JAMES E. BICKFORD
SECRETARY

PAUL E. PATTON
GOVERNOR

COMMONWEALTH OF KENTUCKY

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET

DEPARTMENT FOR ENVIRONMENTAL PROTECTION

DIVISION FOR AIR QUALITY 803 SCHENKEL LN FRANKFORT KY 40601-1403 June 19, 2000

Ms. Valerie A. Hudson, Manager Environmental Systems Gallatin Steel R.R. #1, Box 320 Ghent, Kentucky 41045-9704

Dear Ms. Hudson:

On May 4, 2000, NO_{X, and} SO₂ compliance tests were performed on the Electric Arc Furnace baghouse at your Ghent facility. Ambient Air Services, Inc performed the testing. Gerald Slucher observed testing for the Division for Air Quality. Proper test methods were followed, and the test report was checked for completeness and accuracy. The results are summarized below.

PARAMETER	TEST RESULTS	PERMIT LIMIT
Sulfur Dioxide	0.10lb/ton, 19.0 lb/hr	0.2 lb/ton, 40 lb/hr
Nitrogen Oxides(as NO2)	0.19lb/ton, 36.1 lb/hr	0.51 lb/ton, 102 lb/hr

Therefore, this test report is accepted as proof of compliance for sulfur dioxide and nitrogen oxides. A copy of this letter is being sent to the Florence Regional Office for review. If you have any questions, please contact me at (502) 573-3382.

Sincerely,

Gerald **Slucher**, Supervisor Source Testing Section Technical Services Branch

Gerald H. Alasker

GHS/mlp

cc: Edd Frazier

W. A. Clements

Florence Regional Office

bee: File: ID# 21-077-00018

GALSTLEAF

Facility Gallatin Steel

Source Type Electric Arc Furnace

Performed By Ambient Air Services Req. by E. Frazier Rvwed. By Slucher

Date Performed 5/4/2000 Received 5/4/00 Reviewed 6/15/00

PARTICULATE

	Run #1	Run #2	Run #3	
Ср	0.84	0.84	0.84	
Theta,min.	252	252	252	
Asl,ft2	201.062	201.062	201.062	
Tsl,degF	132.3	135	119.3	
Ps1, in.Hg.	29.8	29.85	29.87	
DELP1sqrt	1.3231	1.3321	1.3087	
As2,ft2	78.54	78.54	78.54	
Ts2,degF	168.9	106.9	98.4	
Ps2,in.Hg.	29.88	29.89	29.89	
DELP2sqrt	0.3231	0.2778	0.307	
As3,ft2	78.54	78.54	78.54	
Ts3,degF	469.1	478.7	356.9	
Ps3,in.Hg.	29.68	29.63	29.57	
DELP3sqrt	1.119	1.1309	1.1406	
Asout, ft2	12069.79	12069.79	12069.79	
Gamma	1	1	1	
Ts,degF	0	151.4	151.4	
Tm,degF	85.6	89	86	
Ps,in.Hg.	30.03	30	30.03	
Pbar,in.Hg.	30.03	30	30.03	
Vlc,ml.	9	13.4	12.5	
Vm.ft3.	31.4	31.79	31.196	
DELH, in. H2O	1.5	1.5	1.5	
C02%	0	0	0	
02%	20.9	20.9	20.9	
CO%	0	0	0	
N2%	79.1	79.1	79.1	
Vwstd,ft3	0.4239	0.63114	0.58875	
Vmstd, ft3.	30.5985857	30.7561352	30.3775214	
Bws	0.01366428	0.02010815	0.01901262	
Md	28.836	28.836	28.836	
Ms	28.6879338	28.6181081	28.6299792	
vs1,ft/sec	79.0861386	79.8357274	77.3496481	
vs2,ft/sec	19.8738692	16.2403975	17.8086996	
vs3,ft/sec	83.9410382	85,4468251	80.4592981	
Q1std, dscf/hr.	50130616.8	50130979.1	49975464.6	
Q2std, dscf/hr.	4646976.42	4186571.79	4665953.62	
Q3std,dscf/hr.	13196684	13186914.6	14255628.6	

GALSTLEAF

Qtotal, dscf/mir	1132904.62	1125074.43	1148284.11
vs,out ft/sec	1.56438046	1.55356808	1.58561736
NITROGEN OXIDES	!		
ppm	6.4	3.4	3.4
tons/hr	182	198	199
lb/scf	7.645E-07	4.0616E-07	4.062E-07
lb/hr	51.969304	27.4178724	27.983489
lbs/ton	0.2855456	0.1384741	0.1406205
Avg lbs/ton	0.1882134		
SULFUR DIOXIDE			
ppm	1.1	1.15	2.8
tons/hr	182	198	199
lb/scf	1.83E-07	1.9127E-07	4.657E-07
lb/hr	12.436389	12.9118174	32.086007
lb/ton	0.0683318	0.0652112	0.1612362
Avg lbs/ton	0.0982597		

interoffice MEMORANDUM

to:

Jerry Slucher

from:

Edd Frazier

subject: Stack test review

date:

June 15, 2000

Re: Gallatin Steel 21-077-00018/5

Please review the attached test report. This test was performed on May 4, 2000, and the NOx and SO2 emissions from the baghouse for the EAF were determined. Please inform me of your findings when your review is done.

cc: Dan Gray

attachment

June 14,2000

Mr. Daniel Gray, Manager Permit Review Branch Division for Air Quality 803 Schenkel Lane Frankfort, KY 40601-1403

RE: Air Emissions Performance Testing – May 2000

Gallatin Steel Company, Warsaw, Kentucky I.D. # 079-1380-0018, Permit # F-96-009

Dear Mr. Gray:

Enclosed is the test report prepared by Ambient Air Services, Inc. for the air emissions performance testing conducted at Gallatin Steel Company on May 4, 2000 for SO, and NOx.

Data sheets for the baghouse pressure drops, furnace shell pressures, fan amperes and damper positions are included in Appendix F of the report with the production data. The sulfur content of the charge carbon used during the test was 0.57%.

If you have any questions regarding this report, please feel free to contact me at (606) 567-3141.

Sincerely yours,

Valerie A. Hudson, P.E.

Process Manager - Environmental Systems

alone A. Hudson

EMISSIONS TEST REPORT FOR SULFUR DIOXIDE AND OXIDES OF NITROGEN

GALLATIN STEEL COMPANY GHENT, KENTUCKY (PERMIT NUMBER F-96-009 REVISION 1)

MAY 4,2000

AMBIENT AIR SERVICES, INC. 106 AMBIENT AIR WAY STARKE, FLORIDA 32091 (904) 964-8440 Ambient Air Services, Inc. of Starke, Florida, has completed the testing described in this report for the Gallatin Steel Company, Ghent, Kentucky facility. To the best of our knowledge and abilities we certify that all information, facts and test data are true and correct. Information supplied to AASI for use in this report from Gallatin Steel is perceived to be accurate and is used as such where necessary.

Test Team Leader:

Earl D. Coggins

Project Manager:

Joseph L. Cooksey

1.0 EXECUTIVE SUMMARY

On May 4, 2000 emission tests were conducted at the Gallatin Steel mill located in Warsaw, Kentucky. The emission testing was conducted in accordance with the requirements listed in the Kentucky Department of Environmental Protection, Division of Air Quality, PSD Permit F-96-009. In accordance with Permit F-96-009 (Revision 1) Gallatin Steel was required to test for NO, and SO, emissions. Based on results from testing conducted in the previous 2 years (1998 and 1999) testing was not required for VOC, PM, CO and lead emissions. The results from this test indicate compliance with the NO, and SO, permit limitations. Table 1 summarizes the results of these testing efforts.

TABLE 1

	SUMMARY OF EMIS	SION TEST RESULTS					
GALLA	TIN STEEL COMPANY GHENT, K	- WARSAW, KENTUCK ENTUCKY	Y MILL				
	May 4, 2000						
EMISSION PARAMETER TEST RESULTS PERMIT LIMIT							
EAF/CASTER LMF Baghouse	Sulfur Dioxide(50,)	0.10 lbs/ton 18.6 lbs/hr.	0.20 lbs/ton 40 lbs/hr.				
Emission Point El (01)	Oxides of Nitrogen	0.19 lbs/ton 36.1 lbs/hr .	0.51 lbs/ton 102.0 lbs/hr.				

TABLE OF CONTENTS

			ragi
1.0	EXECUT	ΓΙVE SUMMARY	
2.0	INTROD	DUCTION	1
3.0	PROCES	SS DESCRIPTION	
4.0	EAF/BAG	GHOUSE SO ₂ EMISSIONS SAMPLING	3
	4.2 Re	Methodologyesultsesting Compromises	14
APP	ENDICES		
	APPEND APPEND APPEND APPEND APPEND	DIX A - Sample Calculations - Gaseous Emissions DIX B - Instrument Calibration Data - Baghouse Testing DIX C - Gaseous Emission Data - Baghouse Testing DIX D - Flow Rates DIX E - Field Data Sheets DIX F - Production Data, Test Notification Letter DIX G - Project Participants	

On May 4, 2000 Ambient Air Services, Inc. conducted air emission testing at Gallatin Steel Company's, Ghent, Kentucky mill. Prior to starting these tests, Kentucky Department of Environmental Protection personnel were notified of the testing schedule and provided a testing protocol for review. A copy of the Notification Letter is included in the Appendix section of this report.

Testing methods and time duration are summarized in Table 2.

TABLE 2

GALL/	Y OF TESTING METHOI ATIN STEEL COMPANY HENT, KENTUCKY MAY 4, 2000	DS .
POLLUTANT-SOURCE Sulfur Dioxide - El (01)	EPA REFERENCE METHOD Method 6C	TIME DURATION 3 runs, 3 heats each, 2 compartments tested simultaneously per run
Oxides of Nitrogen - E1 (01)	Method 7E	3 runs, 3 heats each All tests conducted in Compartment 7

3.0 PROCESS DESCRIPTION

At the Ghent, Kentucky facility of Gallatin Steel, the overall objective is to reclaim scrap steel of various forms, refining this material to create rolled steel coils. This type of mill is commonly referred to as a "mini" mill. The particular aspect of this mill examined by these testing efforts were the Electric Arc Furnace (EAF) operations. The EAF by introducing heat primarily in the form of an electric arc provides the energy necessary to melt the scrap steel. Once melted and refined, the furnace is tapped and the product is transferred to the caster/tunnel furnace to be formed into rolled steel. To control the amount of particulate escaping from the melt shop building, during all operations, a baghouse filter system is employed. This system exhausts the furnace directly through fourth hole and canopy hood ducts.

4.0 GASEOUS EMISSION SAMPLING

4.1 Methodology

Continuous instruments were used to measure SO, and NO, emissions. The arc furnace shop sample was obtained from the baghouse. A dilution extraction system was utilized to convey the sample gas to the sulfur dioxide analytical instruments. A fully extractive system was utilized for the NO, instrument. The sample was obtained from a representative middle point among the bag filter banks on the clean side of the baghouse. The sample probe for the NO, instrument was positioned in Compartment 7 of the baghouse for the duration of the test. The probe for the SO, sample was positioned in 6 different compartments, 2 per test run.

Gaseous emission sampling consisted of three runs, each run covering three furnace "heats". Utilizing the flow rates (SCFM) measured during each run, mass emissions were calculated in lbs/hr. and in lbs/ton.

As described in the test protocol, in order to sample a maximum number of compartments per test run, two SO, instruments were utilized. The sample probe for each instrument was positioned in separate compartments. Thus, a total of six compartments were tested for three heats each over the test period. The compartments were selected so that one inner and one outer compartment were sampled during **each** run. The compartments were randomly selected.

Historically all SO, measurements were conducted in Compartment Number 7. This originated at the request of the State of Kentucky. Compartment 7 was selected by the State due to the location of the installed CEMS probe. Through a baghouse consultant, Gallatin learned that the sulfur dioxide

may be different in concentration in different compartments within the baghouse. This stratification is due in part to the design of the duct work and fan configuration.

As can be seen in the results summary, SO, concentrations vary considerably from compartment to compartment within the baghouse. In order to achieve a more statistically valid average, compartments were selected so that one "inner" and one "outer" compartment were sampled per test run. The inner and outer compartments were selected to achieve a cross-sectional average of all compartments based on engineering judgements.

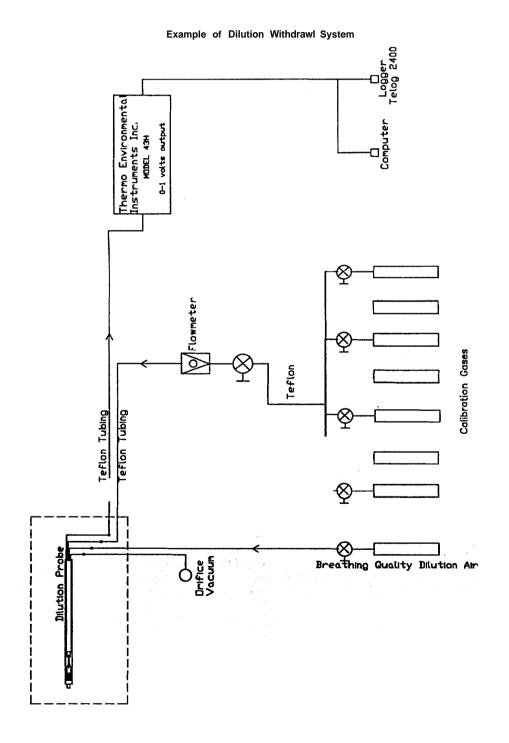
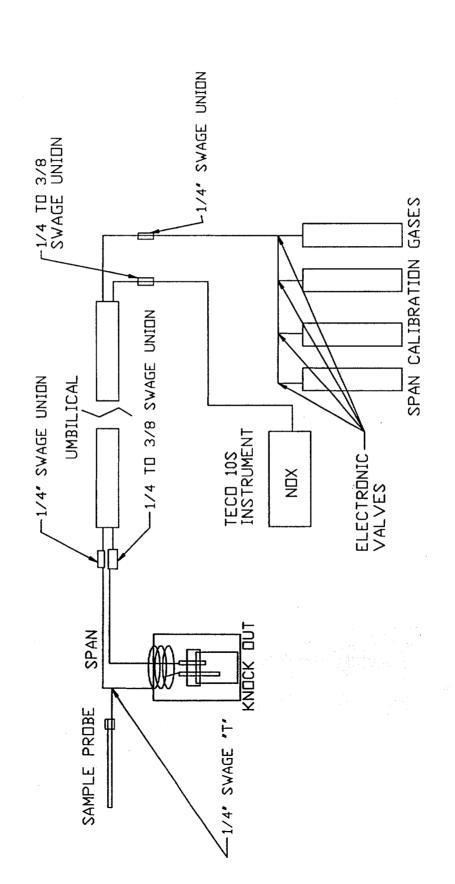



FIGURE 4-2

FULLY EXTRACTIVE WITHDRAWAL SYSTEM - NOX

FIGURE 4-3

Data Recording;

The primary data recorder was a Telog Model 2400 electronic data recorder which is based on microprocessor technology. This recorder interrogates each analytical instrument signal on a **once-every-**one-second basis and for this test was instructed to accumulate 60 of these one-second readings and
store the average into recorder memory. The data bank consists of a series of one minute averages.

