa
A15/14	17:52	5:38aa	4:54aa	6:00aa
B15/15	17:52	5:44aa	4:55aa	6:05aa
A17/14	17:52	5:50aa	4:56aa	6:11aa
B17/15	17:52	5:56aa	4:58aa	6:16aa
A19/14	17:52	6:02aa	4:58aa	6:24aa
B19/15	17:52	6:08aa	4:59aa	6:30aa
A21/14	17:52	6:14aa	4:58aa	6:31aa
B21/15	17:52	6:20aa	4:58aa	6:37aa
A23/14	17:54	6:26aa	4:58aa	6:37aa
B23/15	17:54	6:32aa	4:58aa	6:57aa

PUSHING SCHEDULE

Friday, July 29, 1994 Turn 1

Batteries: 13-15_2

#	Oven	Last Pushed	Earliest	Desired	Latest
	A25/14	17:54	6:27aa	6:40aa	6:55aa
	B25/15	17:54	6:43aa	6:54aa	7:25aa

PUSHING SCHEDULE

Friday, July 29, 1994 Turn 2
Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
A27/14	17:54	6:45am	7:00am	7:15am
B29/13	17:54	6:51am	7:00am	7:22am
A29/14	17:54	6:57am	7:12am	7:33am
B29/15	17:54	7:03am	7:18am	7:39am
A31/14	17:54	7:07am	7:21am	7:45am
A1/13	17:54	7:15am	7:30am	7:51am
B2/14	17:54	7:21am	7:36am	7:57am
A3/13	17:54	7:27am	7:42am	8:03am
B4/14	17:54	7:33am	7:48am	8:07am
A5/13	17:54	7:39am	7:54am	8:15am
B6/14	17:54	7:45am	8:00am	8:21am
A7/13	17:54	7:51am	8:06am	8:27am
B8/14	17:54	7:57am	8:12am	8:33am
A9/13	17:54	8:03am	8:18am	8:39am
B10/14	17:54	8:09am	8:24am	8:45am
A11/13	17:54	8:15am	8:30am	8:51am
B12/14	17:54	8:21am	8:36am	8:57am
A13/13	17:54	8:27am	8:42am	9:03am
B14/14	17:54	8:33am	8:48am	9:09am
A15/13	17:54	8:39am	8:54am	9:09am
B16/14	17:55	8:45am	9:00am	9:15am
A17/13	17:55	8:51am	9:06am	9:21am
B18/14	17:55	8:57am	9:12am	9:27am
A19/13	17:55	9:03am	9:18am	9:33am
B20/14	17:55	9:09am	9:24am	9:39am
A21/13	17:55	9:15am	9:30am	9:45am
B22/14	17:56	9:21am	9:36am	9:51am
A23/13	17:56	9:27am	9:42am	9:57am
B24/14	17:56	9:33am	9:48am	10:03am
A25/13	17:56	9:39am	9:54am	10:09am
B26/14	17:56	9:45am	10:00am	10:15am
A27/13	17:56	9:51am	10:06am	10:21am
B28/14	17:56	9:57am	10:12am	10:27am
A29/13	17:57	10:03am	10:16am	10:31am
B30/14	17:57	10:09am	10:24am	10:39am
A31/13	17:57	10:15am	10:30am	10:45am
A1/15	17:57	10:21am	10:36am	10:51am
B2/13	17:57	10:27am	10:42am	10:57am
A3/15	17:57	10:33am	10:48am	11:03am
B4/13	17:57	10:39am	10:54am	11:09am
A5/15	17:58	10:45am	11:00am	11:15am
B6/13	17:58	10:51am	11:06am	11:21am
A7/15	17:58	10:57am	11:12am	11:27am
B8/13	17:58	11:03am	11:18am	11:33am
A9/15	17:58	11:09am	11:24am	11:39am
B10/13	17:58	11:15am	11:30am	11:45am
A11/15	17:58	11:21am	11:36am	11:51am
B12/13	17:59	11:27am	11:42am	11:57am
A13/13	17:59	11:33am	11:48am	12:03pm
B14/13	17:59	11:39am	11:54am	12:09pm
A15/15	17:59	11:45am	12:00pm	12:15pm
B16/13	17:59	11:51am	12:06pm	12:21pm
A17/15	17:59	11:57am	12:12pm	12:32pm
B18/13	17:59	12:03pm	12:18pm	12:38pm
A19/15	18:00	12:09pm	12:24pm	12:49pm
B20/13	18:00	12:15pm	12:30pm	12:45pm
A21/15	18:00	12:21pm	12:36pm	12:51pm
B22/13	18:00	12:27pm	12:42pm	12:57pm
A23/15	18:00	12:33pm	12:48pm	1:03pm
B24/13	18:00	12:39pm	12:54pm	1:29pm
A25/15	18:01	12:45pm	1:00pm	1:45pm
B26/13	18:01	12:51pm	1:06pm	1:21pm
A27/15	18:01	12:57pm	1:12pm	1:27pm
B28/13	18:01	1:03pm	1:18pm	1:33pm
A29/15	18:01	1:09pm	1:24pm	1:39pm
B30/13	18:01	1:15pm	1:30pm	1:45pm
A31/15	18:01	1:21pm	1:36pm	1:51pm
B2/14	18:02	1:27pm	1:42pm	1:57pm
A3/15	18:02	1:33pm	1:48pm	1:58pm
B4/14	18:02	1:39pm	1:54pm	2:05pm
B4/15	18:02	1:45pm	2:00pm	2:15pm
A6/14	18:02	1:51pm	2:06pm	2:21pm
B6/15	18:02	1:57pm	2:12pm	2:32pm
A8/14	18:02	2:03pm	2:18pm	2:38pm
B8/15	18:02	2:09pm	2:24pm	2:45pm
A10/14	18:02	2:15pm	2:30pm	2:45pm
B10/15	18:02	2:21pm	2:36pm	2:51pm
A12/14	18:03	2:27pm	2:42pm	2:57pm
B12/15	18:03	2:33pm	2:48pm	3:03pm
A14/14	18:03	2:39pm	2:54pm	3:19pm

PUSHING SCHEDULE

Friday, July 29, 1994 Turn 3

Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
B14/15	18:03	1:49pm	1:48pm	2:11pm
B16/14	18:03	3:55pm	3:55pm	3:56pm
B16/15	18:03	3:00pm	3:00pm	3:00pm
A18/14	18:03	3:06pm	3:07pm	3:22pm
B18/15	18:03	3:12pm	3:20pm	3:34pm
A26/14	18:03	3:16pm	3:25pm	3:42pm
B26/15	18:03	3:24pm	3:35pm	3:46pm
A22/14	18:02	3:29pm	3:40pm	3:51pm
B22/15	18:02	3:35pm	3:46pm	3:57pm
A24/14	18:03	3:41pm	3:52pm	4:03pm
B24/15	18:03	3:47pm	3:58pm	4:09pm
A26/14	18:03	3:53pm	4:04pm	4:15pm
B26/15	18:03	3:59pm	4:10pm	4:21pm
A28/14	18:03	4:05pm	4:16pm	4:27pm
B28/15	18:02	4:09pm	4:21pm	4:32pm
A38/14	18:03	4:16pm	4:27pm	4:38pm
B38/15	18:03	4:22pm	4:33pm	4:44pm
A2/13	18:03	4:28pm	4:39pm	4:50pm
B2/14	18:03	4:34pm	4:45pm	4:56pm
A4/13	18:03	4:40pm	4:51pm	5:02pm
B4/14	18:03	4:46pm	4:57pm	5:08pm
A6/13	18:02	4:51pm	5:02pm	5:13pm
B5/14	18:03	4:57pm	5:08pm	5:19pm
A8/13	18:03	5:03pm	5:14pm	5:25pm
B7/14	18:03	5:09pm	5:20pm	5:31pm
A10/13	18:03	5:15pm	5:26pm	5:37pm
B9/14	18:03	5:21pm	5:32pm	5:43pm
A12/13	18:02	5:27pm	5:38pm	5:49pm
B11/14	18:03	5:33pm	5:44pm	5:55pm
A14/13	18:03	5:39pm	5:50pm	6:01pm
B13/14	18:03	5:45pm	5:56pm	6:07pm
A16/13	18:03	5:51pm	5:52pm	5:53pm
B15/14	18:03	5:57pm	5:58pm	5:59pm
A18/13	18:03	6:03pm	6:14pm	6:25pm
B17/14	18:03	6:09pm	6:20pm	6:30pm
A20/13	18:03	6:15pm	6:26pm	6:37pm
B19/14	19:03	6:21pm	6:32pm	6:43pm
A22/13	18:03	6:25pm	6:36pm	6:47pm
B21/14	18:03	6:31pm	6:42pm	6:53pm
A24/13	18:03	6:37pm	6:48pm	6:59pm
B23/14	18:03	6:43pm	6:54pm	7:05pm
A26/13	18:03	6:49pm	6:59pm	7:10pm
B25/14	18:03	6:55pm	6:56pm	6:57pm
A28/13	18:03	7:01pm	7:12pm	7:23pm
B27/14	18:03	7:05pm	7:16pm	7:27pm
A30/13	18:03	7:11pm	7:22pm	7:33pm
B29/14	18:03	7:17pm	7:28pm	7:39pm
B1/13	18:02	7:24pm	7:35pm	7:46pm
A2/13	19:02	7:29pm	7:40pm	7:51pm
B3/13	18:02	7:35pm	7:46pm	7:57pm
A4/13	18:02	7:41pm	7:52pm	7:58pm
B5/13	18:02	7:47pm	7:58pm	8:07pm
A6/13	18:02	7:53pm	8:04pm	8:13pm
B7/13	18:02	7:59pm	8:10pm	8:19pm
A8/13	18:02	8:05pm	8:16pm	8:25pm
B9/13	18:02	8:11pm	8:22pm	8:31pm
A10/13	18:02	8:17pm	8:28pm	8:37pm
B11/13	18:02	8:23pm	8:34pm	8:43pm
A12/13	18:02	8:29pm	8:40pm	8:49pm
B13/13	18:02	8:34pm	8:45pm	8:54pm
A14/13	18:02	8:40pm	8:51pm	8:59pm
B15/13	18:02	8:46pm	8:57pm	9:06pm
A16/13	18:02	8:51pm	8:52pm	8:53pm
B17/13	18:02	8:57pm	8:58pm	8:59pm
A18/13	18:02	9:03pm	9:14pm	9:23pm
B19/13	18:02	9:09pm	9:20pm	9:29pm
A20/13	18:02	9:15pm	9:26pm	9:35pm
B21/13	18:02	9:21pm	9:32pm	9:41pm
A22/13	18:02	9:27pm	9:38pm	9:49pm
B23/13	18:02	9:32pm	9:43pm	9:54pm
A24/13	18:02	9:38pm	9:49pm	10:00pm
B25/13	18:02	9:44pm	9:55pm	10:05pm
A26/13	18:02	9:50pm	10:01pm	10:12pm
B27/13	18:02	9:56pm	10:07pm	10:18pm
A28/13	18:02	10:02pm	10:13pm	10:24pm
B29/13	18:02	10:08pm	10:19pm	10:30pm
A30/13	18:02	10:14pm	10:25pm	10:46pm
A1/14	18:02	10:20pm	10:31pm	10:52pm
B1/15	18:02	10:26pm	10:37pm	10:58pm
A3/14	18:02	10:32pm	10:43pm	10:04pm
A3/14	18:03	10:38pm	10:49pm	10:10pm

