

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

76

Bethlehem Steel Corporation

BETHLEHEM, PA 18016

July 11, 1994

**Session 72--Selecting the Appropriate Emission Factor for Estimating
Emissions from Iron and Steel Sources**

**Summary of NO_x, VOC and CO Measurements Conducted at Several Steel
Plants**

Air and Waste Management Association 87th Annual Meeting, Cincinnati, OH

Thank you for requesting copies of the slides shown during the presentation referenced above. As Joe Pezze from the Pennsylvania Department of Environmental Resources pointed out to me, it is somewhat ironic to be distributing the stack sampling results presented as an illustration of why there is no substitute for stack test data from the specific source in question.

If you have any question about this information, please call me at (610) 694-6599 or
write to me at:

(219) 787-~~████████~~

2712

Thomas W. Easterly, P.E., DEE
Senior Environmental Engineer
Bethlehem Steel Corporation
Bethlehem, PA 18016-7699

Thank You.

Sincerely,

A handwritten signature in black ink, appearing to read "Thomas W. Easterly".

Thomas W. Easterly, P.E., DEE

enclosure

KEY POINTS

1. We must understand which process variables impact emissions.

Examples: lb/ton vs lb/mmbtu vs fuel sulfur

2. We must understand what we are looking for (THC vs VOC).
3. There is no substitute for a stack test for CO and NO_x.
4. In a simple process, a mass balance may be adequate for VOC's, but more likely will overstate emissions. A representative test is much better.

COKE UNDERFIRING STACK
(LB/TON COAL CHARGED)

SO2 NOx VOC CO

PLANT A		1.91	0.164	
PLANT B		1.56	0.109	
PLANT C		2.47	1.387	
PLANT D		2.12	0.590	
PLANT E		1.22	3.360	
PLANT F	3.03	0.47	0.010	2.49
PLANT G	1.06	2.78	0.006	0.38
PLANT H	1.17	0.78		0.13
PLANT I	1.02	0.69	0.038	0.09
PLANT J	2.02	0.98	0.019	0.14
PLANT K	2.40	1.02	0.029	0.08
PLANT L		0.69		
PLANT M		0.22	0.002	
PLANT N		0.23	0.002	

AVERAGE 1.78 1.22 0.476 0.55

NAPAP 4.00 0.04 2.000

NAPAP/AVG 224% 3% 420%

COKE PUSHING (LB/TON COAL CHARGED)

	SO2	NOx	VOC	CO
PLANT A	0.127	0.0108	0.017	0.027
PLANT B	0.039	0.019	0.005	0.067
PLANT C	0.033	0.019	0.003	0.137
AVERAGE	0.0663	0.0163	0.00833	0.077
NAPAP	3.3	0.03	0.2	0.07
NAPAP/AVG	4974.9%	184.4%	2400.0%	90.9%

SINTER PLANT WINDBOX EMISSIONS (lb/tn Sinter)

	SO2	NOx	VOC	CO
PLANT A	0.204	0.883	1.091	
PLANT B	0.38	0.11	0.359	30.66
PLANT C	1.51			
PLANT D	0.4505	0.603	0.1446	35.677
PLANT E			0.33	
AVERAGE	0.6361	0.532	0.6415	33.169
NAPAP	2.5	0.3	1.4	44
NAPAP/AVG	393.0%	56.4%	218.2%	132.7%

OTHER EXAMPLES

STEEL COLD MILLS

NAPAP 0.56 LB VOC/TON OF STEEL

PLANT A 0.002 LB/TON

AT A 3 MILLION TON PER YEAR MILL

NAPAP = 840 TONS PER YEAR OF VOC

PLANT A = 3 TONS PER YEAR OF VOC

ELECTRIC ARC FURNACES

SO₂ NO_x VOC CO

NAPAP	0.7	0.1	0.35	18
PLANT A		0.25	0.04	2.38
GEDDIS		0.31	LT	2.0
	TO	0.15	TO	
	0.54			4.0

CASTER STEAM VENT VOC's (NMOC)

	lb/hr	lb/tn	ppm
Plant A Bloom Caster	4.06	0.0314	3.54
Plant B Slab Caster # 1	3.10	0.0190	2.70
Plant B Slab Caster # 2	15.40	0.0490	7.60
AVERAGES	7.52	0.0331	4.61