In retrieving the data from the computerized database, scaling factors were entered to reflect the
appropriate calibrations which occurred immediately before and after collecting the data set of current
interest. The analysis of SO, gaseous species was carried out as follows:

Sulfur Dioxide

Sulfur Dioxide concentrations were determined by EPA Method 6C. Two Thermo Environmental Instruments (TEI) Model **43H** instruments were used. EPA protocol calibration gases of SO, in air were used at nominal levels of 0, 12.5, and 25.0 ppm (instrument range 0-25 ppm). Calibrations were performed before and after each test run. EPA Method *6C* required correction factors were applied to the data based on the results of the calibrations.

Table 4-1 summarizes the TEI Model 43H versus those required by Method 6C.

TABLE 4-1

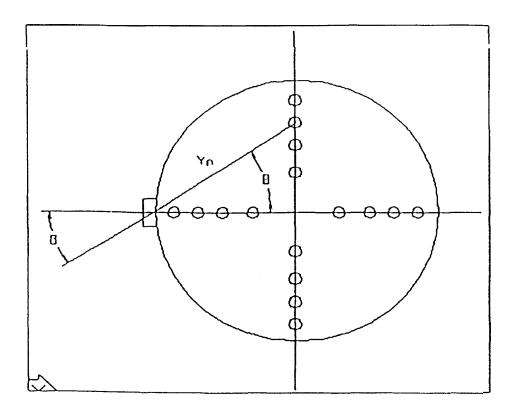
SULFUR DIOXIDE SYSTEM PERFORMANCE SPECIFICATIONS METHOD 6C VS THERMO ENVIRONMENTAL INSTRUMENTS MODEL 43H						
	METHOD 6C	TECO 43H				
Calibration error zero, mid and high gases	Less than *2% span	±1% of full scale				
Sampling system bias for zero, mid and high gases	Less than ±5% span	±1% of full scale				
Interference Check	Less than ±7% of Method 6 result	NO < 3 ppb M-Xylene <2 ppb H2O < 2% of reading				
Calibration Drift	Less than *3% of span over the run period	±1% of full scale				

Oxides of Nitrogen - Oxides of Nitrogen were measured using **EPA** Method **7E**. Table **4-2** relates the required performance specifications of Method **7E** to those presented by the manufacturer of the **TEI** Model **10S** used in these tests. The instrument was calibrated over a nominal range of 0-50 ppm.

Results from the test are expressed in mass per unit time with all NO, converted to the species NO,.

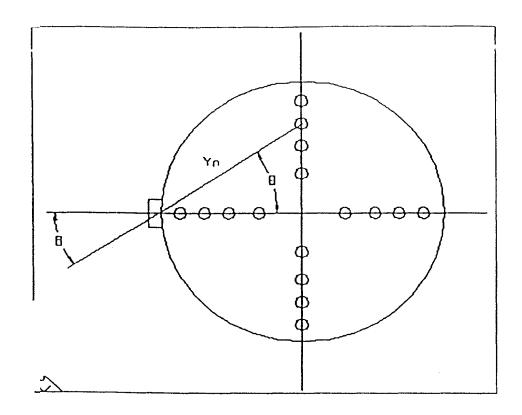
At the beginning and end of each test series zero gas plus two calibration gases were used to perform calibration checks. **At** intermediate periods between the three runs, zero gas plus one calibration gas was used as a calibration check.

TABLE 4-2


	OXIDES OF NITROGEN SYSTEM PERFORMANCE SPECIFICATIONS METHOD 7E VS THERMO ENVIRONMENTAL INSTRUMENTS MODEL 10S						
	METHOD 7E	TECO 10S					
Calibration error zero, mid and high gases	Less than ±2% span	±1% of full scale					
Sampling system bias for zero, mid and high gases	Less than ±5% span	±1% of full scale					
Zero Drift	Less than *3% of span over the run period	Negligible					
Calibration Drift	Less than ±3% of span over the run period	±1% of full scale					

<u>Flow, Moisture, Oxveen and Carbon Dioxide</u> - In order to convert concentration values of parts per million NO, and SO, into pounds per hour it was necessary to determine the effluent flow rate. The effluentflow rate was determined in accordance with EPA Methods **1-4.**

Since the **baghouse** exhaust does not meet the criteria of Method 1, the flow was determined on the **baghouse** inlet. Specifically, there are three inlet ducts to the baghouse. Flow was measured on each of the inlet ducts and added together to get the total flow. **All** fresh air inlets to the compartments tested were blocked during the test. This prevented the influence of dilution air on the gas emission concentrations. Figures 4-4 and 4-5 depict the traverse points used.


In addition to the traverse data, moisture runs were conducted in accordance with EPA Method 4.

Oxygen and carbon dioxide levels were confirmed to be essentially ambient air (0% CO₂, 20.9%0,) using Method 3. A fyrite type analyzer was used for this purpose.

VERTI	CAL TRAVERSE	HORIZONTAL TRAVERSE		
POINT	DIST. FROM WALL	POINT	Θ	Yn
1	6.1"	1	43.0°	131.0"
2	20.2"	2	38.0°	122.0"
3	37.2°	3	31.5°	112.6"
4	62.0°	4	20.0°	101.8"
5	130.0"	5	-20.0°	101.8"
6	154.8"	6	-31.5°	112.6"
7	171.8*	7	-38.0°	122.0"
8	185.6"	8	-43.0°	131.0"

FIGURE 4-4

VERT	CICAL TRAVERSE	HORIZ	HORIZONTAL TRAVERSE		
POINT	DIST. FROM WALL	POINT	θ	Yn	
1	3.84	1	43.1	82.2	
2	12.6	2	38.3	76.5	
3	23.3	3	31.5	70.3	
4	38.76	4	19.5	63.6	
5	81.24	5	-19.5	63.6	
6	96.72	6	-31.5	70.3	
7	107.4	7	-38.3	76.5	
8	116.16	8	-43.1	82.2	

FIGURE 4-5

4.2 Test Results

The results of the instrumental testing for gaseous emissions are as follows:

TABLE 4-3

IDS	SUMMARY OF OXIDES OF NITROGEN EMISSION MEASUREMENTS	OF NITROGEN	EMISSIO	N MEASI	JREMENT	8
	GAL	GALLATIN STEEL COMPANY GHENT, KENTUCKY	COMPANY	2		
	EAF/	EAF/LMF/CASTER BAGHOUSE May 4, 2000	AGHOUS 1	a		
RUN NUMBER	HEAT NUMBERS	PRODUCTION	TEST TIME	OXID	OXIDES OF NITROGEN (as NO,)	ROGEN
		TONS PER HOUR	Minutes	mdd	Lbs/hr.	Lbs/ton
-	A13562, C13217, A13563	182	180	6.4	52.0	0.29
2	A13564, C13219, A13565	198	165	3.4	28.0	0.14
3	A13566, C13221, A13567	199	148	3.4	27.4	0.14
Averages ¹		193	493	4.4	36.1	0.19

Time Weighted Average

Notes: PPM = Parts per Million V.V Lbs/Hr = Pounds per Hour

Lbs/Ton = Pounds per ton cast

All emissions measurements taken in compartment number 7 (per prior agreement/request from State of Kentucky)

TABLE 4-4

SUMMARY OF SULFUR DIOXIDE EMISSION MEASUREMENTS

GALLATIN STEEL COMPANY GHENT, KENTUCKY

EAF/LMF/CASTER BAGHOUSE

May 4, 2000

RUN	HEAT	PRODUCTION			OUTER COMPARTMENT SO ₂		INNER COMPARTMENT SO ₂		AVERAGE	
NUMBER NUMBERS		TONS PER HOUR	Minutes	ppm	Lb/Hr	ppm	Lb/Hr	Lb/Hr	Lb/Ton	
1	A13562, C13217, A13563	182	180	1.3	14.5	0.9	10.5	12.5	0.07	
2	A13564, C13219, A13565	198	165	1.8	20.8	0.5	5.9	13.4	0.07	
3	A13566, C13221, A13567	199	148	2.9	32.2	2.7	30.0	31.1	0.16	
Averages ¹		193	493	2.0	22.2	1.3	14.9	18.6	0.10	

¹ Time Weighted Average

Notes: PPM = Parts per Million V.V

Lb/Hr = Pounds per Hour Lb/Ton = Pounds per ton cast Run 1 =Compartments 2 (outer) and 14 (inner)

Run 2 =Compartments 4 (outer) and 16 (inner)

119.0

Run 3 = Compartments 19 (outer) and 7 (inner)

4.3 Testing Compromises

In the test protocol/notification letter dated March 31,2000 it was proposed to conduct 4 test runs of 3 heats each. The logic was to obtain the most representative average SO, data possible from the baghouse. After discussing this with Mr. Gerald Slucher on site it was decided that three test runs of three heats each would be acceptable.

Three test runs were conducted over a total of nine heats.

A second compromise - approximately 20 minutes prior to the end of the ninth heat the plant encountered a problem. The problem resulted in an undetermined amount of down time. Again, Mr. Slucher was consulted and he suggested that a representative portion of the heat had been sampled and suggested that we end the test run at that point.

APPENDICES

APPENDIX A - Sample Calculations - Gaseous Emissions

APPENDIX B - Instrument Calibration Data - Baghouse Testing

APPENDIX C - Gaseous Emission Data - Baghouse Testing

APPENDIX D - Flow Rates

APPENDIX E - Field Data Sheets

APPENDIX F - Production Data, Test Notification Letter

APPENDIX G - Project Participants

APPENDIX A SAMPLE CALCULATIONS

Gaseous Emissions Sample Calculations

- I. Concentrations as calculated from method 6c
 - **A.** Co, Average of initial and final system calibration bias check responses for the zero gas, ppm.

B. Cm, Average of initial and final system calibration bias check responses for the upscale calibration gas.

C. Cma, Actual concentration of the upscale calibration gas ppm.

D. Cgas, Effluent gas concentration, dry basis, ppm.

A. SO2 Emissions

lb/hr. =
$$\frac{(ppm)*(Mol.Wt.)}{385e6}$$
 * (flowrate)(60 min/hr)

Example: Mol. Wt. = 64, ppm = 2.15, flowrate = 1145162 SCFMD

$$lb/hr SO2 = 24.56$$

IV. Emission Rates (lb/ton)

$$Lb/ton = (lb/hr)/(lb/ton)$$

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 - 8440 (904) 964 - 6675 fax

EXAMPLE CALCULATIONS

Plant

Gallatin Steel

Location

Ghent, Kentucky

Stack

Cold Duct No. 1

Run Date

8-25-99

Run Number

1

1. Stack Pressure, PS

Where:

PB = Barometric Pressure, inches Hg

PG = Static Pressure, stack, inches

H20

PS= PB + (PG ÷ 13.6)

PB= 29.54

PG= -3.2

PS= 29.3

2. Molecular Weight of stack

gas, dry, MD

 $MD = (0.44 \times \%CO2) + (0.32 \times \%O2) + (0.28 \times \%N2) + (0.28 \times \%CO)$

CO2=

0.0

O2=

21.0

N2= CO= 79.0 0.0

MD=

28.84

3. Molecular weight of stack gas, stack conditions, MS

Where:

MD = See equation 2

W = 0.037

FDA =

1 - W

 $MS = (MD \times FDA) + (18 \times W)$

MD=

28.84

FDA= 0.9627039

W=

0.037

MS=

28.44

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida **32091**

(904) 964 - 8440 (904) 964 - 6675 fax

EXAMPLE CALCULATIONS - CONTINUED

Plant Gallatin Steel
Location Ghent, Kentucky
Stack Cold Duct No. 1

Run Date **8-25-99**

Run Number 1

4. Specific Gravity of Gas, relative to air, GS

Where:

MS = See equation 3

GS= MS ÷ 28.99

GS= 0.981

5. Velocity of stack gas, feet

per minute, U

Where: CP = Pitot Coefficient, 0.84

H = Average of the square roots of the velocity heads, in. **H20**

U= 174 × CP × H ×

TS × 29.92 GS × PS TS = Temperature of the stack, degrees **Rankin**

PS = See equation 1

U= **5106.9** FPM

GS = See equation 4

Stack Gas Flow Rate, Stack conditions, cfm, QS

Where:

AS = Cross sectional area of stack at sampling location, sq.ft.

U = See equation 5

QS= U × AS

QS= **1026804** ACFM

APPENDIX B

INSTRUMENT CALIBRATION DATA

- Calibration Gas Certificates
 - 24.9 ppm NO,
 - 54.2 ppm NO,
 - 12.5 ppm SO,
 - 24.01 ppm SO,
- Calibration Drift/Error
 - NO, Compartment 7

 - SO, Inner Compartments SO, Outer Compartments
- Field Test Log

SPECTRA GASES INC.