PUSHING SCHEDULE

Friday, July 29, 1994 Turn 3

Batteries: 13-15_2

Oven	Last Pushed	Earliest	Desired	Latest
B2/13	18:02	18:27pm	18:46pm	18:57pm
A5/14	18:03	18:43pm	18:54pm	18:59pm

CC-10285 REV. 1101
03.001.0020

UNITED STATES STEEL CORPORATION
CLAIRTON COKE AND COAL CHEMICAL WORKS

PUSHING AND CHARGING REPORT

UNIT NO. 5

12 Hrs. Beginning ~~10:00 AM~~ 11 AM 7/23/97
Date 7-23-97

BATTERY NO. 13-A				BATTERY NO. 13-13				BATTERY NO. 14-A			
OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES
1	1 08	1 39		1				1			
3	1 19	1 50	1	3				3			
5	1 30	2 01	1	5				5			
7	1 41	2 13		7				7			
9	1 52	2 18	1	9				9			11 22
11	2 03	2 24	1	11				11			11 22
13	2 15	2 30	1	13				13	11 31	11 55	
15	2 00	3 19		15				15			10 05 ^{PAUSE} 10:00
17	3 11	3 29		17				17	11 45	12 16	
19	3 21	3 39	1	19				19	11 51	12 27	
21	3 31	3 49	✓	21				21	12 07	12 36	
23	3 41	4 00		23				23	12 18	12 49	✓ 81
25	3 51	4 11		25				25	12 19	12 55	✓ 81
27	4 02	4 21		27				27	12 30	1 06	✓ 81
29	4 13	4 32		29				29	1 51	1 17	
31	4 23	4 43		31				31	1 2 57	1 38	
2	10 04			2	4 34	5 04		2	7 13	7 44	
4	10 16			4	4 45	5 14		4	7 24	7 55	
6				6	4 56	5 24		6	7 35	8 02	
8				8	5 06	5 34		8	7 46	8 12	
10				10	5 16	5 44		10	7 57	8 29	
12				12	5 26	5 56		12	8 07	8 41	
14				14	5 36	6 06		14	8 18	8 52	
16				16	5 46	6 17		16	8 31	8 53	
18				18	5 58	6 28		18	8 43	9 15	
20				20	6 08	6 39		20	8 57	9 27	
22				22	6 19	6 50		22	9 10	9 39	
24				24	6 30	7 00		24	9 17	9 51	
26				26	6 41	7 11		26	9 29	10 02	
28				28	6 52	7 22		28	9 40	10 14	
30				30	7 02	7 33		30	9 53		
1				1				1			
2				2				2			

8748482

Conditions of Signals

Formation of Bubbles

HOURLY REPORT OF OPERATION

HOURLY REPORT OF OPERATION								
TIME	OVENS PUSHED	OVENS CHARGED	OVENS SCHEDULED	TIME	OVENS PUSHED	OVENS CHARGED	OVENS SCHEDULED	
11:10	3	3	8	8:56	6	6	12	12
11:17	6	6	11	11:57	5	5	11	11
12:02	5	5	10	10:58	6	6	11	11
12:09	2	5	5	8:49	5	5	10	10
12:14	6	4	12	10:10	5	5	10	10
12:18	6	5	12	11:11	2	2	4	4
	28	28			39	29		

CC-10265 REV. 1161
03.001.0020

UNITED STATES STEEL CORPORATION
CLAIRTON COKE AND COAL CHEMICAL WORKS

PUSHING AND CHARGING REPORT

UNIT NO. 75

12 Hrs. Beginning ~~7-28-94~~ 11 PM 7/27/94
Date 7-28-94

BATTERY NO. <u>13-A</u>				BATTERY NO. <u>13-B</u>				BATTERY NO. <u>14-1</u>			
OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES
1				1	7 25	7 33		1	10 00	10 00	
2				2	7 35	7 43		2	10 00	10 00	
3				3	7 45	7 53		3	10 00	10 00	
4				4	7 55	8 03		4	10 00	10 00	
5				5	8 05	8 13		5	10 00	10 00	
6				6	8 15	8 23		6	10 00	10 00	
7				7	8 25	8 38		7	10 00	10 00	
8				8	8 40	8 48	#1	8	10 00	10 00	
9				9	8 50	8 58	#1	9	10 00	10 00	
10				10	9 00	9 08	#1	10	10 00	10 00	
11				11	9 10	9 18	#1	11	10 00	10 00	
12				12	9 20	9 28	#1	12	10 00	10 00	
13				13	9 30	9 38		13	10 00	10 00	
14				14	9 40	9 48	#1	14	10 00	10 00	
15				15	9 50	9 58	#1	15	10 00	10 00	
16				16	10 00	10 08	#1	16	10 00	10 00	
17				17	10 10	10 18	#1	17	10 00	10 00	
18				18	10 20	10 28	#1	18	10 00	10 00	
19				19	10 30	10 38		19	10 00	10 00	
20				20	10 40	10 48	#1	20	10 00	10 00	
21				21	10 50	10 58	#1	21	10 00	10 00	
22				22	11 00	11 08	#1	22	10 00	10 00	
23				23	11 10	11 18	#1	23	10 00	10 00	
24				24	11 20	11 28	#1	24	10 00	10 00	
25				25	11 30	11 38		25	10 00	10 00	
26				26	11 40	11 48	#1	26	10 00	10 00	
27				27	11 50	11 58	#1	27	10 00	10 00	
28				28	12 00	12 08	#1	28	10 00	10 00	
29				29	12 10	12 18	#1	29	10 00	10 00	
30				30	12 20	12 28	#1	30	10 00	10 00	
31				31				31			
32	11 04			32				32			
33	11 05	4 22		33	11 14			33	11 17	1 45	
34	11 04	4 32		34	11 24			34	11 27	1 56	
35	11 14	4 42		35	11 34			35	11 37	2 06	
36	11 24	4 52		36	11 44			36	11 47	2 16	
37	11 34	5 03		37	11 54			37	11 58	2 26	
38	11 44	5 14		38	12 04			38	12 07	2 36	
39	11 54	5 24		39	12 14			39	12 17	2 46	
40	12 05	5 34		40	12 24			40	12 27	2 56	
41	12 15	5 44		41	12 34			41	12 38	3 07	
42	12 25	5 54		42	12 44			42	12 48	3 17	
43	12 35	6 04		43	12 54			43	12 58	3 27	
44	12 45	6 14		44	13 04			44	13 08	3 37	
45	12 55	6 24		45	13 14			45	13 18	3 47	
46	13 05	6 34		46	13 24			46	13 28	3 57	
47	13 15	6 44		47	13 34			47	13 38	4 07	
48	13 25	6 54		48	13 44			48	13 48	4 17	
49	13 35	7 04		49	13 54			49	13 58	4 27	
50	13 45	7 14		50	14 04			50	14 08	4 37	
51	13 55	7 24		51	14 14			51	14 18	4 47	
52	14 05	7 34		52	14 24			52	14 28	4 57	
53	14 15	7 44		53	14 34			53	14 38	5 07	
54	14 25	7 54		54	14 44			54	14 48	5 17	
55	14 35	8 04		55	14 54			55	14 58	5 27	
56	14 45	8 14		56	15 04			56	15 08	5 37	
57	14 55	8 24		57	15 14			57	15 18	5 47	
58	15 05	8 34		58	15 24			58	15 28	5 57	
59	15 15	8 44		59	15 34			59	15 38	6 07	
60	15 25	8 54		60	15 44			60	15 48	6 17	
61	15 35	9 04		61	15 54			61	15 58	6 27	
62	15 45	9 14		62	16 04			62	16 08	6 37	
63	15 55	9 24		63	16 14			63	16 18	6 47	
64	16 05	9 34		64	16 24			64	16 28	6 57	
65	16 15	9 44		65	16 34			65	16 38	7 07	
66	16 25	9 54		66	16 44			66	16 48	7 17	
67	16 35	10 04		67	16 54			67	16 58	7 27	
68	16 45	10 14		68	17 04			68	17 08	7 37	
69	16 55	10 24		69	17 14			69	17 18	7 47	
70	17 05	10 34		70	17 24			70	17 28	7 57	
71	17 15	10 44		71	17 34			71	17 38	8 07	
72	17 25	10 54		72	17 44			72	17 48	8 17	
73	17 35	11 04		73	17 54			73	17 58	8 27	
74	17 45	11 14		74	18 04			74	18 08	8 37	
75	17 55	11 24		75	18 14			75	18 18	8 47	
76	18 05	11 34		76	18 24			76	18 28	8 57	
77	18 15	11 44		77	18 34			77	18 38	9 07	
78	18 25	11 54		78	18 44			78	18 48	9 17	
79	18 35	12 04		79	18 54			79	18 58	9 27	
80	18 45	12 14		80	19 04			80	19 08	9 37	
81	18 55	12 24		81	19 14			81	19 18	9 47	
82	19 05	12 34		82	19 24			82	19 28	9 57	
83	19 15	12 44		83	19 34			83	19 38	10 07	
84	19 25	12 54		84	19 44			84	19 48	10 17	
85	19 35	13 04		85	19 54			85	19 58	10 27	
86	19 45	13 14		86	20 04			86	20 08	10 37	
87	19 55	13 24		87	20 14			87	20 18	10 47	
88	20 05	13 34		88	20 24			88	20 28	10 57	
89	20 15	13 44		89	20 34			89	20 38	11 07	
90	20 25	13 54		90	20 44			90	20 48	11 17	
91	20 35	14 04		91	20 54			91	20 58	11 27	
92	20 45	14 14		92	21 04			92	21 08	11 37	
93	20 55	14 24		93	21 14			93	21 18	11 47	
94	21 05	14 34		94	21 24			94	21 28	11 57	
95	21 15	14 44		95	21 34			95	21 38	12 07	
96	21 25	14 54		96	21 44			96	21 48	12 17	
97	21 35	15 04		97	21 54			97	21 58	12 27	
98	21 45	15 14		98	22 04			98	22 08	12 37	
99	21 55	15 24		99	22 14			99	22 18	12 47	
100	22 05	15 34		100	22 24			100	22 28	12 57	
101	22 15	15 44		101	22 34			101	22 38	13 07	
102	22 25	15 54		102	22 44			102	22 48	13 17	
103	22 35	16 04		103	22 54			103	22 58	13 27	
104	22 45	16 14		104	23 04			104	23 08	13 37	
105	22 55	16 24		105	23 14			105	23 18	13 47	
106	23 05	16 34		106	23 24			106	23 28	13 57	
107	23 15	16 44		107	23 34			107	23 38	14 07	
108	23 25	16 54		108	23 44			108	23 48	14 17	
109	23 35	17 04		109	23 54			109	23 58	14 27	
110	23 45	17 14		110	24 04			110	24 08	14 37	
111	23 55	17 24		111	24 14			111	24 18	14 47	
112	24 05	17 34		112	24 24			112	24 28	14 57	
113	24 15	17 44		113	24 34			113	24 38	15 07	
114	24 25	17 54		114	24 44			114	24 48	15 17	
115	24 35	18 04		115	24 54			115	24 58	15 27	
116	24 45	18 14		116	25 04			116	25 08	15 37	
117	24 55	18 24		117	25 14			117	25 18	15 47	
118	25 05	18 3									

UNITED STATES STEEL CORPORATION
CLAIRTON CORE AND COAL CHEMICAL WORKS

PUSHING AND CHARGING REPORT

UNIT NO. #512 Hrs. Beginning 12:00 P.M.Date 7-29-94

11 AM 7/29/94

BATTERY NO. 13-A5				BATTERY NO. 13-B5				BATTERY NO. 14-A5			
OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES
1				1	7:05	7:34		1	9:32		
3				3	7:16	7:44		3	10:04		
5				5	7:26	7:54		5	10:16		
7				7	7:36	8:04		7			
9				9	7:46	8:15		9			
11				11	7:56	8:25		11			
13				13	8:06	8:36		13			
15				15	8:17	8:48		15			
17				17	8:27	9:02		17			
19				19	8:38	9:14		19			
21				21	8:50	9:26		21			
23				23	9:01	9:38		23			
25				25	9:16	9:50		25			
27				27	9:26	10:02		27			
29				29	9:40	10:14		29			
31				31				31			
2	4:28	4:44		2				2	1:16	1:16	
4	4:38	5:05		4				4	1:33	1:51	
6	4:48	5:15		6				6	1:52	1:51	
8	4:58	5:25		8				8	2:10	2:20	
10	5:07	5:36		10				10	2:59	3:03	
12	5:17	5:37		12				12	3:11	3:13	
14	5:27	5:43		14	11:39	12:08		14	3:22	3:23	
16	5:34	6:13		16	11:49	12:19		16	3:25	3:33	
18	5:39	6:19		18	11:59	12:30		18	3:15	3:33	
20	5:45	6:33		20	12:10	12:44		20	3:25	3:52	
22	6:15	6:43		22	12:01	12:52		22	3:35	4:01	
24	6:20	6:53		24	12:32	1:03		24	3:45	4:14	
26	6:35	7:03		26	12:43	1:14		26	3:55	4:20	
28	6:45	7:14		28	12:54	1:25		28	4:06	4:46	
30	6:55	7:24		30	1:05	1:36		30	4:16	4:36	
32				32				32			
34				34				34			

REMARKS:

15/15 24/24 18/15

Condition of Signals

Condition of Pusher

HOURLY REPORT OF OPERATION

TIME	OVENS PUSHED	OVENS CHARGED	OVENS SCHEDULED	TIME	OVENS PUSHED	OVENS CHARGED	OVENS SCHEDULED	
11:12	3	0	9 6	5:6	6	6	11 11	
12:1	5	5	9 9	6:7	5	5	11 11	Total Ovens Pushed 57
1:2	6	6	11 11	7:8	6	6	12 12	Total Ovens Charged 54
2:3	2	2	4 4	8:9	5	5	10 10	
2:4	6	6	12 12	9:10	5	5	10 10	Pusherman
3:5	6	6	12 12	10:11	2	2	4 4	Battery Foreman
28	25			29	29			