3434 Route 22 West - Branchburg, NJ 08876 USA Tel (908) 252-9300 • (800) 932-0624 • Fax (908) 252-0811 Shipped From 80 Industrial Drive • Alpha. NJ 08865

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

Gallatin Steel Company

CYLINDER #:

CC109962

SGI ORDER #:

144936

CYLINDER PRES: 2000 PSIG

ITEM#:

CGA OUTLET:

660

P.O.#:

72399-1

CERTIFICATION DATE: 8110199

EXPIRATION DATE:

CERTIFICATION HISTORY

OLIVIII IO/VIIOIVIIIO I OIVI				
	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	8/2/99	24.97 ppm	25 1 ppm	1 %
	8110199	25 13 ppm		
Nitric Oxide	8/2/99	24.79 pprn	24 8 pprn	+I- 1%
	8110/99	24 88 ppm		
NOx			24 9 ppm	Reference Value Only

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	NTRM-81679	CC88366	97 4 ppm
Nitric Oxide	NTRM-81684	CC 79984	98 6 ppm
· .	İ]	

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION DATE(S)
Carbon Monoxide	Hortba VIA-510	570423011	NDIR	7/23/99
Nitric Oxide	Teco 10	10AR-34979-249	Cheml	7/20/99

The first of the first angular and the second section of the section of the second section of the section of the second section of the section

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:	NC:
	FRED PIKULA

DATE:	8110199

SPECTRA GASES INC.

3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax. (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

Gallatin Steel Company

CYLINDER #:

CC110128

SGI ORDER #:

144936

CYLINDER PRES: 2000 PSIG

CGA OUTLET:

660

ITEM#: P.O.#:

72399-1

CERTIFICATION DATE: 8/10/99

EXPIRATION DATE:

8/10/2001

CERTIFICATIONHISTORY				
	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	8/2/99	54.69 ppm	54.7 ppm	+/- 1%
	8/10/99	54 70 ppm		
Nitric Oxide	8/2/99	53 74 ppm	53.9 ppm	+/- 1%
	8110199	54.15 ppm		
NOx			54 2 ppm	Reference Value Only
		1		

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	NTRM-81679	CC88366	97 4 ppm
Nitric Oxide	NTRM-81684	CC79984	98 6 ppm
			t .

INSTRUMENTATION

COMPONENT	COMPONENT MAKE/MODEL		DETECTOR	CALIBRATION
				DATE(S)
Carbon Monoxide	Horiba VIA-510	570423011	NDIR	7123199
Nitric Oxide	Teco 10	10AR-34979-249	Cheml	7120199
	1	1		

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES DO NOT USE THIS STANDARDIF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST: FRED PIKULA

DATE:	8110199
DAIE.	0110199

1 Hamilton Blvd. .odore, AL 36582

P.O. Box 190969

Mobile. AL 36619 Phone: (334) 653-2500 FAX: (334) 653-2530

Certificate of Analysis: E.P.A. Protocol Gas Mixture

Cylinder No:

CC13785

Order No.

382975

Cylinder Pressure:

2000 PSIG

Expiration Date:

9/30/00

Certification Date

3/31/00

Laboratory:

ASG-MOBILE

Reference Standard Information.

<u>Type</u>

Component

Cyl. Number

Concentration

NTRM81661

SULFUR DIOXIDE

CC31252

494.4PPM

<u>Instrumentation:</u>

Instrument/Model/Serial No.

Analytical Principle

SIEMENS ULTRAMAT 5E K3-685

NDIR

Analytical Methodology does not require correction for analytical interferences.

Certified Concentrations:

	<u>Concentration</u> <u>Accuracy</u> <u>Procedure</u>	
<u>Component</u>	Concentration Accuracy Procedure	
I SULFUR DIOXIDE	12.50 PPM +/-1% G1	
NITROGEN	Balance	

Analytical Results:

<u>1st C</u>	omponent:		SULFUR DIC	DXIDE			
1st Ana	alysis Date:	3/24/00					
R	494.0	S	12.50	Z	0.000	Conc	12.51
S	12.50	Z	0.000	R	494.5	Conc	12.50
Z	0.000	R	494.5	S	12.50	Conc	12.50
						AVG:	12.50
2nd Ar	nalysis Date:	3/31/00					
R	494.5	S	12.50	Z	0.000	Conc	12.50
S	12.50	Z	0.000	R	494.5	Conc	12.50
Z	0.000	R	494.5	S	12.50	Conc	12.50
						AVG:	12.50

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed.

Do not use cylinder below 150 psig.

3 Hamilton Blvd. .odore, AL 36582

PO. Box 190969

Mobile, AL 36619 Phone: (334) 653-2500 FAX: (334) 653-2530

Certificate of Analysis: E.P.A. Protocol Gas Mixture

Cylinder No : Cylinder Pressure: Certification Date CC13853 2000 PSIG 3/31/00

Order No.
Expiration Date:
Laboratory:

382975 9/30/00 ASG-MOBILE

Reference Standard Information:

Type NTRM81661 Component SULFUR DIOXIDE Cvl. Number CC31252

Concentration 494.4PPM

Instrumentation:

Instrument/Model/Serial No. SIEMENS ULTRAMAT 5E K3-685 **Analytical** Principle

NDIR

Analytical Methodology does not require correction for analytical interferences.

Certified Concentrations:

Component Concentration Accuracy Procedu	
Component Concentration Accuracy Procedu	
SULFUR DIOXIDE 24.01 PPM +/-1% G1	
NITROGEN Balance	
NITROGEN Balance	

Analytical Results:

1st Co	mponent:	8	SULFUR DIO	UDE			
1st Analy	ysis Date:	3/24/00					
R	494.0	S	24.00	Z	0.000	Conc	24.02
s -	24.00	z –	0.000	R _	494.5	Conc	24.00
z -	0.000	R	494.5	s —	24.00	Conc	24.00
-		_				AVG:	24.01
2nd Anal	ysis Date:	3/31/00					
R	494.5	S	24.00	Z	0.000	Conc	24.00
s -	24.00	z	0.000	R _	494.5	Conc —	24.00
Z -	0.000	R _	494.5	s _	24.00	Conc	24.00
_		_		_		AVG:	24.00

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed.

Do not use cylinder below 150 psig.

Approved for Release

GALLATIN STEEL COMPANY

GHENT, KENTUCKY

SUMMARY OF OXIDES OF NITROGEN INSTRUMENT CALIBRATIONS 4-May-00

		T-May-00				
INSTRUMENT RANGE, PPM	60					
_ CALIBRATION GAS PPM	INITIAL CALIBRATION	END RUN 1	END RUN 2	END RUN 3		
0.0	0.0	0.1	0.0	-0.1		
24.9	24.8	24.5	24.3	25.6		
54.2	54.2	N/A	N/A	54.4		
CALIBRATI	ON ERROR	((INSTRUMENT RESPONSE-CALIBRATION GAS VALUE)/INSTRUMENT RANGE)X100				
0.0	0.0	0.2	0.0	-0.2		
24.9	-0.2	-0.7	-1.0	1.2		
54.2	0.0	#VALUE!	#VALUE!	0.3		
CALIBRAT	ION DRIFT	((FINAL CALIBRATION-INITIAL CALIBRATION)/INSTRUMENT RANGE)X100				
0.0	N/A	0.2	-0.2	-0.2		
24.9	N/A	-0.5	-0.3	2.2		
54.2	N/A	#VALUE!	#VALUE!	#VALUE!		
ZERO BIA	S CHECKS	(SAMPLE SYSTEM-DIRECT)/RANGEX100				
SAMPLE ZERO			BIAS			
0.0			0.0 INITIAL			
-0.1	-0.1	0.0 FINAL		1		
CALIBRATION	BIAS CHECKS					
CALIBRATION GAS, PPM	54.2					
	SAMPLE DIRECT		BIAS			
54.1	54.2	-0.2	INITIAL			
54.4	54.5	-0.2	FINAL	l .		

GALLATIN STEEL COMPANY

GHENT, KENTUCKY

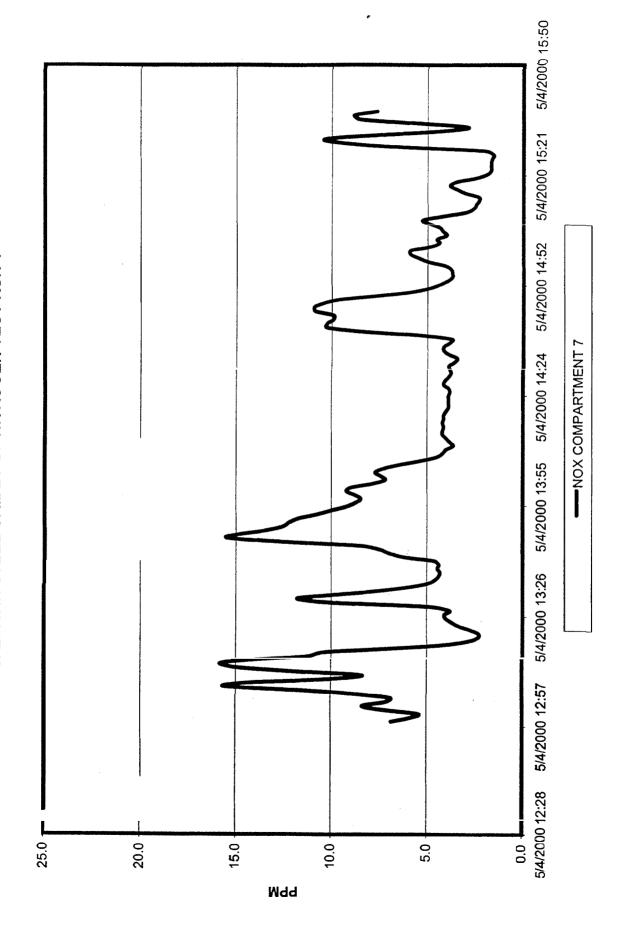
SUMMARY OF SULFUR DIOXIDE CALIBRATIONS 51412000 - INNER COMPARTMENTS

		U-INNER COMI AI	TIMEITIO	
INSTRUMENT RANGE, PPM	25			
CALIBRATION GAS PPM	INITIAL CALIBRATION	END RUN 1	END RUN 2	END RUN 3
0.0	0.1	0.1	0.1	0.1
12.5	12.2	12.3	12.2	12.4
24.0	24.2	N/A	N/A	23.9
CALIBRATI	ON ERROR	((INSTRUMENT RESPON	NSE-CALIBRATION GAS VALU	JE)/INSTRUMENT RANGE)X100
0.0	0.4	0.4	0.4	0.3
12.5	-1.2	-0.8	-1.2	-0.4
24.0	0.8	#VALUE!	#VALUE!	-0.4
_ ,,,				
CALIBRAT	ION DRIFT	((FINAL CALIBRATIO	ON - INITIAL CALIBRATION)/II	NSTRUMENT RANGE)X100
0.0	N/A	0.0	0.0	-0.1
12.5	N/A	0.4	-0.4	0.8
24.0	N/A	#VALUE!	#VALUE!	#VALUE!
24		77 77 120 12.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,, v, (20 E.
ZERO BIA	S CHECKS	(SAMF	PLE SYSTEM-DIRECT)/F	RANGEX100
SAMPLE ZERO	DIRECT ZERO	,	BIAS	
N/A	N/A	#VALUE!	INITIAL	DILUTION PROBE
N/A	N/A	#VALUE!	FINAL	USED ALL CAL
CALIBRATION	BIAS CHECKS			GASES INJECTED
CALIBRATION GAS, PPM	N/A			TO PROBE TIP ONLY
SAMPLE	DIRECT		BIAS	
N/A	N/A	#VALUE!	INITIAL	
N/A	N/A.	#VALUE!	FINAL	