EC-1C283 REV. 1161
03.001.0020
UNITED STATES STEEL CORPORATION
CLAIRTON COKE AND COAL CHEMICAL WORKS

PUSHING AND CHARGING REPORT

UNIT NO. #1

12 Hrs. Beginning 10:00 AM

Date 7-29-94

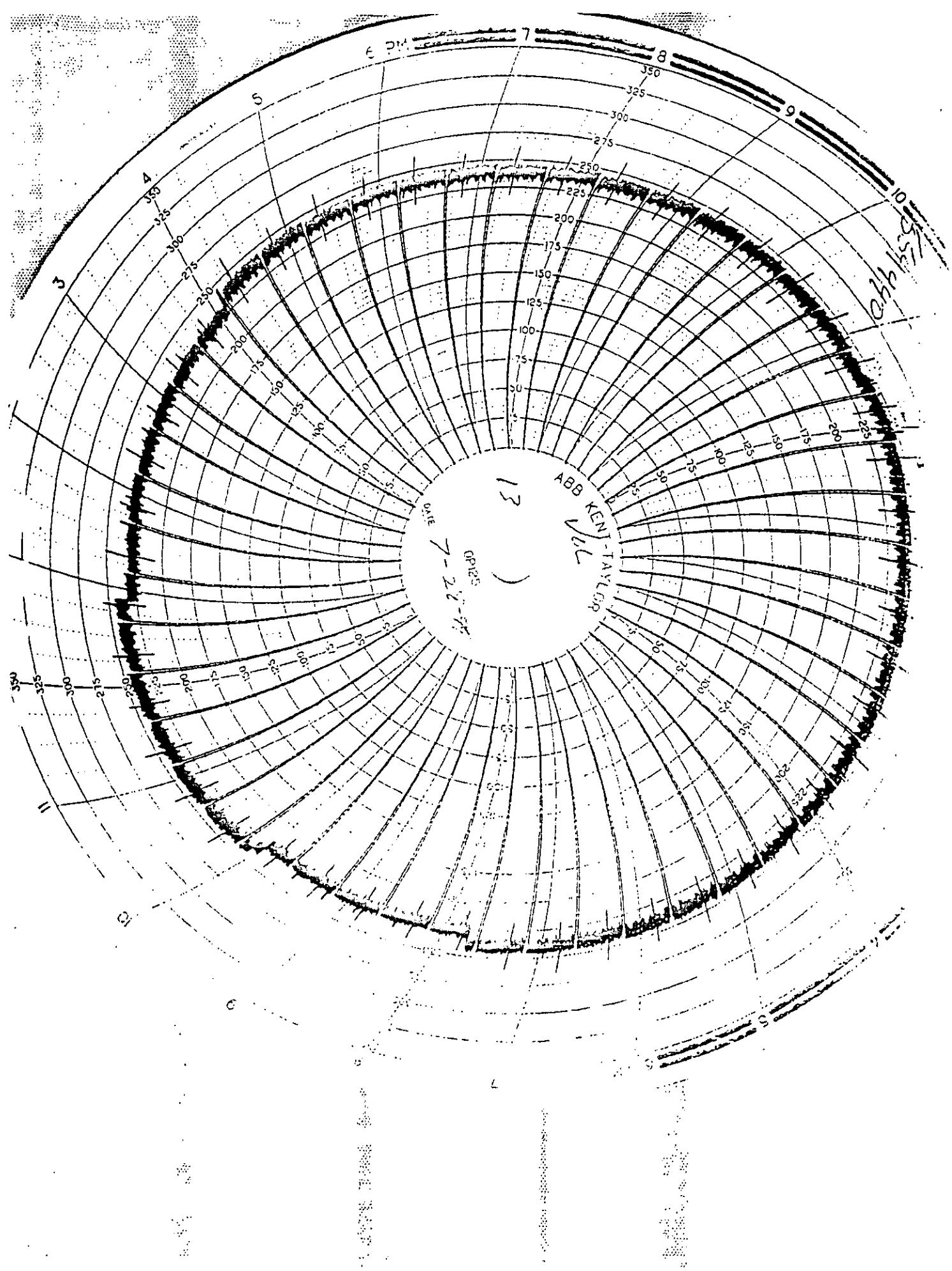
11 pm 7/23/94

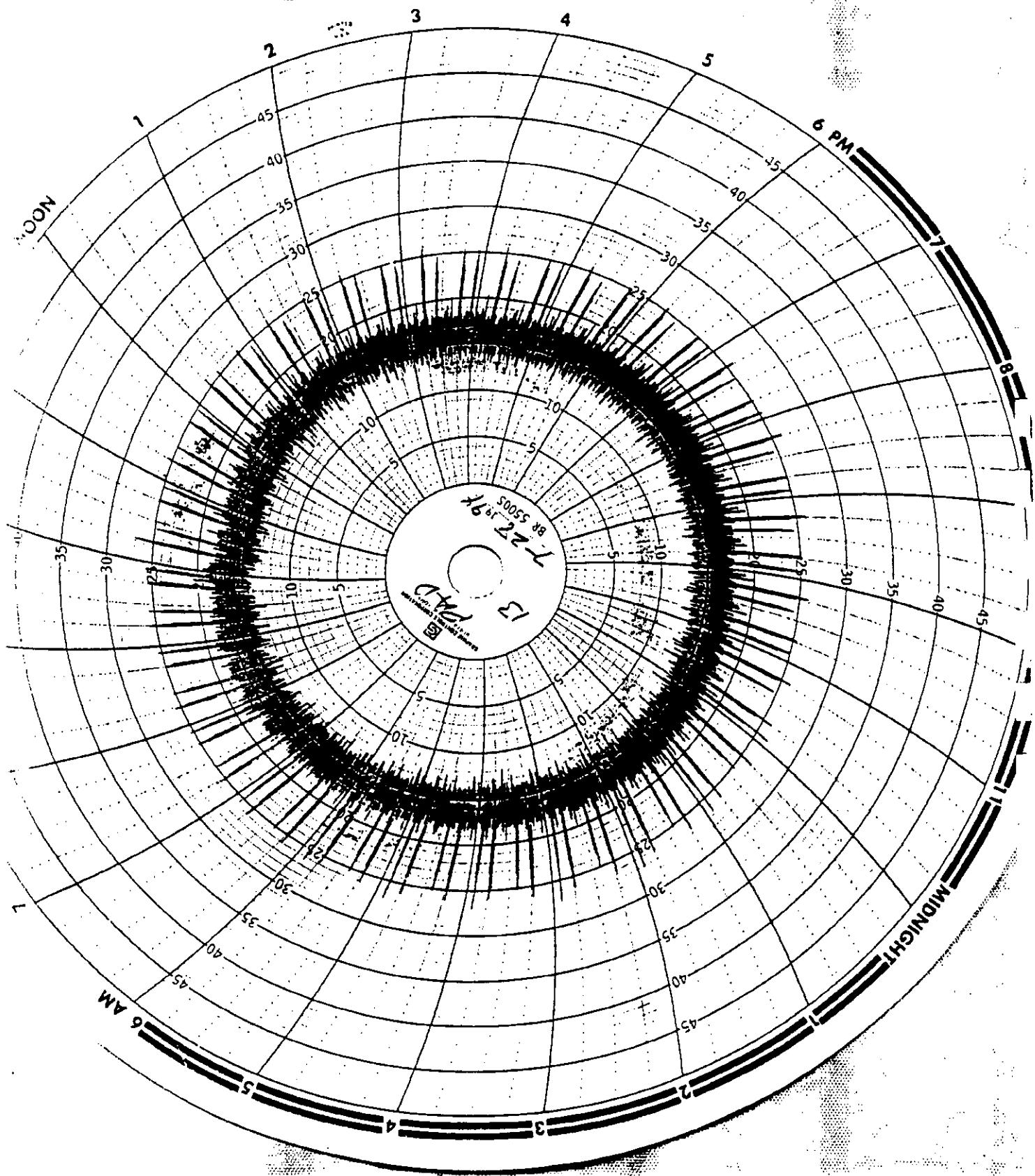
BATTERY NO. <u>13-A</u>				BATTERY NO. <u>13-B</u>				BATTERY NO. <u>14-A</u>			
OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES	OVEN NO.	TIME PUSHED	TIME CHARGED	NOTES
1	7 25	7 53	✓	1	1 08	1 30		1	3 36	3 58	
3	7 35	8 03	✓	3	1 12	1 39		3	3 46	4 09	
5	7 45	8 13	✓	5	1 28	1 48		5	3 56	4 19	
7	7 55	8 23	✓	7	1 37	1 58		7	4 07	4 29	
8	8 05	8 33	✓	8	1 46	2 08		9	4 17	4 27	
11	8 15	8 43	✓	11	1 56	2 17		11	4 27	4 47	
13	8 25	8 53	✓	13	2 06	2 27		13	4 37	5 00	
15	8 35	9 03	✓	15	2 15	2 37		15	4 47	5 50	SENT
17	8 45	9 13	✓	17	2 25	2 47		17	4 57	5 35	
19	8 55	9 23	✓	19	2 35	2 57		19	5 10	6 03	
21	9 05	9 33	✓	21	2 45	3 07		21	5 30	7 11	
23	9 15	9 43	✓	23	2 55	3 17		23	5 47	7 01	
25	9 25	9 53		25	3 05	3 27		25	6 10	7 13	
27	9 35	10 03		27	3 15	3 38		27	7 20	7 33	
29	9 45	10 13		29	3 25	3 48		29	7 10	7 55	
31	9 55	10 33		31				31	7 15	7 43	✓
2	11 10			2	10 05	10 37		2			
4	11 19			4	10 15	10 38		4			
6	11 00	11 26		6	10 25	10 43		6			
8	11 08	11 36		8	10 35	10 48		8			
10	11 17	11 42		10	10 45	10 53		10			
12	11 28	11 50		12	10 55	10 58		12			
14	11 38	12 00		14				14			
16	11 48	12 10		16				16			
18	11 58	12 20		18				18			
20	12 08	12 30		20				20			
22	12 18	12 40		22				22			
24	12 28	12 50		24				24			
26	12 38	1 00		26				26			
28	12 48	1 10		28				28			
30	12 58	1 20		30				30		11 02	
1				1				1			
2				2				2			

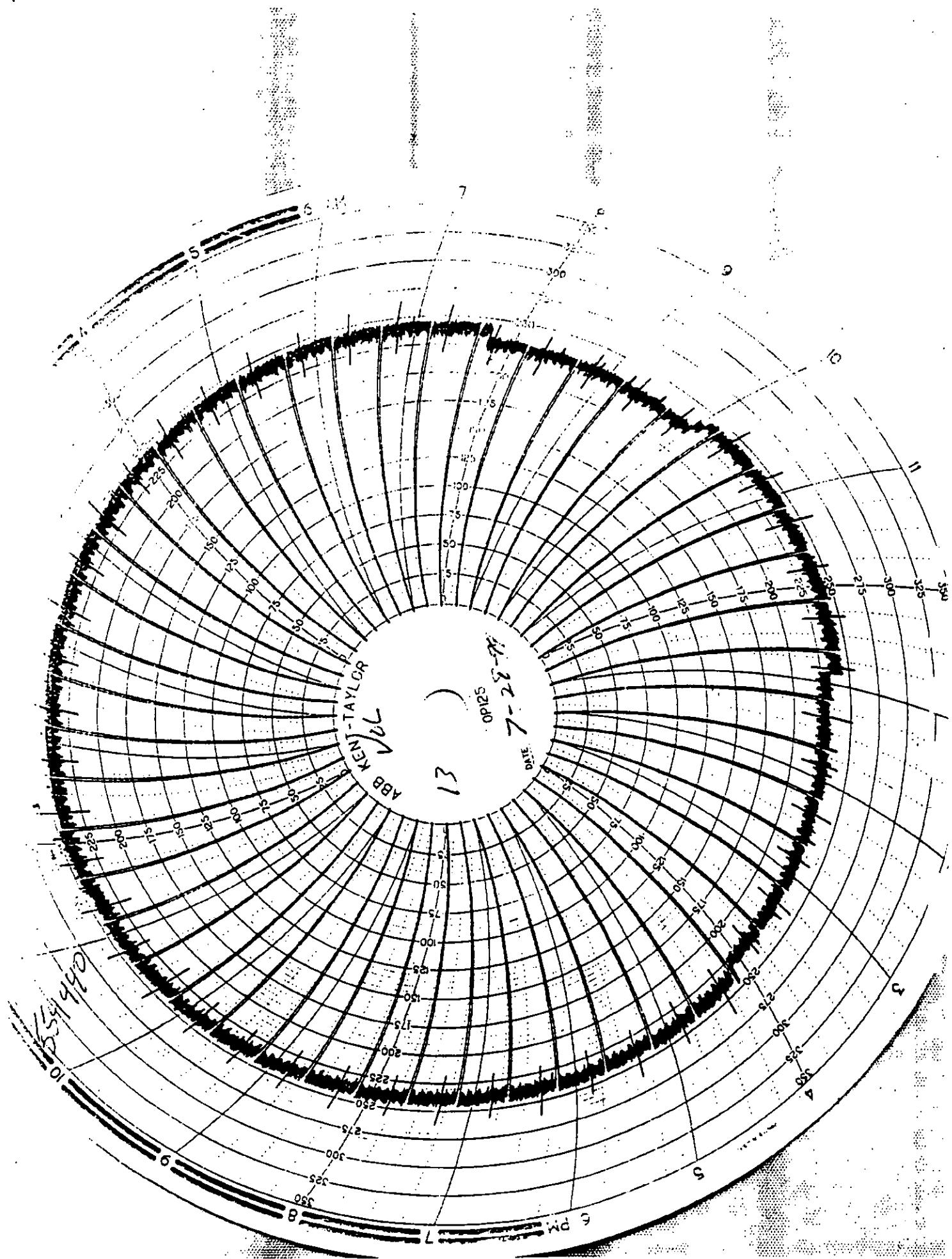
MARKS: A 15/13 CHUCK DOOR NEEDS 01:53 10:00 11:00

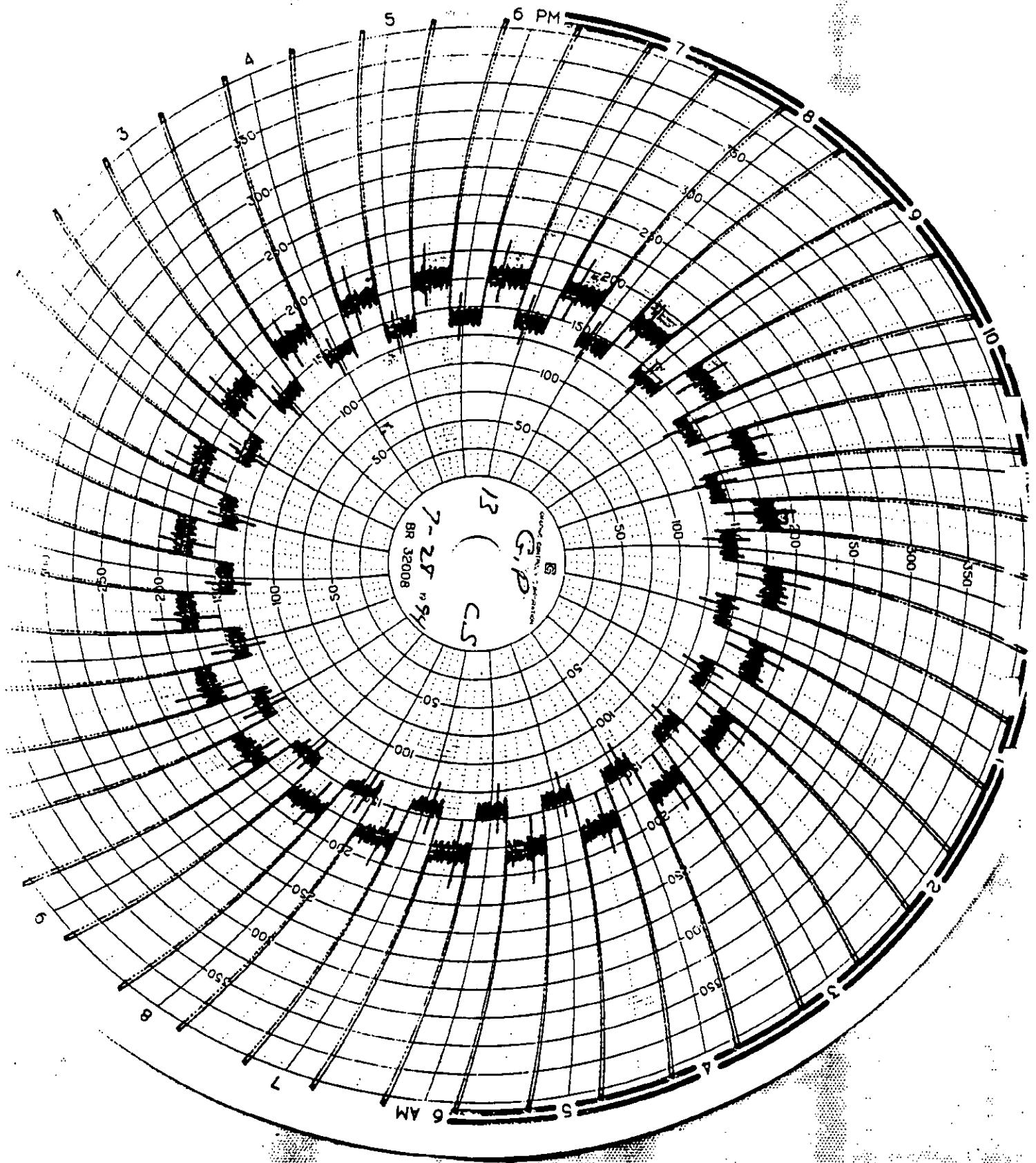
EVERY TIGER 1784

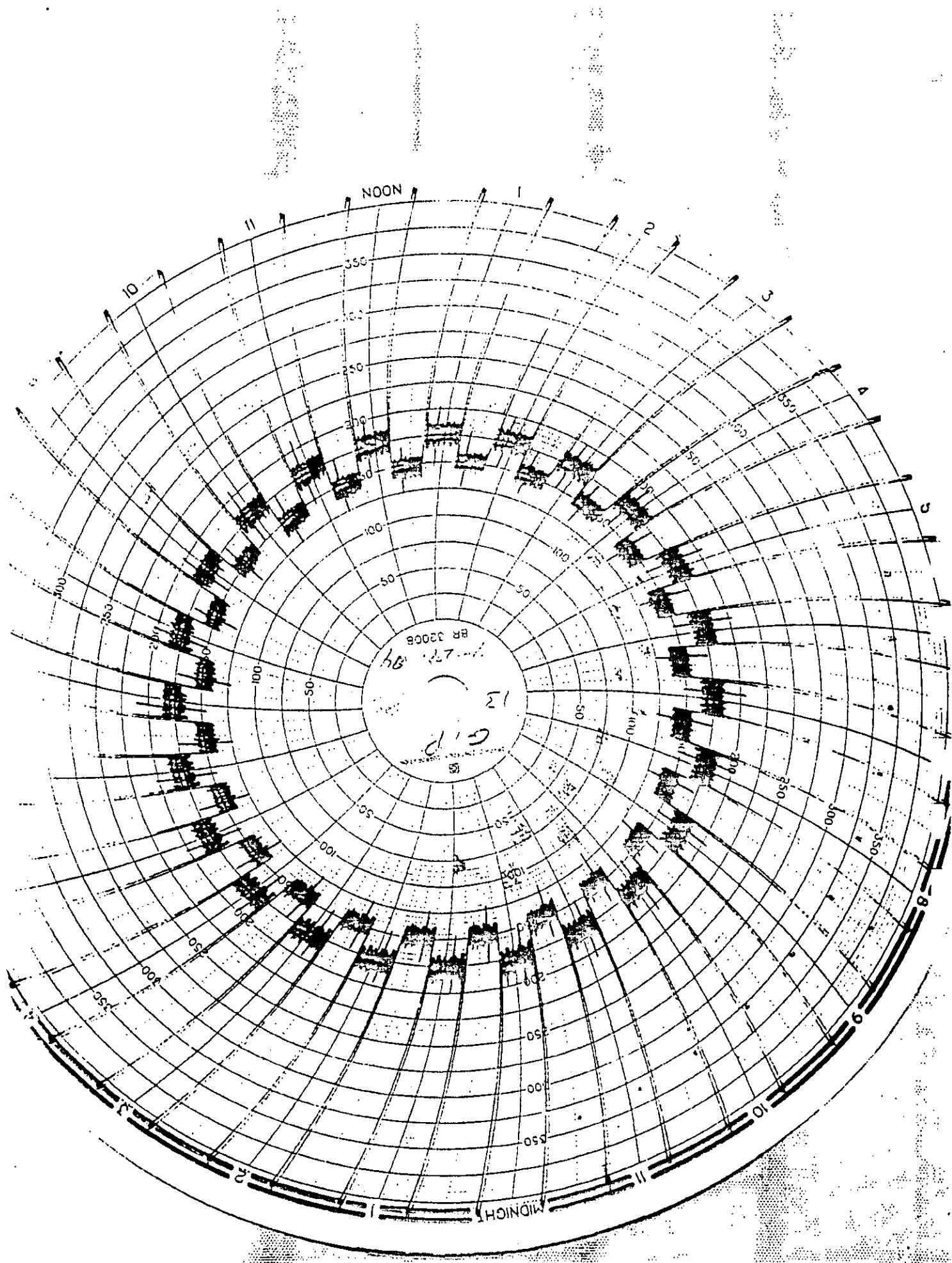
29/31

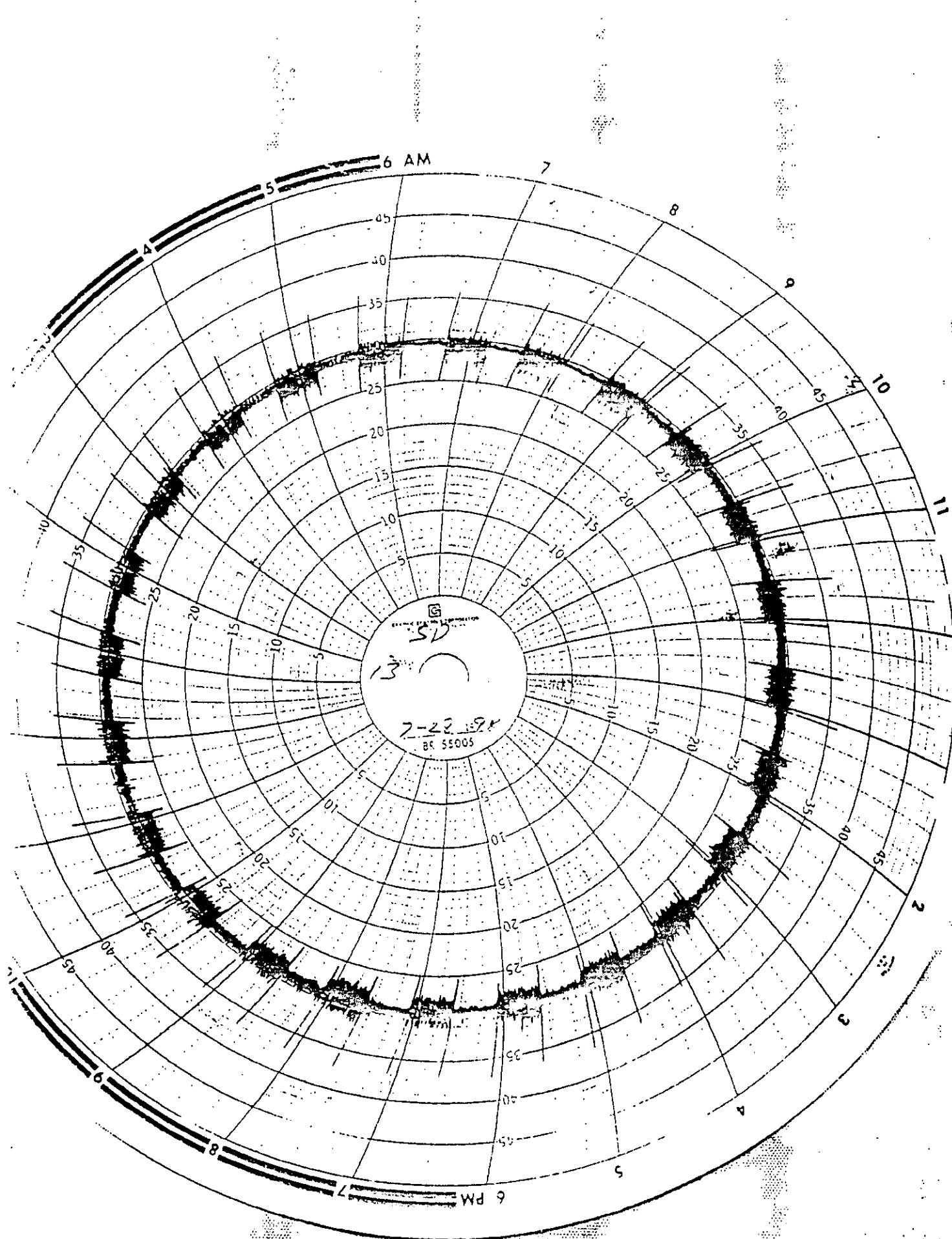

21/21

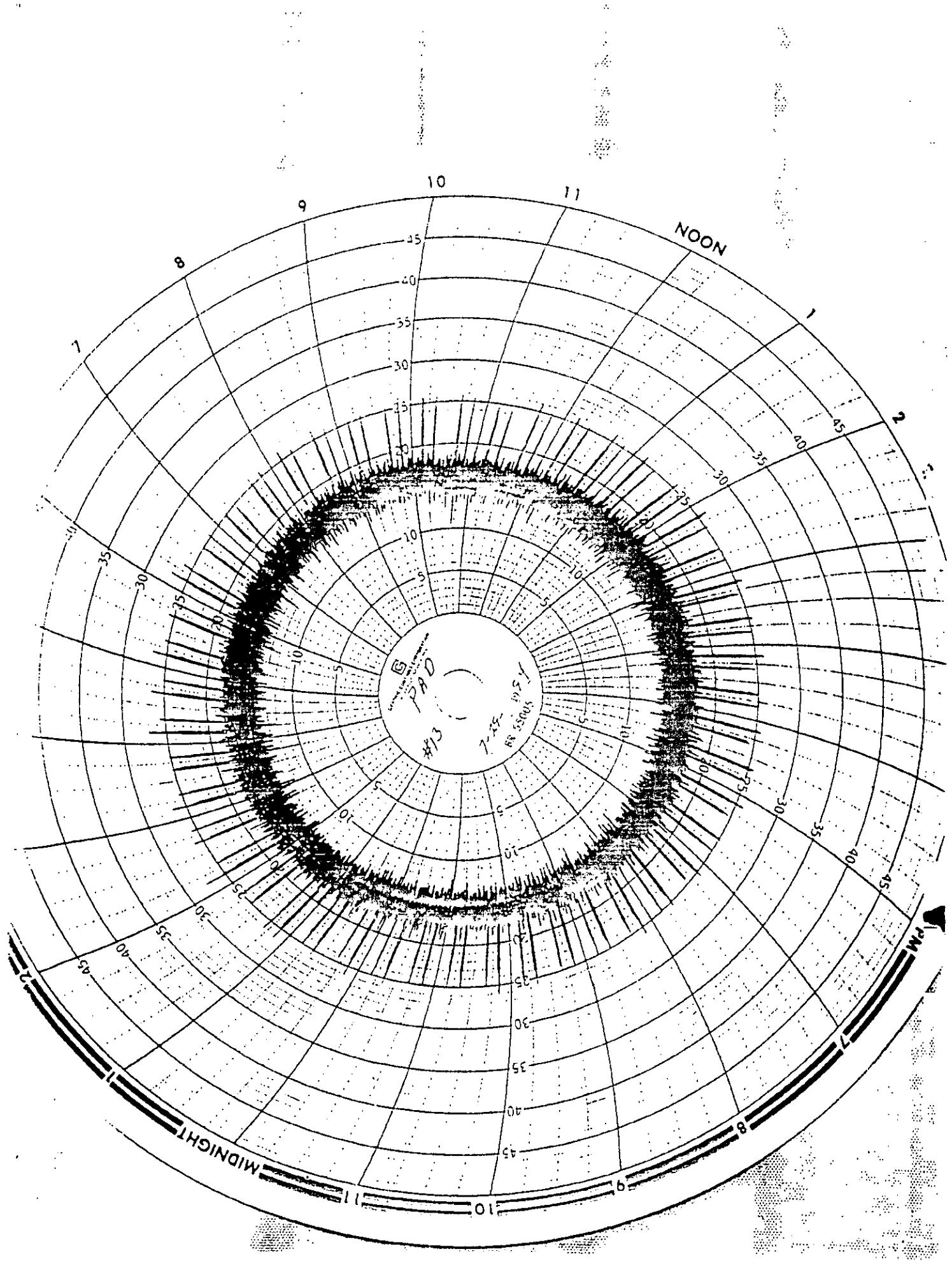

16/17

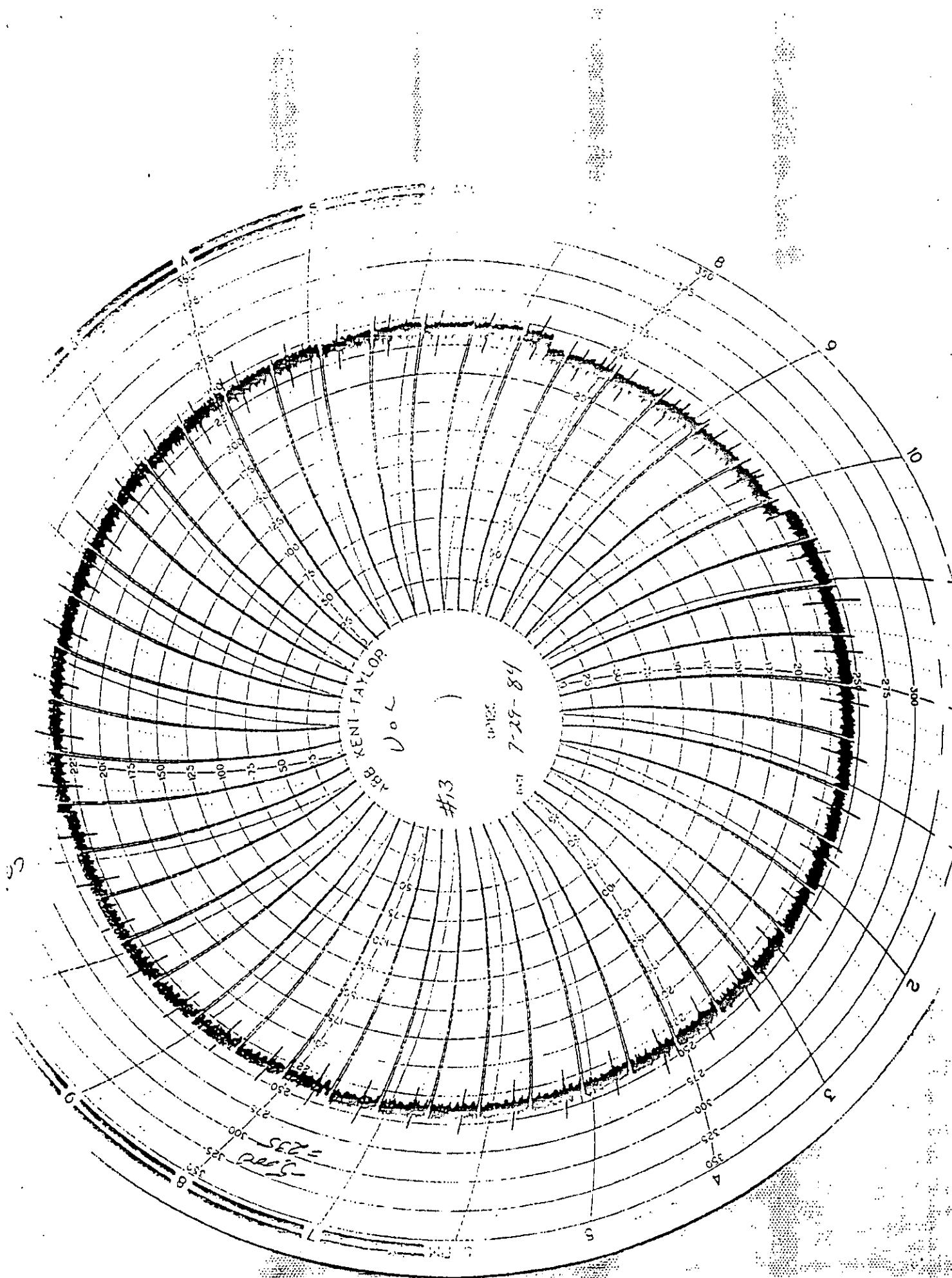

Condition of Sights Condition of Pusher

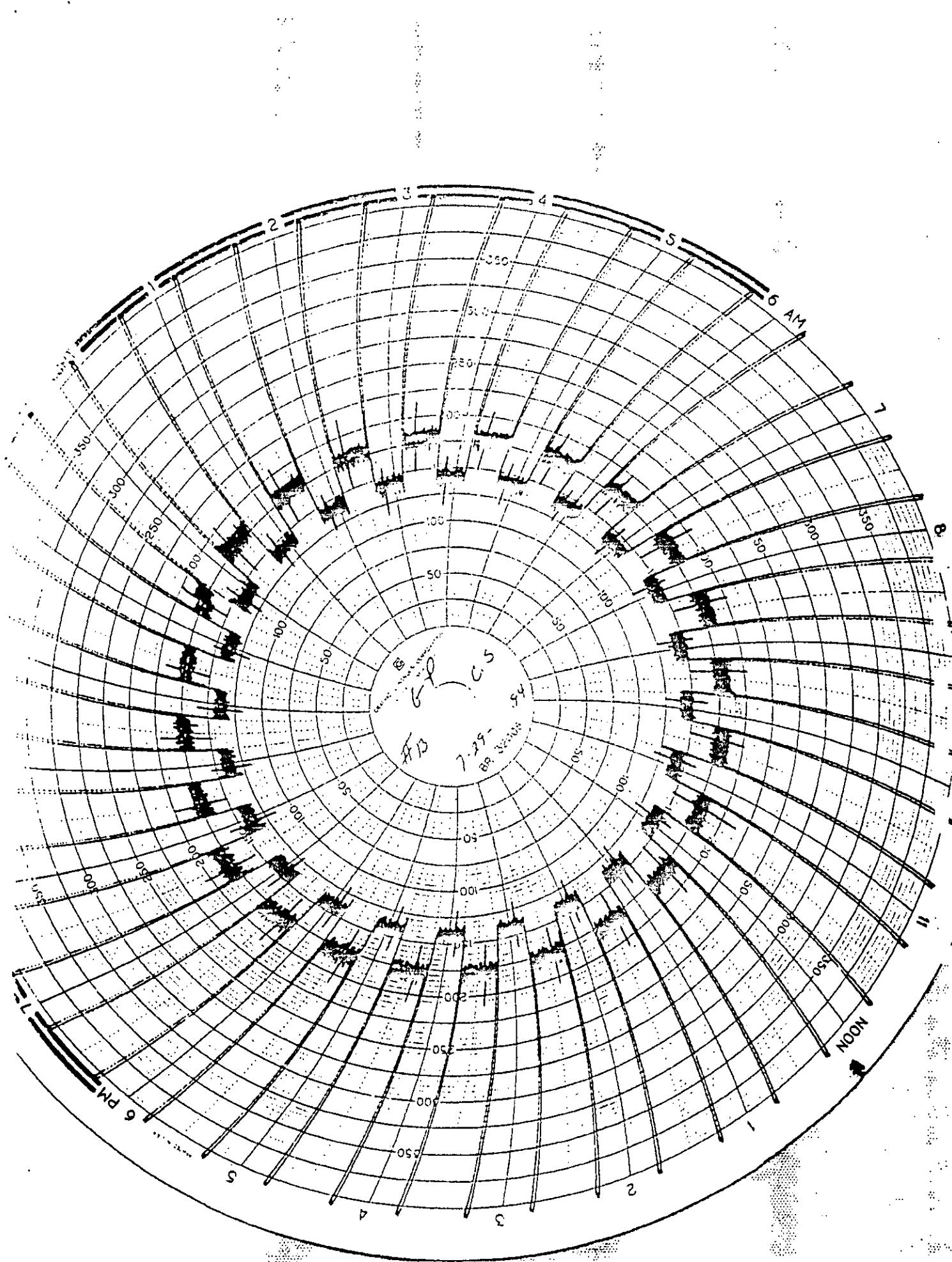