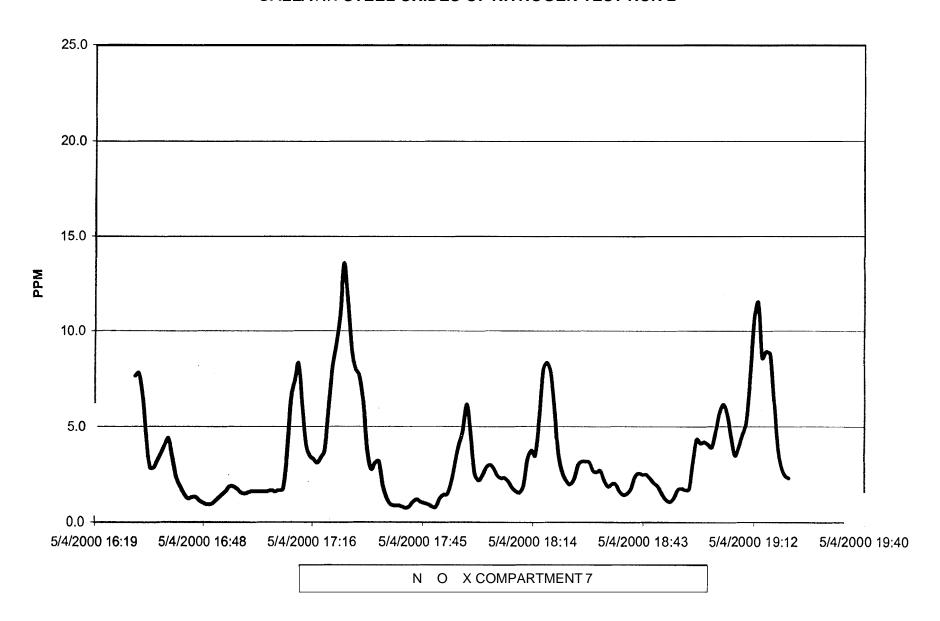
GALLATIN STEEL COMPANY

GHENT, KENTUCKY

SUMMARY OF SULFUR DIOXIDE CALIBRATIONS 5/4/2000 - OUTER COMPARTMENTS

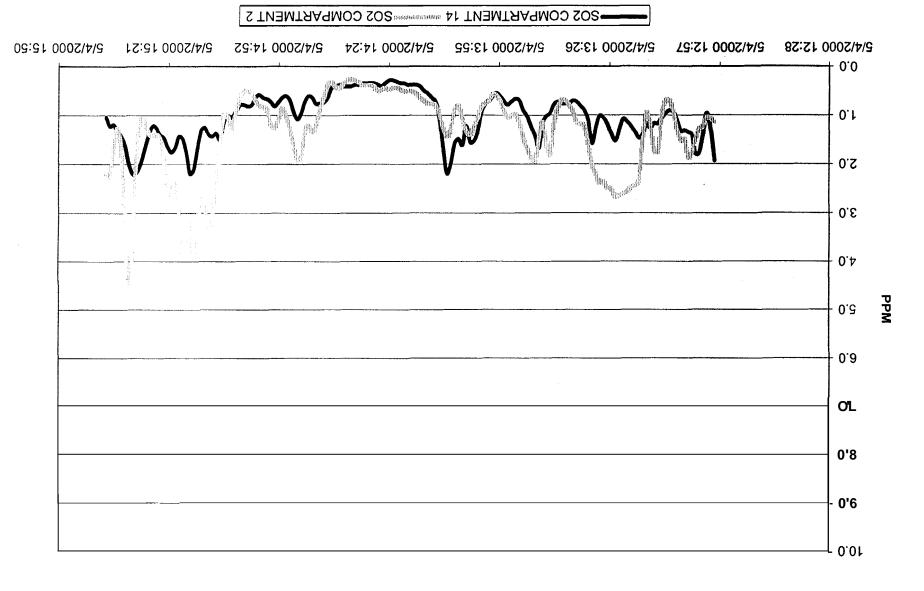

	3/4/2000	OF COMPAR	INILIVIS	
INSTRUMENT RANGE, PPM	30			
CALIBRATION GAS PPM	INITIAL CALIBRATION	END RUN 1	END RUN 2	END RUN 3
0.0	0.0	0.1	0.1	0.0
12.5	12.4	12.7	12.5	13.2
24.0	24.1	N/A	N/A	24.9
CALIBRATI	ON ERROR	((INSTRUMENTRESPONS	E-CALIBRATION GAS VALU	JE)/INSTRUMENT RANGE)X100
0.0	0.0	0.3	0.2	-0.1
12.5	-0.3	0.7	0.0	2.3
24.0	0.3	#VALUE!	#VALUE!	3.0
CALIBRAT	TION DRIFT	((FINAL CALIBRATION	N-INITIAL CALIBRATION)/I	NSTRUMENT RANGE)X100
0.0	N/A	0.3	-0.1	-0.3
12.5	N/A	1.0	-0.7	2.3
24.0	N/A	#VALUE!	#VALUE!	#VALUE!
ZERO BIA	S CHECKS	(SAMPL	.E SYSTEM-DIRECT)/F	RANGEX100
SAMPLE ZERO	DIRECT ZERO		AS	
N/A	N/A	#VALUE!	INITIAL	DILUTION PROBE
NIA	N/A	#VALUE!	FINAL	USED ALL CAL
CALIBRATION	BIAS CHECKS			GASES INJECTED
CALIBRATION GAS, PPM	NIA			TO PROBE TIP ONLY
SAMPLE	DIRECT	BI	AS	
NIA	NIA	#VALUE!	INITIAL	
NIA	NIA	#VALUE!	FINAL	\neg

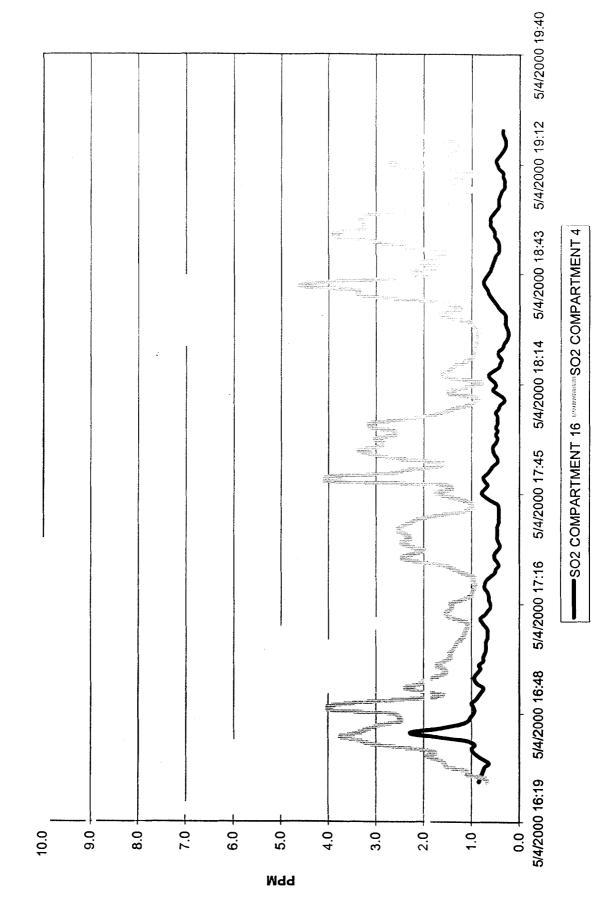
APPENDIX C


GASEOUS EMISSION DATA SO, and NO,

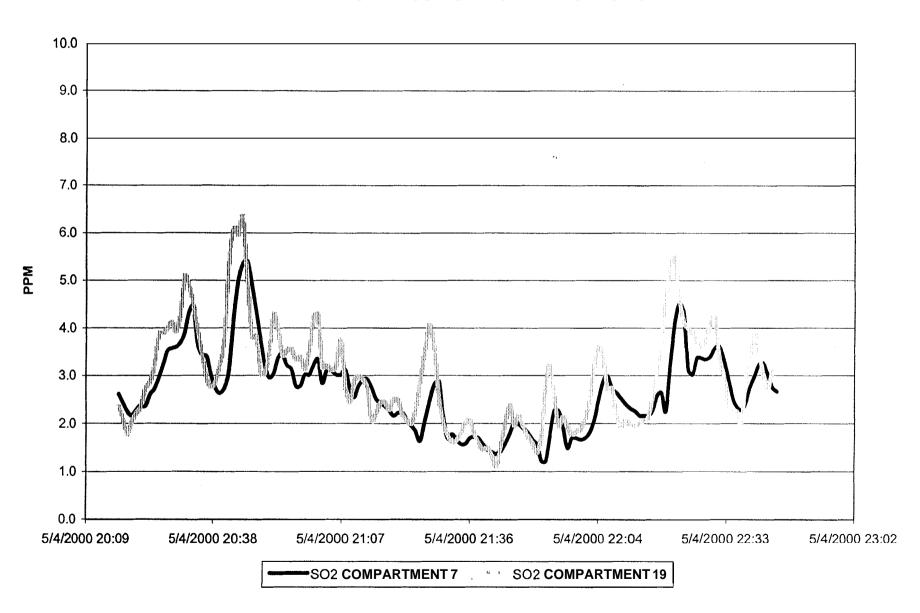
- DATAGRAPHS
 - NO, Run 1, Run 2, Run 3
 - SO, Run 1, Run 2, Run 3
- DATASUMMARY
 - 5/4/0011:00 5/5/0000:03

GALLATIN STEEL OXIDES OF NITROGEN TEST RUN 1


GALLATIN STEEL OXIDES OF NITROGEN TEST RUN 2


5/4/2000 23:02 5/4/2000 22:33 5/4/2000 22:04 ---NOX COMPARTMENT 7 5/4/2000 21:36 5/4/2000 21:0 5/4/2000 20:38 5/4/2000 20:09 25.0 ₁ 20.0 15.0 -10.0 5.0 -Mdd

GALLATIN STEEL OXIDES OF NITROGEN TEST RUN 3


GALLATIN STEEL SULFUR DIOXIDE TEST RUN 1

GALLATIN STEEL SULFUR DIOXIDE TEST RUN 2

GALLATIN STEEL SULFUR DIOXIDE TEST RUN 3

Page 1 of 15

	EMISSION FACTOR	SO2 LBS/TON		-																										••					-										
	EMISSIO	PRODUCTION TONSMR																																											
	SN	502 OUT 8H/28J											٠.					,																											
	MASS EMISSIONS	203 IN																																											
	MA	AH\281 XON																																											
	SCFM	JA101	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250	1134250
: TEST	FLOW MEASURMENTS SCFM	. 10н	225540	225540	225540	225540	225540	225540	225540	225540	225540	226540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540	225540 225540
LATIN STEEL SO2/NOX COMPLIANCE TEST	OW MEAS	corp-s	74919	74919	74919	74919	74919	74919	74919	74919	74919	74040	74919			74919	74919					74919						74919				74919		74919	74919	74919			74919	74919	74919	74919	74919	74919	74919 74919
СОМР		согр-1	833791	833791	833791	833791	633791	833791	633791	833791	633791	197558	833791	633791	633791	633791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833791	833/81	833791	833791	833791	833791	833791	833791	833791	833791	633791	833791	833791	833791
)2/NOX	MVALUES	TUG SOS	2	1.6	1.6	Z :			. . .	Ξ	= :	0.0	2. 1.	1.0	6.0	9.0	0.7	9.0	9.0	0.7	0.8	* 6	2 6	60	7	1.2	0.	6.0	1.7	1.8	3.0	3.2	2.0	1.5	2.6	3.9	£.4	3.2	2.7	2. C	2.2	6 6	5.9	2.5	1.6 1.3
EEL S(CORRECTED PPM VALUES	NI ZOS	=	2	Ţ.	0, 1	0. 6	8.0	0.9	0.8	7.0	5 6	80	0.7	0.7	0.7	0.7	0.7	0.6	0.5	6.5	5.0	, c	60	7	₽	Į.	∓ ;	i 5.	1.2	<u>.</u> .	Ξ :	2.5	5.1	-	1.3	1.7	1.7		E	2 2	: 4	22	2.8	2.4 1.8
TIN ST	<u> </u>	5.51 7 - XON	2.6 28.7				•	2.6	12.6			2.6			12.6 0.5							12.6						12.6		12.6 4.1			12.6							12.6	7.22 22.7				12.6 0.2
ALLA	ECTIONS SO2 OUT	0.0	0.1			1.0		5 5		2.	1.0	5 6	3 6	2	1.0	1.0	1.0	-	-	1.0	0.1		5 6	3 2		1.0				1.0	1.0		5 6		1.0	0.1	1.0	1.0			5 6	•	2.		2. 2.
GAL	CALIBRATION CORRECTION TO SERVICE SERV	2.st	12.3					12.3			•	12.3			0.2 12.3	02 12.3						0.2 12.3	527 50			0.2 12.3		02 12.3		0.2 12.3			12.3								12.3			-	02 12.3 02 12.3
	RATIO		25.1 0.2					25.1								25.1 0										25.1		25.1		25.1 0			1.6	_							28.1				25.1
	CALIBR NOX 7	0.0	0.1	_				. q		_					2.	0.1		2.		_			5 6			٥. د		2. 2		-0.1			5 5								6 4 6 4			-	2. 2.
		COMMENTS	SINS	SIS	CALS	STYS	S S	3 3	3	CALS	SYS	3 6	3 3	SALS	CALS	STAS	STAS	CALS	SALS	CALS	ราช	SALS	3 5	3 5	S S	CALS	CALS	CALS	3 3	CALS	CALS	SALS	S	3 3	STS	CALS	CALS	STYS	SIS S	ราช	S S	3 3	3	CALS	SALS CALS
	ATION PPM	TUO SOR	1	9.	1.7	<u>5</u>	3 :	. ÷	2 2	12	7	= :	3 2	! =	0.	6.0	9.0	2.0	0.7	9.0	0.7	9.5	3 3	3 5	3 2	ţ.	Ξ	ç. ;	2 7	6.1	3.0	33	27	2 =	27	0.4	7	33	5.6	5.0	53	2. 0.	2 %	5.6	2.2
	OBSERVED CONCENTRATION PPM	NI ZOS	<u>.</u>	13	12	Ξ.	Ξ:	5 5	5 0	6.0	6 .0	8 6	2 6	8	9.0	6.0	6.0	9.0	0.7	0.7	9.0	8; 6	:	3 5	5 7	7	7	:	<u>: </u>	1.3	12	12	≛ :	<u>:</u> :	. 5	7	4.8	9.	5 . ;	: :	<u>.</u>	1.8	: 3	5.6	2 5
	OBSERVED	NOX COMB 1	28.9	30.6	40.7	54.7	28.3	5 6	3 8	2.	07	8 3	3 2	3	8	7.0	8	0.5	80	0.7	2	62	2 :		5 5	9	9.6	₹ ;	3 2	\$	3.6	19 0.0	9.5	2 6	25	53.6	54.3	24.2	35	9.8	ន្តិ	24.4	2 22	5.5	00
		TIME	5/4/2000 11:00	5/4/2000 11:01	5/4/2000 11:02	5/4/2000 11:03	5/4/2000 11:04	5/4/2000 11:05	5/4/2000 11:07	5/4/2000 11:06	5/4/2000 11:09	5/4/2000 11:10	544200011:11	5/4/2000 11:13	5/4/2000 11:14	5/4/2000 11:15	5/4/2000 11:18	5/4/2000 11:17	5/4/2000 11:18	5/4/2000 11:19	5/4/2000 11:20	5/4/2000 11:21	5/4/2000 11:22	542000 1123 542000 1124	5/4/2000 11:25	5/4/2000 11:26	5/4/2000 11:27	5/4/2000 11:28	5/4/2000 11:30	5/4/2000 11:31	5/4/2000 11:32	5/4/2000 11:33	5/4/2000 11:34	542000 11:36	5/4/2000 11:37	5/4/2000 11:38	5/4/2000 11:39	5/4/2000 11:40	5/4/2000 11:41	5/4/2000 11:42	5/4/2000 11:43	54/2000 11:44	5/4/2000 11:46	5/4/2000 11:47	5/4/2000 11:48