HOURLY REPORT OF OPERATION

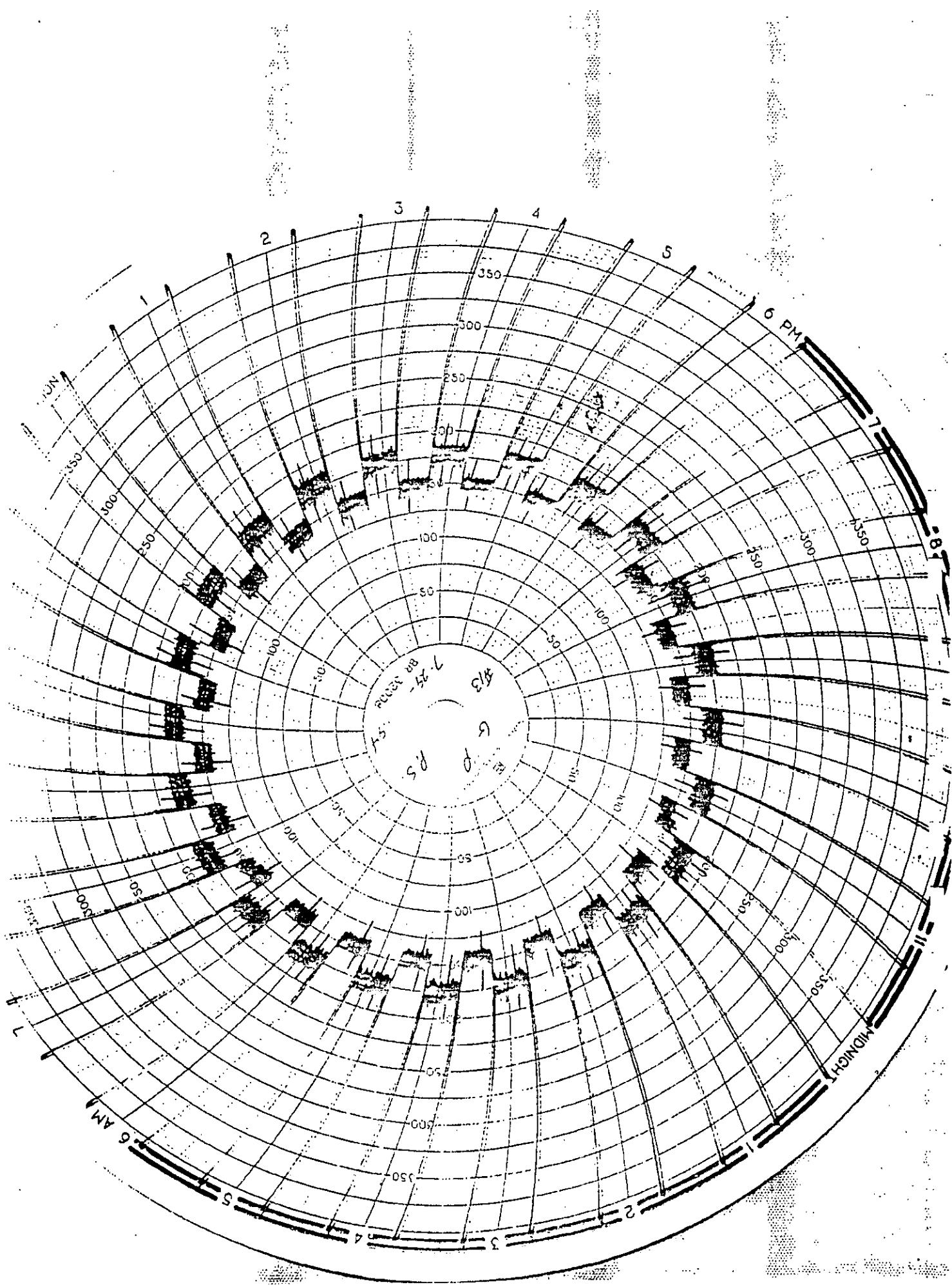

TIME	OVENS PUSHED	OVENS CHARGED	OVENS SCHEDULED	TIME	OVENS PUSHED	OVENS CHARGED	OVENS SCHEDULED	
11	7	7		12	3	2		
12	6	6		13	1	1		Total Ovens Pushed 66
13	6	7		14	7	7		Total Ovens Charged 69
14	6	6		15	6	7		Pusherman
15	6	6		16	6	6		Battery Foreman 417417