TIME 54/2000 11:50 54/2000 11:51 54/2000 11:51 54/2000 11:33	1.		COMMENTS	_	_		_														
5/4/2000 11:50 5/4/2000 11:51 5/4/2000 11:52 5/4/2000 11:53	лох сомь	905 NI 205		<u>ه.</u>	543	0.0	č. <u>s</u> r	0.0 8.St	T- XON	NI ZOS	TV0 SO2	COFD-1	COFD-S	10H	JAT0T	иох гвачьк	NE ZOS	502 OUT	PRODUCTK RK/2NOT	XON LBS/TON	205 ГВ2ЦОИ
5/4/2000 11:51 5/4/2000 11:52 5/4/2000 11:53 5/4/2000 11:54	0.0	1.5 2.7	SALS	0.1	25.1	20	12,3	۱.,	0.1	:	2.1	633791	74919	225540	1134250						
5/4/2000 11:53	9. 5	1.5 3.0		Ģ Ģ	S 2	0.2	12.3	0.1 12.6		4 6	2.7	633791	74919	225540	1134250						
5/4/2000 11:54	200	1.7		Ģ	25.1	8	12.3	-		9.	4.2	833791	74919	225540	1134250						
	1.0			6	25.1	0,2	12.3	_		1.7	£.	833791	74919	225540	1134250						
5/4/2000 11:55	0.0			ö	23	7	123	_		9	7 9	633791	74919	225540	1134250						
5/4/2000 11:56	9.0	1.5 0.3	STACE	Ş .	ž į	3 3	5 5	0.1 12.6	89. 6	: :	2.0	833791	74919	225540	1134250						
5/4/2000 11:57	77	1.4		÷ è	e y	3 8	3 5			3 -	- 6	A33791	24919	225540	1134250						
5/4/2000 1138	9 4			7 5		3 2	3 5			- 6	8 8	833791	74919	225540	1134250						
547000 12:00	3 3			Ģ	25.	3	12.3	. 🖵	_	6.0	0.0	633791	74919	225540	1134250						
5/4/2000 12:01	3			Ģ	23.1	07	12.3	0.1 12.8	Ç.	7	0.0	633791	74919	225540	1134250						
5/4/2000 12:02	4.5			٥ <u>.</u>	25.1	07	12.3	-	_	7	0.0	833791	74919	225540	1134250						
5/4/2000 12:03	6,3	1,3 0,2		Ģ	25.1	07	12.3	Ψ.	6.	7	3	197503	74919	225540	1134250						
5/4/2000 12:04	5.1			ą.	52.	7	12.3			2 :		633791	4618	00000	0074010						
5/4/2000 12:06	2.0			Ģ.	23	7 5	123	- ,		2 9	÷ 6	933791	74040	225540	134250						
5/4/2000 12:06	9 , (11	3	Ģ 3	į,	2 2	12.3	0.1 12.6	0 4	? :	3 6	837784	74919	225540	1134250						
7021 0002785		•		9	, ×	3 2	2 5	126		: Ţ	; ;	833791	74919	225540	1134250						
5/4/2000 12:00 5/4/2000 12:00	3 5			9		3 2	123			; <u>;</u>	5	833791	74919	225540	1134250						
5/4/2000 12:10	9 6	12 02	_	ģ	25.1	6	12.3	-		-	0.1	833791	74919	225540	1134250						
5/4/2000 12:11	3.6			ģ	23	70	12.3	Ψ.		7	0.2	833791	74919	225540	1134250						
5/4/2000 12:12	3.7			ģ	×	07	12.3	0.1 12.6	3.7	6.0	0.3	833791	74919	225540	1134250						
5/4/2000 12:13	3.8	1.0		ģ	25.1	0.2	12.3	0.1 12.6	3.8	0.9	6.3	833791	74919	225540	1134250						
5/4/2000 12:14	3.8		_	ģ	28.1	0.2	12.3	Ψ.		0,	0.3	833791	74919	225540	1134250						
\$44/2000 12:15	3.8			Ģ.	28.	62	12,3	- .		Ž :	0.3	833791	74919	225540	1134250						
5/4/2000 12:18	6 .			Ş .	2	2 6	123	0.1 12.6	, t	9 4	, c	833704	74019	225540	1134250						
5/4/2000 12:17	3.7			Ş 3	R	3 5	7 :	- •	, ,	Q W	5 6	433704	74010	225540	134250						
5/4/2000 12:16	9.5 7.		25 25	Ģ ç	2 2	3 6	12.3			e <u>*</u>	5 5	833791	74919	225540	1134250						
S42000 12:18	; ;			ģ	2	6	12.3	0.1 12.6	0.4	:	5.4	197501	74919	225540	1134250						
5/4/2000 12:21	38			Ş	23.1	3	12.3	0.1 12.6	9	1.6	19.0	833791	74919	225540	1134250						
5/4/2000 12:22	3.8			ģ	25.1	7	12.3	0.1 12.6		6.1	7.7	833791	74919	225540	1134250						
5/4/2000 12:23	3.9			Q :	25.1	7	12.3	· .		7 5	23.3	833791	74919	225540	1134230						
5/4/2000 12:24	8.0		3	Ģ 6		3 5	7	0.21 12.0	P C	7 .	9 5	833768	74919	225540	134250						
5/4/2000 12:25	a .			; ¢	ē ;	3 2	3 5	0.1		3 3	7	833791	74919	225540	1134250						
5/4/2000 12:20	9 6			á	ž	5	12.3	0.1 12.6		<u>.</u>	24.0	833791	74919	225540	1134250						
5/4/2000 12:28	3.6	·	_	ģ	18	70	12.3	0.1 12.6	3.9	1.5	24.0	B33791	74919	225540	1134250						
5/4/2000 12:29	0.4		_	Ÿ		07	12.3	0.1 12.6		7	24.0	833791	74919	225540	1134250						
5/4/2000 12:30	3.6			Ģ.	28.1	7	12.3	. .		Ξ 3	21.5	833791	74919	225540	1134250						
5/4/2000 12:31	8	1.0 51		Ģ.	23	7 6	12.3	0.1 12.6	9 0	9 6	16.3	19/5704	74010	07557	0577.11						
5/4/2000 12:32	3.6		100 S	5 4	G X	3 2	5 5	0.1 12.6		; c	5. C	833791	74919	225540	1134250						
542000 12:33	50 E	0.0		, 4	9 2	3 6	12.3	0.1 12.6		6.0	12.4	833791	74919	225540	1134250						
544.CO 000-04	? ?			q	×	7	12.3	0.1 12.6		22	12.1	833791	74919	225540	1134250						
542000 12:36	2.6			Ģ	25.	07	12.3	0.1 12.6		9.3	8.8	187553	74919	225540	1134250						
5/4/2000 12:37	3.8			Ġ.	%	07	12.3	0.1 12.6		11.8	9 .	B33791	74919	225540	1134250						
5/4/2000 12:38	3.7			ģ		7	12.3	- .		12.3	7.7	633791	74919	225540	1134250						
5/4/2000 12:39	3.7			Ģ.	ĸ.	07	12.3	0.1 12.6		12.4	<u>, , , , , , , , , , , , , , , , , , , </u>	833791	74919	040077	0624011						
5/4/2000 12:40	3.9	12.6	3	9 6	25.4	2 2	5.25	0.1 12.6	<u> </u>	8.21 8.81	ē 1	833791	74919	225540	1134250						
5/4/2000 12:42	. 7			ó		7	12.3	0.1 12.6	•	5.7	2	B33791	74919	225540	1134250						
5/4/2000 12:43	3.9	3.3	3	Ą	25	07	12.3	_	_	3,3	0.1	833791	74919	225540	1134250						
5/4/2000 12:44	0,4		SJAS CALS	Ģ		07	12.3	0.1 12.6	_	18.1	9.0	833791	74919	225540	1134250						

				ı	CALIBRA	TION COR	RECTIONS I	200	OTED DES	/ALUEO	T	NA/ NAE A CU	DMENTOO	OFM.		ASS EMISSIO	ONIC	ENAI	SSION FAC	TOP
	OBSERVE	D CONCENTI	RATION PPM		NOX 7	S02 N	SO2 OUT	CORRE	CTED PPM	VALUES	FLC	W MEASU	IRMENTSS	CFM	IVIA	ASS EMISSIC	JNS	EIVII	SSION FAC	TOR
TIME	NOX COMP 7	\$02 N	SO2 OUT	COMMENTS	n.0 24.9	12.5	12.5	NOX - 7	N 205	SO2 BUT	COLD-1	COLD-2	НОТ	TOTAL	NOX LBS/HR	SO2 IN LBS/HR	SO2 OUT LBS/HR	PRODUCTION TONS/HR	NOX LBS/TON	SO2 LBS/TON
5/4/2000 13:40	4.4	0.7	0.9	RUN1	4.1 25.1	0.2 12.3		4.4	0.6	0.8	833791	74919	225540	1134250	35.7	6.7	8.6	182	0.20 0.21	0.04 0.05
5/4/2000 13:41 5/4/2000 13:42	4.8 8.2	0.8 1.0	1.2 1.8	RUN 1 RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3	- 1	4.6 6.2	0.7 0.8	1.1 1.7	833791 833791	74919 74919	225540 225540	1134250 1134250	37.8 50.4	7.4 9.5	12.5 19.4	182 182	0.21	0.08
5/4/2000 13:42	7.0	1.0	1.8	RUN1	-0.1 25.1	0.2 12.3		7.0	0.9	1.5	833791	74919	225540	1134250	56.5	10.2	17.2	182	0.31	0.08
5/4/2000 13:44	7.5	1.2	1.1	RUN 1	-0.1 25.1	0.2 12.3	0.1 12.6	7.5	1.1	1.0	833791	74919	225540	1134250	60.6	11.9	11.8	182	0.33	0.07
5/4/2000 13:45	8.5	1.7	1.5	RUN 1	-0.1 25.1	0.2 12.3		8.4	1.8	1.4	833791	74919	225540	1134250	68.7	17.7	15.4	182 182	0.38 0.57	0.09 0.10
5/4/2000 13:46 5/4/2000 13:47	12.7 15.4	1.4 1.2	1.9 1.9	RUN 1 RUN 1	-0.1 25.1 -0.1 25,1	0.2 12.3 0.2 12.3		12.7 15.4	1.3 1.1	1.8 1.8	833791 833791	74919 74919	225540 225540	1134250 1134250	103.1 124.9	15.0 12.5	20.8 20.1	182	0.57	0.09
5/4/2000 13:48	14.8	1.0	1.7	RUN 1	-0.1 25.1	0.2 12.3		14.7	0.9	1.6	833791	74919	225540	1134250	119.9	10.2	18.0	182	0.66	0.08
5/4/2000 13:49	13.4	0.9	1.5	RUN 1	-0.1 25.1	0.2 12.3	0.1 12.6	13,4	0.8	1,4	833791	74919	225540	1134250	108.7	8.8	15.8	182	0.60	0.07
5/4/2000 13:50	12.6	0.7	1.1	RUN 1	-0.1 25.1	0.2 12.3		12.5	0.6	1.0	833791	74919	225540	1134250	101.6	5.4	11.8	182	0,56 0.54	0.05
5/4/2000 13:51	12.2	0.7	1.0	RUN1	-0.1 25.1	0.2 12.3	0.1 12.6 0.1 12.6	12.2 11.7	0,5 0.6	0.9 0.9	833791 833791	74919 74919	225540 225540	1134250 1134250	99,1 95.0	6.1 6.7	10.0 10.4	182 182	0.54	0.04 0.05
5/4/2000 13:52 5/4/2000 13:53	11.7 10.6	0.7 0.6	1.0 1.0	RUN 1 RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3	***	10.8	0.5	1.0	833791	74919	225540	1134250	87.4	7.4	10.7	182	0.48	0.05
5/4/2000 13:54	10.0	0.7	0.9	RUN 1	-0,1 25,1	0.2 12.3		10.0	0,8	0.8	833791	74919	225540	1134250	81.4	6.4	8.9	182	0.45	0.04
5/4/2000 13:55	9.2	0.8	0.7	RUN 1	-0.1 25,1	0.2 12.3		9.2	0.5	0.8	833791	74919	225540	1134250	74.8	5.4	6.8	182	0,41	0.03
5/4/2000 13:56	8.7	0.6	0.8	RUN 1	-0.1 25.1	0.2 12.3	0.1 12.6	6.7	0.4	0,5 0,5	833791	74919 74919	225540 225540	1134250 1134250	70.7 68.7	4.7 5.4	5.7 5.3	182 182	0.39 0.38	0.03 0.03
5/4/2000 13:57 5/4/2000 13:58	8.5 6.8	0.8 0.7	0.8 0.7	RUN 1 RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		8.4 8.8	0.5 0.6	0.8	833791 833791	74919 74919	225540	1134250	71.2	6.4	5.3 6.8	182	0.39	0.04
5/4/2000 13:59	9.2	0.8	0.6	RUN 1	-0.1 25.1	0.2 12.3		9.2	0.6	0.7	833791	74919	225540	1134250	74.8	7.1	7.5	182	0.41	0.04
5/4/2000 14:00	9.0	0.9	8.0	RUN 1	-0.1 25.1	0.2 12.3	0.1 12.6	8.9	0.8	0.7	833791	74919	225540	1134250	72.7	9.1	8.2	182	0.40	0.05
5/4/2000 14:01	7.9	1,3	1.0	RUN 1	-0.1 25.1	0.2 12.3		7.9	1.2	1.0	833791	74919	225540	1134250	64.1	13.6	10.7	182 182	0.35 0.32	0.07 0.08
5/4/2000 14:02 5/4/2000 14:03	7.2	1.5 1.5	1.2 1.4	RUN 1 RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		7.2 7.4	1,4 1.4	1.1 1.3	833791 833791	74919 74919	225540 225540	1134250 1134250	58.5 60.1	16.0 16.3	12.9 14.7	182	0.32	0.00
5/4/2000 14:04	7.7	1.2	1.3	RUN 1	-0.1 25.1	0.2 12.3		7.7	1.1	1.2	833791	74919	225540	1134250	62.6	12.6	14.0	182	0.34	0.07
5/4/2000 14:05	7.3	1.6	1.0	RUN1	-0.1 25.1	0.2 12.3	0.1 12.6	7.3	1.5	1.0	833791	74919	225540	1134250	59.1	17,0	10.7	182	0,32	0.08
5/4/2000 14:06	8.5	1.5	0.8	RUN 1	-0.1 25.1	0.2 12.3		6.5	1,4	0.7	833791	74919	225540	1134250	52.5	15.7	7.9	182 182	0.29 0.24	0.06 0.07
5/4/2000 14:07 5/4/2000 14:08	5.4 4.5	1.6 2.0	0.9 1.3	RUN1 RUN1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		5.4 4.5	1.5 1.9	0.8 1.2	833791 833791	74919 74919	225540 225540	1134250 1134250	43.8 36.8	16.7 21 5	8.9 13.6	182	0.20	0.10
5/4/2000 14:09	4.2	2.2	1.4	RUN 1	-0.1 25.1	0.2 12.3		4.2	2.1	1.3	833791	74919	225540	1134250	34.2	23.9	15.1	182	0.19	0.11
5/4/2000 14:10	4.0	1.7	1.3	RUN 1	-0.1 25.1	0.2 12.3	0.1 12.6	4.0	1.6	1.2	833791	74919	225540	1134250	32 7	18,4	13.3	182	0.18	0.09
5/4/2000 14:11	3.6	1.0	1.0	RUN 1	-0.1 25.1	0.2 12.3		3.6	0.9	0.9	833791	74919	225540	1134250	29.7	10.5	10.0	182	0.16	0.06
5/4/2000 14:12	3.6	0.7 0.8	0.8 0.8	RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		3.8 4.0	0.6 0.5	0. 7 0.7	833791 833791	74919 74919	225540 225540	1134250 1134250	31.2 32.7	6.7 5.7	7.9 7.5	182 182	0.17 0.18	0.04 0.04
5/4/2000 14:13 5/4/2000 14:14	4.0	0.8	0.8	RUN 1	-0.1 25.1	0.2 12.3		4.2	0.4	0.7	833791	74919	225540	1134250	34.2	4.7	7.5	182	0.19	0.03
5/4/2000 14:15	4.2	0.5	0.7	RUN 1	-0.1 25.1	0.2 12.3		4.2	0.4	0.6	833791	74919	225540	1134250	34.2	4.0	6.8	182	0.19	0.03
5/4/2000 14:16	4.1	0.4	0.8	RUN1	-0.1 25.1	0.2 12.3		4.1	0.3	0.5	833791	74919	225540	1134250	33.7	3.0	6.1	182	0.19	0.02
5/4/2000 14:17	4.2	0.4	0.5	RUN1	-0.1 25.1	0.2 12.3		4.2	0.2	0.4	833791	74919 74919	225540 225540	1134250 1134250	34.2 33.7	2.6 2.6	5.0 4.6	182 182	0.19 0.19	0.02 0.02
5/4/2000 14:18 5/4/2000 14:19	4.1 4.1	0.4 0.4	0.5 0.5	RUN 1 RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		4.1 4.1	0.2 0.2	0.4	833791 833791	74919	225540	1134250	33.7	2.6	4.6	182	0.19	0.02
5/4/2000 14:20	4.0	0.3	0.5	RUN 1	-0.1 25.1	0.2 12.3		4.0	0.2	0.4	833791	74919	225540	1134250	32.7	2.3	4.6	182	0.18	0.02
5/4/2000 14:21	3.9	0.3	0.5	RUN 1	-0.1 25.1	0.2 12.3	0.1 12.6	3.9	0.2	0.4	833791	74919	225540	1134250	31.7	2.3	4.3	182	0.17	0.02
5/4/2000 14:22	3.9	0.3	0.4	RUN1	-0.1 25.1	0.2 12.3		3.9	0.2	0.3	833791	74919	225540	1134250	31.7	1,9	3.9	182	0.17	0.02
5/4/2000 14:23	3.9	0.3 0.3	0.4 0.5	RUN1 RUN1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		3.9 3.9	0.1 0.1	0.3 0.4	833791 833791	74919 74919	225540 225540	1134250 1134250	31.7 31.7	1,6 1.6	3.9 4.3	182 182	0.17 0.17	0.02 0.02
5/4/2000 14:25	3.9 3.8	0.3	0.4	RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3	***	3.6	0.1	0.3	833791	74919	225540	1134250	31.2	2.3	3.9	182	0.17	0.02
5/4/2000 14:26	3.9	0.4	0.5	RUN 1	-0.1 25.1	0.2 12.3		3.9	0.3	0.4	833791	74919	225540	1134250	31.7	3.0	4.3	182	0.17	0.02
5/4/2000 14:27	4.1	0.4	0.5	RUN 1	-0.1 25.1	0.2 12.3		4.1	0.2	0.4	833791	74919	225540	1134250	33.7	2.6	4.6	182	0.19	0.02
5/4/2000 14:28	4.1	0.3	0.4	RUN 1	-0.1 25.1	0.2 12.3		4.1	0.2	0.3	833791	74919 74919	225540 225540	1134250 1134250	33.2 31.7	2.3 2.3	3.5 3.2	182 182	0.18 0.17	0.02 0.02
5/4/2000 14:29 5/4/2000 14:30	3.9 3.6	0.3 0.3	0.4 0.4	RUN 1 RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3 0.2 12.3		3.9 3.8	0.2 0.2	0.3 0.3	833791 833791	74919 74919	225540	1134250	30.7	2.3	3.2	182	0.17	0.02
5/4/2000 14:30	3.6	0.3	0.4	RUN 1	-0.1 25.1 -0.1 25.1	0.2 12.3		3.8	0.2	0.3	833791	74919	225540	1134250	31.2	2.3	3.2	182	0.17	0.02
5/4/2000 14:32	3.9	0.4	0.3	RUN1	-0.1 25.1	0.2 12.3	0.1 12.6	3.9	0.2	0.2	833791	74919	225540	1134250	31.7	2.6	2.5	182	0.17	0.01
5/4/2000 14:33	3.8	0.4	0.3	RUN 1	-0.1 25.1	0.2 12.3		3.6	0.2	0.2	833791	74919	225540	1134250	29.2	2.6	2.1	182	0.15	0.01
5/4/2000 14:34	3.4	0.4	0.3	RUN1	-0.1 25.1	0.2 12.3	0.1 12.6	3.5	0.3	0.2	833791	74919	225540	1134250	28.1	3.0	1.7	182	0.15	0.01