16	6	5		17	6	9		
	37	37			29	32		

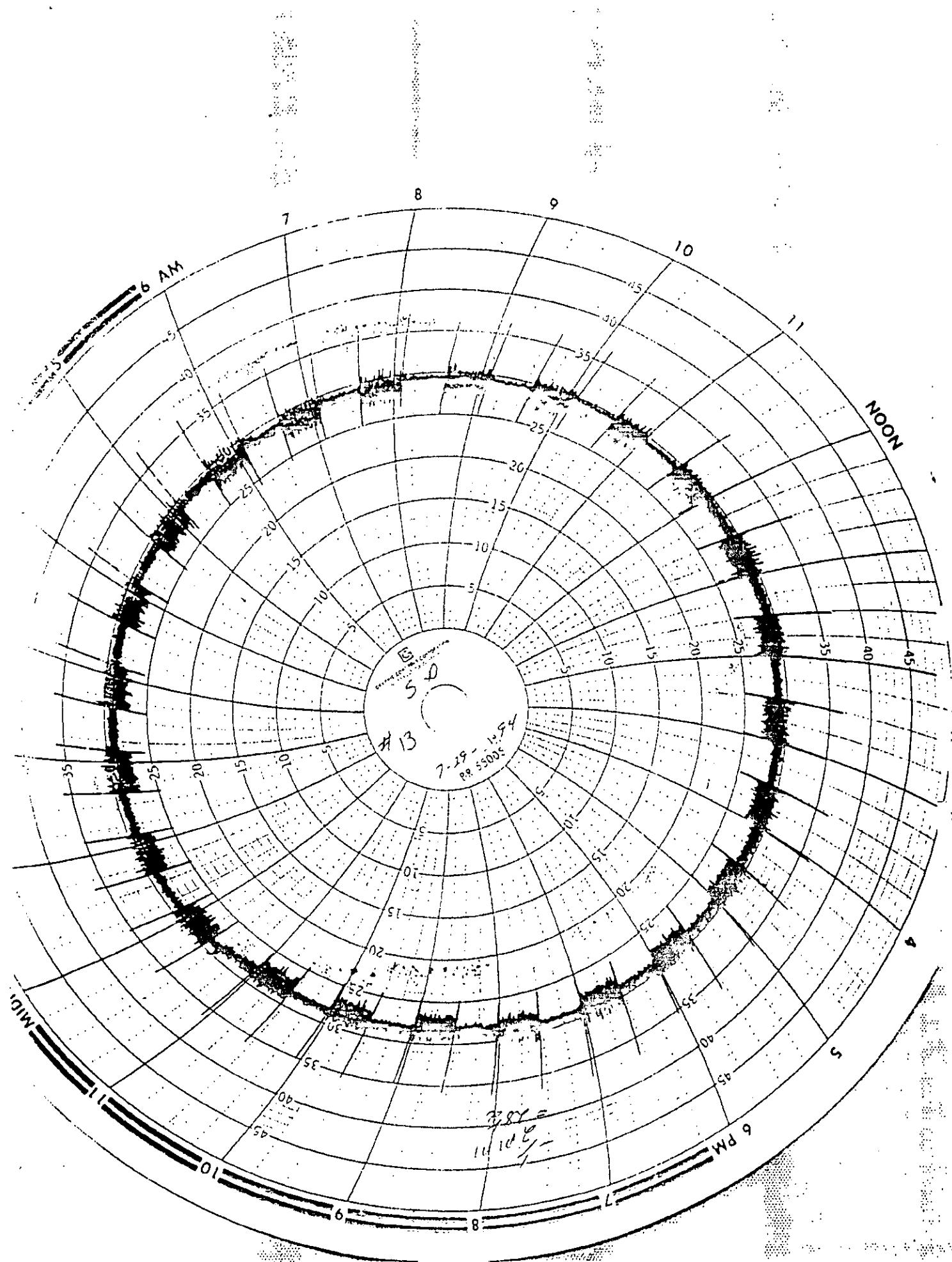












COMPLIANCE DEMONSTRATION
NO. 13 BATTERY COMBUSTION STACK

USS CLAIRTON WORKS
A DIVISION OF USX CORPORATION
CLAIRTON, PENNSYLVANIA

APPENDIX C

GRAVIMETRIC AND ANALYTICAL RESULTS, EMISSIONS
CALCULATIONS

ADVANCED TECHNOLOGY SYSTEMS, INC.