	OBSERVE	D CONCENT	RATION PPM		CALII		FION C		ECTIC SO2 C	_	CORRE	CTED PPM	VALUES	FLC	OW MWUF	RMENTS	SCFM	M	ASS EMISSIC	ONS	EMI	SSION FAC	TOR
TIME	OX COMP 7	H 20%	\$02 OUT	COMMENTS	ł	24.9	80z	12.5	8	22	NOX - 7	SO2 IN	SO2 9UT	COLD-1	COLD-2	нот	TOTAL	MOX LBS/HR	SO2 IN LBS/HR	SO2 OUT LBS/HR	RODUCTION	NOX	02 LBS/TON
5/4/2000 15:30	<u> </u>	2.2		SUN.	-			12.3	0.1		9.3	2.1	1.5	833791	74919	225540	1134250	75.3	23.5	17.2	182	0.41	0.11
5/4/2000 15:30 5/4/2000 15:31	9.3 10.4	2.2	1.6 3.6	RUN1 RUN1		25.1 25.1	0.2	12.3		12.6	10.4	2.1	3.8	833791	74919	225540	1134250	84.4	23.9	42.5	182	0.46	0.18
5/4/2000 15:32	7.9	2.0	4.5	RUN1		25.1	0.2	12.3		12.6	7.9	1.9	4.4	833791	74919	225540	1134250	64.1	21.5	49.7	182	0.35	0.20
5/4/2000 15:33	4.4	1,6	2.9	RUN1		25.1	0.2	12.3		12.6	4.4	1.5	2.8	633791	74919	225540	1134250	35.7	17.0	31.3	182	0.20	0.13
5/4/2000 15:34	2.9	1.4	1.6	RUN1		25.1	0.2	12.3		12.6	2,9	1.3	1.8	833791 833791	74919 74919	225540 225540	1134250 1134250	23.6 44.9	15.0 13.6	17.6 13.3	182 182	0.13 0.25	0.09 0.07
5/4/2000 15:35 5/4/2000 15:36	5.5 6.5	1.3 1.2	1,3 1,7	RUN 1 RUN 1	•	25.1 25.1	0.2	12.3	0.1 0.1	12.6	5.5 6.5	1.2 1.1	1.2 1.6	833791	74919	225540	1134250	69.2	12.2	18.3	182	0.38	0.08
5/4/2000 15:37	6.6	1.2	2.3	RUN1		25.1	0,2	12.3		12.6	8.8	1.1	2.2	833791	74919	225540	1134250	71.7	12.6	24.4	182	0.39	0.10
5/4/2000 15:38	7.6	1.0	2.2	CALS	4.1	25,1	02	12.3	0.1	12.6	R	UN 1 AVERAG	E	1					RUN 1 AVERAG				
5/4/2000 15:39	6.0	0.6	21	CALS	4.1	25. 2	0.1	12.3	0.1	12.6	6.4	0.9	1.3	ı				52.0	10.5	14.5		0.29	0.07
5/4/2000 15:40	6.9	0.7	1,8	CALS		25.2	0.1	12.3		12.6								1			l		
5/4/2000 15:41	7,7	0.7	1d	CALS		25.2	0.1	12.3		12.6	7.7 8.3	0.6	1.4	833791	74919 74919	225540	1134250	l					
5/4/2000 15:42 5/4/2000 15:43	6.5 6.5	1,0 1.1	4.1 1.1	CALS		25.2 25.2	0,1 0,1	12.3		12.6 12.6	6.5	0.9 1.0	4.0 1.0	833791 833791	74919 74919	225540 225540	1134250 1134250				1		
5/4/2000 15:44	9.0	0.8	0J	CALS		25.2	0.1	12.3		12.6	8.9	0.6	0.2	833791	74919	225540	1134250				1		
5/4/2000 15:45	9.0	0.7	0.1	CALS	-0.1	25.2	0.1	12.3	0.1	12.6	9.0	0.6	0.0	833791	74919	225540	1134250				1		
5/4/2000 15:48	7,3	0.7	0.1	CALS		25.2	0,1	12.3		12.6	7.3	0.6	0.0	833791	74919	225540	1134250]					
5/4/2000 15:47	5.1	0.6	1.0	CALS	1	25.2	0,1	12.3		12.6	5.2	0.7	0.9 7,8	833791	74919	225540	1134250						
5/4/2000 15:48 5/4/2000 15:49	3.6 2.6	1.1 0.9	7.0 11.6	CALS		25.2 25.2	0.1 0.1	12.3 12.3	0.1 0.1	12.6 12.6	3.8 2.7	1.0 0.8	7.6 11.5	833791 833791	74919 74919	225540 225540	1134250 1134250						
5/4/2000 15:50	2.1	0.7	12.4	CALS		25.2	0.1	12.3		12.6	2.2	0.6	12.3	633791	74919	225540	1134250]					
5/4/2000 15:51	2.1	0.6	12.6	CALS		25.2	0.1	12.3		12.6	2.2	0.6	12.5	833791	74919	225540	1134250	1				1	
5/4/2000 15:52	2.1	0.6	12.7	ບຣ	-0.1	25.2	0.1	12.3	0.1	12.6	2.2	0.6	12.6	833791	74919	225540	1134250	ł					
5/4/2000 15:53	1,9	0.6	12.7	CALS		25.2	0.1	12.3	0.1	12.6	2.0	0.6	12.6	833791	74919	225540	1134250				1		
5/4/2000 15:54 5/4/2000 15:55	1.6 1.2	0.6 0.6	8.5 2.0	US CALS		25.2 25.2	0.1 0.1	12.3 12.3	0.1 0.1	12.6 12.6	1.6 1.3	0.6 0.6	8.7 1.9	833791 833791	74919 74919	225540 225540	1134250 1134250				1		
5/4/2000 15:56	1.1	0.6	2.0 0.8	₩ W	1	25.2	0.1	12.3	0.1	12.6	1.2	0.5	0.5	833791	74919	225540	1134250				1		
5/4/2000 15:57	12	0.6	0.4	CALS		25.2	0.1	12.3		12.6	1,3	0.5	0.3	833791	74919	225540	1134250						
5/4/2000 15:58	1.4	0.6	0.3	CALS	-0,1	25.2	0.1	12.3	0.1	12.6	1.5	0.5	0.2	833791	74919	225540	1134250				l		
5/4/2000 15:59	1.5	0.6	0.3	W		25.2	0.1	12.3	0.1	12.6	1.6	0.6	0.2	833791	74919	225540	1134250	1				l	
5/4/2000 16:00 5/4/2000 16:01	1.3	0.7 0.3	1.1 1.9	CALS CALS		25.2 25.2	0.1 0.1	12.3	0.1 0.1	12.6 12.6	1.4 1.1	0.6 0.2	1.0 1.8	633791 833791	74919 74919	225540 225540	1134250 1134250				l		
5/4/2000 16:02	0.9	0.1	15	CALS		25.2	0.1	12.3		12.6	1.0	0.0	1.4	833791	74919	225540	1134250				1	1	
5/4/2000 16:03	0.9	0.1	1.6	CALS		25.2	0.1	12.3		12.6	1.0	0.0	1.5	833791	74919	225540	1134250						
5/4/2000 16:04	1,1	4.5	21	CALS	1	25 .2	0.1	12,3	0.1	12.6	1.1	4.6	2.0	633791	74919	225540	1134250				i		
5/4/2000 16:05	1.2	10.5	2.7	CALS		25.2	0.1	12.3		12.6	1.3	10.7	2.8	833791	74919	225540	1134250				1		
5/4/2000 16:06 5/4/2000 16:07	1.4 1.4	11,8 12,1	2,6 2.8	CALS		25.2 25.2	0.1 0.1	12.3 12.3	0.1 0.1	12.6 12.6	1.4	12.1 12.4	2,7 2.7	833791 833791	74919 74919	225540 225540	1134250 1134250				1		
5/4/2000 16:08	1.3	12.1	2.8	CALS		25.2	0.1	12.3		12.6	1.4	12.5	2.7	833791	74919	225540	1134250						
5/4/2000 16:09	1,4	11.7	2,3	CALS		25.2	0.1	12.3		12.6	1.4	11.9	2.2	833791	74919	225540	1134250	l			<u> </u>		
5/4/2000 16:10	1.1	4.6	2,3	CALS		25,2	0.1	12.3		12.6	1.2	4.9	2.2	833791	74919	225540	1134250	1					
5/4/2000 16:11	12.6	1.7	22	W		25.2	0.1	12.3	0.1	12.6	12.5	1.7	2.1	833791	74919	225540	1134250	İ					
5/4/2000 16:12 5/4/2000 16:13	25.1 25.4	1.1 0. 9	1.9 1.7	CALS CALS		25.2 25.2	0.1 0.1	12.3 12.3		12.6	24,8 25.1	1.0 0.9	1.8 1.6	833791 833791	74919 74919	225540 225540	1134250 1134250	}					
5/4/2000 18:14 5/4/2000 18:14	25.4	1.0	1.6	CALS		25.2 25.2	0.1	12.3		12.6	25.2	0.9	1.5	833791	74919	225540	1134250						
5/4/2000 16:15	24.9	1.0	1.5	CALS		25.2	0.1	12.3	0.1	12.6	24,6	0.9	1.4	833791	74919	225540	1134250	!					
5/4/2000 16:16	3.6	1.1	1.5	CALS		25.2	0.1	12.3		12.6	3.7	1.0	1.4	833791	74919	225540	1134250				l		
5/4/2000 16:17	-0.1	1.2	1.4	CALS		25.2	0.1	12,3		12.6	0.0	1.2	1.3	633791	74919	225540	1134250	!			1		
5/4/2000 16:18	-0.1	1,2	1.3	CAL S		25.2	0.1	12.3		12.6	0.0	1.1	1.2	833791	74919 74918	225540 225540	1134250 1134250						
5/4/2000 16:19 5/4/2000 16:20	4.5 3.4	1,1 1,0	12 11	CALS TAT		25.2 25.2	0.1 0.1	12.3 12.3		12.6 12.6	4.5 3.4	1.0 1.0	1.1 1.0	833791 833791	74919 74919	225540	1134250	[
5/4/2000 18:21	2.4	1.0	1,1	CALS		25.2	0.1	12.3		12.6	2.5	1.0	1.0	833791	74919	225540	1134250	Ì					
5/4/2000 16:22	2.3	1.0	1.0	W		25 <i>.2</i>	0.1	12.3	0.1	12.6	2.4	1.0	0.9	833791	74919	225540	1134250				[
			0.6	CALS		25 <i>.</i> 2	0.1	12.3		12.6	2.2	0.9	0.7	833791	74919	225540	1134250	1					
	•	-,-	0.7	CALS	-0.1	25 <i>.</i> 2	0.1	12.3	0.1	12.6	2.2	0.9	0.8	833791	74919	225540	1134250	J			l I		

رة الاستنسان التناسية

	OBSERVE	CONCENT	RATION PPM			-			RECTION	_	CORRE	CTED PPM	VALUES	FLO	OW MEASU	JRMENTSS	CFM	M	ASS EMISSION	ONS	EMI	SSION FAC	TOR
TIME	NOX COMP 7	\$02 IN	SO2 OUT	COMMENTS	0:0	X 7	soz	12.5 2	\$02 (12.5	NOX - 7	SO2 IN	SO2 OUT	COLD-1	COLD-2	нот	TOTAL	NOX LBS/HR	SO2 IN LBS/HR	SO2 DUT LBS/HR	PRODUCTION TONS/HR	NOX	SOZ LBS/TON
5/4/2000 21:55	4.5	2.3	2.8	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	4.5	2.2	2.5	833791	74919	225540	1134250	36.7	24.9	27 8	199	0.18	0.13
5/4/2000 21:56	2.7	2,3	2.0	RUN 3		2 5.3	0.1	12.3	0.1	12.9	2.7	2.2	1.9	833791	74919	225540	1134250	22.2	24.9	21.2	199	0.11	0 12
5/4/2000 21:57	2.2	2.0	2,1	RUN 3	ľ	25.3	0.1	12.3	0.1	12.9	2.2 3.7	1.9	2.0	833791 833791	74919 74919	225540 225540	1134250 1134250	16.2 30.2	21.5 16.1	22.9 20.8	199 199	0.09 0.15	0.11 0.09
5/4/2000 21:58 5/4/2000 21:59	3.7 6.0	1.5 1.7	1.9 1.8	RUN3 RUN3		25.3 25.3	0.1 0.1	12.3 12.3	0.1 0.1	12.9 12.9	6.0	1.4 1.6	1.8 1.7	833791	74919	225540	1134250	48.7	18.5	19 1	199	0.13	0.09
5/4/2000 22:00	8.1	1,7	1.8	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	8.0	1.6	1.7	833791	74919	225540	1134250	65 3	18.5	198	199	0 33	0.10
5/4/2000 22:01	9.0	1.7	1.9	RUN 3	•	25.3	0.1	12.3	0,1	12.9	8.9	1.6	1.8	833791	74919	225540	1134250	72.3	18.1	20.5	199	0.36	0 10
5/4/2000 22.02	5.3	1.7	2.1	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	5.3	1,6	2.0	833791	74919	225540	1134250	42.7	18.5	22.6	199	0 21	0 10
5/4/2000 22'03	2.4	1.8	2.5	RUN 3	-0.1	25,3	0.1	12.3	0.1	12.9	2.4	1.8	2.4	833791	74919	225540	1134250	197	19.8	27.1	199	0.10	0.12
5/4/2000 22:04	1.4	2.1	3.2	RUN 3		25.3	0.1	12.3	0.1 0.1	12.9	1.5	2.0	3.1	833791 833791	74919 74919	225540 225540	1134250 1134250	12.2 10.2	22 .9 27.7	34.8 39.0	199 199	0.06 0.05	0.15 0.17
5/4/2000 22:05 5/4/2000 22:06	1.2	2.5 2.9	3.6 3.4	RUN 3 RUN 3	-0.1 -0.1	25.3 25.3	0.1	12.3 12.3	0.1	12.9	1.3 1.2	2.4 2.8	3.5 3.3	833791 833791	74919	225540	1134250	97	32.1	36.9	199	0.05	0.17
5/4/2000 22:07	1.7	3.0	2.7	RUN 3		25.3	0.1	12.3	0.1	12.9	1.7	3.0	2.6	833791	74919	225540	1134250	14.2	33.5	29 6	199	0.07	0 16
5/4/2000 22:08	5.3	2.7	2.7	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	5.3	2.7	2.6	833791	74919	225540	1134250	432	30 4	29 6	199	0.22	0 15
5/4/2000 22:09	8.3	2,8	2.1	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	8.2	2.6	2.0	833791	74919	225540	1134250	66 8	29 4	22 9	199	0 34	0 13
5/4/2000 22:10	8.2	2.5	1.9	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	8.2	2.5	1,8	833791	74919	225540	1134250	663	280	20 8	199	0.33	0 12
5/4/2000 22 11	7,8	2.4	2.1	RUN 3	•	25.3	0.1	12.3	0.1	12.9	7.6	2.4	2,0	833791	74919	225540	1134250	61.8	26 6	22 2	199	031	0 12
5/4/2000 22 12	7.6	2.3	2.0	RUN 3	-0.1	25.3	0.1	12.3	0.1 0.1	12.9 12.9	7.6 6.6	2.3	1,9 1.9	833791 833791	74919 74919	225540 225540	1134250 1134250	61 8 53 7	25 6 24 9	21 2 21 2	199 199	0.27	0.12
5/4/2000 22:13 5/4/2000 22:14	6.6	2.3 2.2	2.0 2.0	RUN3 RUN3	-0.1 -0.1	25.3 25.3	0.1 0.1	12.3 12.3	0.1	12.9	4.4	2.2 2.1	1.9	833791	74919	225540	1134250	35 7	23 9	21.5	199	0.18	0.12
5/4/2000 22:15	3.1	2.2	2.1	RUN3	-0.1	25.3	0.1	12.3	0.1	12.9	3.1	2.1	2.0	833791	74919	225540	1134250	25.2	23 9	22.2	199	0 13	0 12
5/4/2000 22:16	2.6	2.2	2.1	RUN 3		25.3	0.1	12,3	0.1	12.9	2.7	2.1	2.0	833791	74919	225540	1134250	217	239	2 2 9	199	0 11	0 12
5/4/2000 22:17	2.5	2.3	2.6	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.5	2.2	2.5	833791	74919	225540	1134250	20.7	25 3	27 B	199	0 10	0 13
5/4/2000 22:16	2.4	2.8	3.0	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.5	2.5	2.9	833791	74919	225540	1134250	20.2	28 7	33 1	199	0.10	0.16
5/4/2000 22:19	2.3	2.6	3.6	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.4	2.6	3.5	833791	7 49 19	225540	1134250	19.2	29 4	39.7	199	0.10	0.17
5/4/2000 22:20	2.3	2.3	4.6	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.4	2.2	4.4	833791	74919	225540	1134250	19.2	24 9	50.3	199 199	0.10 0.11	0 19 0 24
5/4/2000 22:21	2.7	3.3	5.3	RUN 3	-0.1	25.3 25.3	0.1	12,3	0.1	12.9 12.9	2.7 3.3	3.3 4.1	5.1 5.3	833791 833791	74919 74919	225540 225540	1134250 1134250	22 2 27.2	36.9 46.7	58.0 59.7	199	0.11	0.27
5/4/2000 22:22 5/4/2000 22:23	3.3	4.1 4.5	5.5 4.6	RUN 3 RUN 3	-0.1 -0.1	25.3	0.1 0.1	12.3 12.3	0.1	12.9	3.3	4,1 4.5	5.5 4.5	833791	74919	225540	1134250	26.7	51.1	50.6	199	0.13	0.26
5/4/2000 22:24	3.1	4.3	4.1	RUN 3	-0.1	25.3	0.1	12.3		12.9	3.1	4.3	4.0	833791	74919	225540	1134250	25.2	48.8	45.0	199	0.13	0.24
5/4/2000 22:25	2,7	3.1	4,0	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.8	3.1	3,9	833791	74919	225540	1134250	22.7	35 2	43.6	199	0.11	0.20
5/4/2000 22:26	2.6	3.0	3.9	RUN3	-0.1	25.3	0.1	12.3	0.1	12.9	2.6	3.0	3.8	833791	74919	225540	1134250	21.2	33.8	42.5	199	0.11	0.19
5/4/2000 2227	2.4	3.4	3.7	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.4	3.3	3.6	833791	74919	225540	1134250	19.7	37.9	40,4	199	0.10	0.20
5/4/2000 22:28	2,1	3.4	3.6	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.2	3.3	3.5	833791	74919	225540	1134250	17.7	37.9	39 0	199	0.09	0.19
5/4/2000 22:29	2.0	3,3	3.7	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.1	3,3	3.6	833791	74919	225540	1134250	16.7	37.5 38.2	40 B 44.6	199 199	0.08	0.20 0.21
5/4/2000 22:30	2.4	3.4	4.1	RUN 3	-0.1	25.3	0.1	12.3 12.3	0.1	12.9	2.5 3.3	3,4 3.6	3.9 4,1	833791 833791	74919 74919	225540 225540	1134250 1134250	20.2 26.7	38.2 40.3	46.0	199	0.10	0.21
5/4/2000 2231 5/4/2000 22:32	3.3 3.5	3.6 3.6	4.2 3.4	RUN 3 RUN 3	-0.1 -0.1	25.3 25.3	0.1	12.3	0.1 0.1	12.9	3.5	3.6	3.3	833791	74919	225540	1134250	28.7	40.6	36.9	199	0.14	0.19
5/4/2000 22:33	3.1	3.3	3.0	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	3.1	3.3	2.9	833791	74919	225540	1134250	25.2	37.5	32 4	199	0 13	0.18
5/4/2000 22:34	2.7	2.9	2.3	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.7	2.9	2.2	833791	74919	225540	1134250	22.2	32 8	25 4	199	0.11	0.15
5/4/2000 22:35	2.5	2.5	2.3	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.5	2.5	2.2	833791	74919	225540	1134250	20.7	28 0	24 7	199	0 10	0 13
5/4/2000 22:36	3.1	2,3	2.2	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	3.1	2.3	2.1	833791	74919	225540	1134250	25 2	26 0	24.0	199	0.13	0 13
5/4/2000 22 37	3.8	2.3	2.0	RUN 3	• • • •	25.3	0.1	12.3	0.1	12.9	3.6	2.2	1.9	833791	74919	225540	1134250	31 2	25.3	215	199	0.16	0 12
5/4/2000 22:38	3.9	2.4	2.9	RUN 3		25.3	0.1	12.3	0.1	12.9	3.9	2.4	2.8	833791	74919	225540	1134250	31 7 34 7	27 0 30 7	31.3 35.9	199 199	0.16 0.17	0.15 0.17
5/4/2000 22.39	4.3	2.8	3.3	RUN 3 RUN 3		25.3 25.3	0.1 0.1	12.3 12.3	0.1 0.1	12.9 12.9	4.3 5.1	2.7 3.0	3.2 3.7	833791 833791	74919 74919	225540 225540	1134250 1134250	34 7 41.2	30 /	35 9 42 2	199	0.17	0.17
5/ 4/2000 2240 5/ 4/2000 2241	5,1 4,2	3.0 3.2	3.9 3.5	RUN 3	-0.1 -0.1	25.3	0.1	12.3	0.1	12.9	5,1 4,2	3.0	3.4	833791	74919	225540	1134250	34.2	36.2	38 3	199	0.17	0.19
5/4/2000 22 42	2.7	3.2	3.0	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.7	3.2	2.9	833791	74919	225540	1134250	22.2	36.5	32 7	199	0.11	0 17
5/4/2000 22:43	2.0	3.0	2.7	RUN 3		25.3	0.1	12.3	0.1	12.9	2.1	3.0	2.6	833791	74919	225540	1134250	16.7	33 6	29 6	199	0.08	0 16
5/4/2000 22:44	22	2.8	3.0	RUN 3	-0.1	25.3	0.1	12.3	0.1	12.9	2.2	2.7	2.9	833791	749 19	225540	1134250	18 2	30 7	33 1	199	0 09	0 16
5/4/2000 22 45	2.8	2.7	3.2	RUN 3		25.3	0 1	423	0.4	42 4	30	2 €	3 /	833791	74919	225540	1134250	23 2	29 7	34 5	199	0 12	0 16
5/4/2000 22:46	4.1	2.7	3.0]	01	25.3	0.1	12.3	0 1	12.9		UN 3 AVERAG		ł					RUN 3 AVERAG		100.0	0.44	0.45
5/4/2000 22:47	4.2	2.3	3.1		0.1	253	0.1	123	0.1	12.9	3.4	2.7	2.9	Į				27.4	30.0	32.2	199.0	0.14	0.16
5/4 /2000 22 48	3.7	2.5	3.5		4.1	25.3	0.1	12.3	0.1	12.9													
5/4/2000 2249	3.4	2.7	4.0	1	01	25.3	0.1	12.3	0.1	12.9				833791	74919	225540	1134250	ì			ı	l	