CLIENT USS - C/Div Test blocks
PLANT LOCATION Clinton PA
PROJECT NUMBER 151100202
UNIT TESTED #13 BATTERY STATION

TEST DATE _____
DATE RECEIVED _____
DATE ANALYZED _____
ANALYTICAL METHOD _____

Analyst's Signature
Date

Comments

AQE 10/92

STACK SAMPLING CALCULATIONS

CLIENT: USS CLAIRTON WORKS

TEST DATE: 07-28-94

TEST SITE #13 BATTERY COMBUSTION STACK

TEST NUMBER: CLR-BS#13-1

A.	Barometric Pressure	29.30	in. Hg	
B.	Static Pressure	-1.0	in. H2O	
C.	Stack Pressure	29.23	in. Hg	[A+(B/13.6)]
D.	Average ΔH	1.21	in. H2O	
E.	Meter Pressure	29.39	in. Hg	[A+(D/13.6)]
F.	Average ΔP	0.04	in. H2O	
G.	Pitot Coefficient	0.84		
H.	Gas Meter Coefficient	1.0172		
I.	Stack Diameter	120	in.	
J.	Stack Area	78.54	ft ²	(0.00545*1 ²)
K.	Nozzle Diameter	0.490	in.	
L.	Nozzle Area	1.31E-03	ft ²	(0.00545*K ²)
M.	Average Stack Temperature	496	°F	
N.	Average Stack Temperature	956	°R	(460+M)
O.	Average Meter Temperature	90	°F	
P.	Average Meter Temperature	550	°R	(460+O)
Q.	Condensate Volume	253.9	ml	
R.	Absorbed H2O	22.1	ml	
S.	Total H2O	276.0	ml	(Q+R)
T.	Filter Weight	0.0203	g	
U.	Probe Weight	0.0341	g	
V.	Impinger Weight	0.0013	g	
W.	Total Weight	0.0557	g	(T+U+V)
X.	Metered Gas Volume	73.885	dscf	
Y.	Corrected Metered Gas Volume	75.156	dscf	(X*H)
Z.	H2O Gas Volume	13.822	cf	(0.00267*S*P/A)
AA.	Total Sample Volume	88.978	cf	(Y+Z)
BB.	Percent H2O	15.5	%	(100*Z/AA)
CC.	Gas Volume Sampled	70.923	dscf	[Y*(528/P)*(E/29.92)]
DD.	Grain Loading	0.0121	gr/dscf	(15.43*W/CC)
EE.	Average Molecular Weight:			

Component	% Volume +100	*(1-BB/100)	* Mol. Weight	= Weight/Mol
H2O	0.155		18	2.796
CO2	0.060	0.345	44	2.230
CO	0.000	0.845	28	0.000
O2	0.105	0.845	32	2.838
N2	0.835	0.845	28	19.748

FF.	Average Stack Velocity	15.6	fps	$(35.49*G*[(F*N)/(C*EE)]^{0.5})$
GG.	Average Flow Rate	73700	acfm	$(60*FF*J)$
HH.	Standard Flow Rate	39300	scfm	$[GG*(528/N)*(C/29.92)]$
II.	Sample Time	7200	sec	
JJ.	Percent Isokinetic	105.4	%	$\{(100*CC*60*J)/[HH*L*II*(1-BB/100)]\}$
KK.	Mass Flow Rate	3.49	lb/hr	$[DD*HH*(1-BB/100)*60/7000]$

STACK SAMPLING CALCULATIONS

CLIENT: USS CLAIRTON WORKS
TEST SITE #13 BATTERY COMBUSTION STACK

TEST DATE: 07-28-94
TEST NUMBER: CLR-BS#13-2

A.	Barometric Pressure	29.30	in. Hg	
B.	Static Pressure	-1.0	in. H2O	
C.	Stack Pressure	29.23	in. Hg	$[A+(B/13.6)]$
D.	Average ΔH	1.27	in. H2O	
E.	Meter Pressure	29.39	in. Hg	$[A+(D/13.6)]$
F.	Average ΔP	0.04	in. H2O	
G.	Pitot Coefficient	0.84		
H.	Gas Meter Coefficient	1.0172		
I.	Stack Diameter	120	in.	
J.	Stack Area	78.54	ft ²	$(0.00545 \cdot 1^2)$
K.	Nozzle Diameter	0.490	in.	
L.	Nozzle Area	1.31E-03	ft ²	$(0.00545 \cdot K^2)$
M.	Average Stack Temperature	498	°F	
N.	Average Stack Temperature	958	°R	$(460+M)$
O.	Average Meter Temperature	106	°F	
P.	Average Meter Temperature	566	°R	$(460+O)$
Q.	Condensate Volume	275.4	ml	
R.	Absorbed H2O	21.3	ml	
S.	Total H2O	296.7	ml	$(Q+R)$
T.	Filter Weight	0.0178	g	
U.	Probe Weight	0.0310	g	
V.	Impinger Weight	0.0011	g	
W.	Total Weight	0.0499	g	$(T+U+V)$
X.	Metered Gas Volume	75.690	dscf	
Y.	Corrected Metered Gas Volume	76.992	dscf	$(X \cdot H)$
Z.	H2O Gas Volume	15.312	cf	$(0.00267 \cdot S \cdot P/A)$
AA.	Total Sample Volume	92.304	cf	$(Y+Z)$
BB.	Percent H2O	16.6	%	$(100 \cdot Z/AA)$
CC.	Gas Volume Sampled	70.515	dscf	$[Y \cdot (528/P) \cdot (E/29.92)]$
DD.	Grain Loading	0.0109	gr/dscf	$(15.43 \cdot W/CC)$
EE.	Average Molecular Weight:			

Component	% Volume +100	$\cdot (1-BB/100)$	\cdot Mol. Weight	$=$ Weight/Mol
H2O	0.166	0.834	18	2.986
CO2	0.060	0.834	44	2.202
CO	0.000	0.834	28	0.000
O2	0.105	0.834	32	2.803
N2	0.839	0.834	28	19.501

Average Molecular Weight

27.49

lb./lb. mol

FF.	Average Stack Velocity	15.7	fps	$\{85.49 \cdot G \cdot [(F \cdot N) / (C \cdot EE)]^{0.5}\}$
GG.	Average Flow Rate	73900	acfm	$(60 \cdot FF \cdot J)$
HH.	Standard Flow Rate	39800	scfm	$[GG \cdot (528/N) \cdot (C/29.92)]$
II.	Sample Time	7200	sec	
JJ.	Percent Isokinetic	106.2	%	$\{(100 \cdot CC \cdot 60 \cdot J) / [HH \cdot L \cdot II \cdot (I-BB/100)]\}$
KK.	Mass Flow Rate	3.11	lb/hr	$(DD \cdot HH \cdot (I-BB/100) \cdot 60 / 7000)$

STACK SAMPLING CALCULATIONS

CLIENT: USS CLAIRTON WORKS
TEST SITE #13 BATTERY COMBUSTION STACK

TEST DATE: 07-29-94
TEST NUMBER: CLR-BS#13-3

A.	Barometric Pressure	29.40	in. Hg	
B.	Static Pressure	-1.1	in. H2O	
C.	Stack Pressure	29.32	in. Hg	[A+(B/13.6)]
D.	Average ΔH	1.14	in. H2O	
E.	Meter Pressure	29.48	in. Hg	[A+(D/13.6)]
F.	Average ΔP	0.04	in. H2O	
G.	Pitot Coefficient	0.84		
H.	Gas Meter Coefficient	1.0172		
I.	Stack Diameter	120	in.	
J.	Stack Area	78.54	ft ²	(0.00545*1 ²)
K.	Nozzle Diameter	0.490	in.	
L.	Nozzle Area	1.31E-03	ft ²	(0.00545*K ²)
M.	Average Stack Temperature	495	°F	
N.	Average Stack Temperature	955	°R	(460+M)
O.	Average Meter Temperature	93	°F	
P.	Average Meter Temperature	553	°R	(460+O)
Q.	Condensate Volume	263.7	mL	
R.	Absorbed H2O	18.2	mL	
S.	Total H2O	281.9	mL	(Q+R)
T.	Filter Weight	0.0150	g	
U.	Probe Weight	0.0415	g	
V.	Impinger Weight	0.0013	g	
W.	Total Weight	0.0578	g	(T+U+V)
X.	Metered Gas Volume	72.142	cf	
Y.	Corrected Metered Gas Volume	73.383	cf	(X*H)
Z.	H2O Gas Volume	14.157	cf	(0.00267*S*P/A)
AA.	Total Sample Volume	87.540	cf	(Y+Z)
BB.	Percent H2O	16.2	%	(100*Z/AA)
CC.	Gas Volume Sampled	69.046	dsfcf	[Y*(528/P)*(E/29.92)]
DD.	Grain Loading	0.0129	gr/dsfcf	(15.43*W/CC)
EE.	Average Molecular Weight:			

Component	% Volume +100	*(1-BB/100)	* Mol. Weight	= Weight/Mol
H2O	0.162	0.838	18	2.911
CO2	0.065	0.838	44	2.397
CO	0.000	0.838	28	0.000
O2	0.105	0.838	32	2.817
N2	0.830	0.838	28	19.482

Average Molecular Weight

27.61

lb./lb. mol

FF.	Average Stack Velocity	15.6	fps	{85.49*G*[(F*N)/(C*EE)]^0.5}
GG.	Average Flow Rate	73500	scfm	(60*FF*J)
HH.	Standard Flow Rate	39300	scfm	[GG*(528/N)*(C/29.92)]
II.	Sample Time	7200	sec	
JJ.	Percent Isokinetic	103.4	%	{[100*CC*60*J]/[HH*L*II*(1-BB/100)]}
KK.	Mass Flow Rate	3.69	lb/hr	[DD*HH*(1-BB/100)*60/7000]

CHAIN OF CUSTODY RECORD

Received by: (Signature) <i>Collect/Signer</i>	Date <i>10/14/04</i>	Time <i>10:00 AM</i>	Received by: (Signature)	Date <i>10/14/04</i>	Time <i>10:00 AM</i>	Received by: (Signature)
Relinquished by: (Signature)			Relinquished by: (Signature)			Received by: (Signature)
Relinquished by: (Signature)	Date	Time	Received by: (Signature)	Date	Time	Received by: (Signature)
Received for Laboratory by: (Signature)	Date	Time	Ice Chest Temp	Ice Chest	#	Chain of Custody
			0 C			Tag #

RJ Lee Group, Inc.

LABORATORY REPORT

350 Hochberg Road Monroeville, PA 15146
Phone (412) 325-1776 Fax (412) 733-7799

RECEIVED
RJL

Advanced Technology Systems, Inc.

339 Haymaker Road, Suite 201

Monroeville, PA 15146

Attention: Patrick Stockton

(412) 856-0662

Analysis: Determination of Sulfate in Solution

Method: Ion Chromatography

Sample Identification	RJ Lee Group	ppm	Volume	Total mg.
CR-B5#13-1	0134074	204	50	10.2
CR-B5#13-2	0134075	190	50	9.50
CR-B5#13-3	0134076	426	50	21.3
CR-B5#13-SO4:40K	0134077	< 1.0	50	< 0.050

These results are submitted pursuant to RJ Lee Group's current terms and conditions of sale, including the company's standard warranty and limitation of liability provisions. No responsibility or liability is assumed for the manner in which the results are used or interpreted. Unless notified in writing to return the samples covered by this report, RJ Lee Group will store the samples for a period of thirty (30) days before disposal. A shipping and handling fee will be assessed for the return of any samples.

At:

RJL

Analyst P.H.
Date 5/12/94