0.10

OZ EBS/TO

TIME

	OBSERVED	CONCENTE	RATION PPM			IBRA X7	TION		SO2	_	CORRE	CTED PPM	VALUES	FLC	W MEASU	RMENTSS	CFM	MA	ASS EMISSIO	ONS	EMI	SSION FAC	TOR
TIME	NOX COMP 7	\$02 IN	\$02 OUT	COMMENTS	l	24.9	0.0	12.5	0.0	1215	0X 7	X	Scour	CORD-1	COLD-2	HOT	TOTAL	HOX LBS/H7	SOZN	SO2 OUT LBS/HR	PRODUCTION TONSIHR	NOX LBS/TON	\$02 LBS/TON
5/4/2000 23.45	0.9	12.9	1.7		-0.1	25.3	0.1	12.3	0.1	12.9	0.9	13.1	1.6	833791	74919	225540	1134250				ì		
5/4/2000 23:46	0.9	12.4	1.9		-0.1	25.3	0.1	12.3	0.1	12.9	0.9	12.6	1.8	833791	74919	225540	1134250				1	ſ	
5/4/2000 23:47	0.9	12.4	1.8		-0.1	25.3	0.1	12.3	0.1	12.9	0.9	12.6	1.7	833791	74919	225540	1134250				1	ŀ	
5/4/2000 23:48	0.9	12,4	1.7		-0.1	25.3	0.1	12.3	0.1	12,9	1.0	12.6	1.6	833791	74919	225540	1134250				1		
5/4/2000 23:49	1.0	10.3	1.5		-0.1	25.3	0.1	12.3	0.1	12.9	1.1	10.4	1,4	833791	74919	225540	1134250				ł	l	
5/4/2000 23:50	0.4	3.9	0.6		-0.1	25.3	0.1	12.3	0.1	12.9	0.5	3.9	0.6	833791	74919	225540	1134250					1	
5/4/2000 23:51	-0.1	2.4	0.1		-0.1	25.3	0.1	12.3	0.1	12.9	0.0	2.4	0.0	833791	74919	225540	1134250				l	•	
5/4/2000 23:52	-0.1	1.8	0.0		-0.1	25.3	0.1	12.3	0.1	12.9	0.0	1.8	-0.1	833791	74919	225540	1134250				l	1	
5/4/2000 23:53	2.6	0.9	0.1]	-0.1	25,3	0.1	12.3	0.1	12.9	2.7	8.0	-0.1	833791	74919	225540	1134250				1	l	
5/4/2000 23:54	18.2	1,4	-0.1		-0.1	25.3	0.1	12.3	0.1	12.9	17.9	1.4	-0.1	833791	74919	225540	1134250				ł	l	
5/4/2000 23:55	25.4	3.7	-0.1		-0.1	25.3	0.1	12.3	0.1	12.9	2 5.0	3.7	-0.1	833791	74919	225540	1134250				1	ŀ	
5/4/2000 23:56	25.7	3.8	-0.1	1	-0.1	25.3	0.1	12.3	0.1	12.9	25.3	3.8	-0.1	833791	74919	225540	1134250				1	l .	
5/4/2000 23:57	25.9	3.6	-0.1	i	-0.1	25.3	0.1	12.3	0.1	12.9	25.5	3.6	-0.1	833791	74919	225540	1134250				1	Ē	
5/4/2000 23:58	26.4	3.4	0.0		-0.1	25.3	0.1	12.3	0.1	12.9	26.0	3.4	-0.1	833791	74919	225540	1134250]	l	
5/4/2000 23:59	51.7	3.3	-0.1	1	-0.1	25.3	0.1	12.3	0.1	12.9	50.8	3.3	-0.1	833791	74919	225540	1134250				1	1	
5/5/2000 0:00	55.6	3.4	-0.1		-0.1	25.3	0.1	12.3	0.1	12.9	54.8	3.4	-0.1	833791	74919	225540	1134250				l		
5/5/2000 0:01	53.5	3.6	-0.1		-0.1	25.3	0.1	12.3	0.1	12.9	52.6	3.6	-0.1	833791	74919	225540	1134250				i		
5/5/2000 0:02	54.2	3.9	-0,1	1	-0,1	25,3	0.1	12.3	0.1	12.9	53.2	3.9	-0.1	833791	74919	225540	1134250				1	1	
5/5/2000 0:03	54.3	4.0	-0.1		-0.1	25.3	0.1	12.3	0.1	12.9	53.4	4.0	-0.1	833791	74919	225540	1134250						

Gallatin Steel 5-4-00

Com, 7 Chil Nox Ch4 Nox bio.

CBIL injecting 12.5 ppm

CBIS reading 13.7 ppm Ch 2 SOZ comp 14 Comp #12 (h3 outer 0.828 injecting 3ero gas Ch2 inner 0.026 volts

CBIS injecting 3ero gas Ch3 outer 0.026 volts

(h4 bankup Dox 0.0510 volts

Ch4 bankup Dox 0.0510 volts

O835 injecting 24.01 ppm 502 Ch3 outer (comp #2)

0835 injecting 24,01ppm 502 ch3 outer (compte)

0843 injecting 12,5 ppm 502 Ch3 outer (comp 0)2

0851 realing 0.450 v Soz Ch 3 outer (comp 18)2

0852 injecting 24.01ppm soz chz inner (comp Z)

0859 reading 0.858 soz Ch2 inner (comp2)

0901 injecting & 12. Sppm SOz Ch2 inner (comp2)

090 5 reading 0,461 v SOz Ch2 inner (comp2)

interest -0.7672

CH3 slept 29.8558

interest -0.8272

0910 on line

1138 inject 54.2 ppm NOx Ch 1 comp 7 150psi (C110128 \$10-2001)
1141 reading 0.865 volts (54.2)
1143 injecting 24.9 ppm Nox CHI comp 7 1750psi (C109962 8-10-2001)
1144 reading 0.397 volts / (24.8)
1144 injecting 0.00 Nox Ch 1 comp 7
1151 reading 0.003 volts / (0.0)

بنايا

Gallatin Steel 5-4-00

1152 injection 0.0 Ch3 comp14 son bonner injecting 0,0 Ch4 comp 14 NOx backup 1152 (0.1 ppm) reading 0.028v (h3 comp 14 SOz inner 032 1201 1201 reading 0,050 volts Ch 4 comp& NOx backup (O.1 ppm) injecting 54.2 NOx Ch4 comp & NOx backup 1201 1205 reading 1,002 with Chill comp & NOx buck up 1902 injecting 24.4ppm NOX Ch 4 comp @ NOx back up reading 0.535 volts Ch 4 compt Nox backup 1210 injecting 54.2 Nox Chy comp De Nox back up (54.3 ppm) 1215 Change to read 0,920 rolls Chy compte NOx backup injecting 24.9ppm Nox Ch4 compter Noxbackup 1218 Vicading 0,445 volts NOx Ch4 comp & NOx backup (24.7 ppm) 1220 injecting 24.01 ppm SOz Ch3 comptes SOz oriter injecting 24,61 ppm SOZ Ch 4 complet NOx backup 1784 1229 realing 0.785 volts 502 Ch3 comp2 502 outer (24.1 ppm) reading 0.053 rolls 3 ero Chy Nox Backup 1230 injecting 12,5 ppm SOZ Ch3 compz onter 1234 reading 0.416 volts SOz Ch3 comp 2 outer (12.4 ppm) પ્રા^૧ ch 2 Comp 14 inner, ch 3 inter on live 1235 injecting 12,5ppm SOz a:437 1239 yeading 6,436 volts 502 Ch2 Comp14 inner (12.2 ppm) 1244 injecting 24:01 ppm 502 ChZ comp 14 inner ~ 1249 reading 0.845 volts 502 Ch2 comp 14 inner (24.2 ppm) 1250 injecting zero ppm SOZ Chr comp 14 inner Ch2 comp 14 inner (0.2 ppm) 1257 realing 0.020 volts SOZ 1258 on line

END RUN 1 1538

5/4/00 GAL STEEL POST RUN 1 CAL CHECKS

1540 OUT COMP #2 Zero FPM SO, OUT (compz) 0.028 v (0.1ppm) 1546 " NOX OUT (comp2) 0.050V (0.1ppm) 1545 125 ppm 502 OUT (corp 2) 0. 426 1 (12.7ppm) 1553 0 ppm NOx out (carp 2) 0.050 v 1553 -ANA - SOL 0.442 v (24.5 pm) 1559 24.9 ppm NQ In Comp # 14 Zeno soz 0.026 v (0.1) 1602 12.5 SOL 0.442 V (12.3) 1608 NOX comp 7 0.001 v(-0.1) 1618 Zono ppm. Nox 0.405 v (25.3) 16/3 24.9 ppm NOX

ON LINE 1620 - WAIT FOR NEXT HEAT

SLOPE INTOP IV OV

RUN I CHI 62.8687 -0.1429 62.7/-0.14

CHY 29.3875 -0.6527 78.7/-0.653

CHY 62.7783 -0.8253 30.90/-0.8253

CHY 62.7783 -3.0079 59.27/-3.0079

APROX AVG For Run 1

CH 1 6.3 ppm

2 1.1 ppm

3 1.4 ppm

START RUN Z 16:30 Hautl 17:24 Heat Z 18:18 HRat 3 END RUND 19:21

1924 inject 0.0 Ch 3 comp 4 (10s) SOZ 1931 Teadeny 0,063 Ch 3 comp 4 502 outer 0.106 Chy comp 4 NOx outer Back up 1931 inj 12,5 502 ch 3 comp 4 502 outer 1941 reading 12.5ppm SOZ Ch 3 compt SOZ outer 1941 injecting 24,9 ppm NOx Ch4 comp 4 NOx outer backup 1946 reading 24,3 plox ch4 comp4 NOx outer backup 1946 injecting 24.3 PNOx Ch 1 comp 7 NOx compliance Nox 1950 reading 25. OppnNOx Chl comp 7 NOx compliance NOx 1951 injecting Ocoppin NOx Chil Compt Nox compliance NOX 1956 realing = 0.11 ppm NDx Chl comp? NDx compliance 1957 injecting 0,0 ppm Ch2 comp 16 502 inner 13001 reading 0,11 ppm ch 2 comp16 SOz inner 2002 injecting 12. Sppm Ch2 comp 16 JOz inner 2009 seading 12,2 ppm Ch 2 comp 16 SOz inner 2016 online 2017 Start RUN 3 Heat 1 ~ 2115 START HEAT 2

1045 Plant down - End run 3 1050 inject sero gas ch 3 SO2 out comp 19 chy NOxout comp19 1100 ! eading -0.03 ppm ch3 SEZ out comp/9 0.106 ppm chy NOx out comp19 injecting 12,5ppm SO2 (h3 SO2 out comp19 101 reading 13.2 PPM SO2 Ch3 SO2 out comp 19 1112 injecting 24.9 ppm NOx Ch4 NOx out comp 19 116 realing 24.6 ppm NOx Ch4 NOx out conep 19 injecting 24.01ppm SDZ Ch3 SO2 out comp A 1124 reading 25 ppm SDz Ch 3 SDz out comp 19 1724 injecting 54.2 Nox Ch4 out comp19 1129 reading 53.8 ppm ADX Ch4 out comp 19 1129 injecting The ppm SOZ Ch2 Soz in comp 7 1136 reading OD8 ppm SOZ Ch2 SOZ in Comp 7 1137 injecting 24.01 ppm SOz Ch 2 SOz in Comp 7 1142 reading 23,9 ppm SOZ Chi 2 SOZ in Comp 7 142 injecting 12.5 ppm SOz Ch 2 SOz in Comp ? 1148 (eading 12.4 Apr 502 Ch 2 502 in Comp 7 1149 injecting zero ppm NOx (hl (105) in Comp 7 1151 scading -0.14 ppm NOx Ch (105) in Compo 7 1152 injection 24.9 ppm NOx Chl (105) in Comp 7 1156 reading 25.6 ppm NOx Chl (105) in Comp) 1157 injecting S4.2 Nox CLI (105) in Comp 7 1202 reading 54,4 Max Chl (105) in Comp 7 End of Calibrations / EDD OF TEST

APPENDIX D

FLOW RATES EPA METHODS 1-4

GALLATIN STEEL SO, TEST FLOW AVERAGES

Cold Duct 1		ACFM	SCFMD	SCFMW
	R1	952974.	834555.	846113.
	R2	962283.	834826.	851927.
	R3	932043.	<u>831991.</u>	<u>848086.</u>
Avg.		949100.	833791.	848709.
Cold Duct 2		ACFMD	SCFMD	SCFMW
	R1	93541.	77357.	78428.
	R2	76467.	69720.	71148.
	R3	<u>83826.</u>	<u>77680.</u>	<u>79183.</u>
Avg.		84611.	74919.	76253.
Hot Duct		ACFM	SCFMD	SCFMW
	R1	395103.	219690.	222732.
	R2	402313.	219601.	224099.
	R3	<u>378720.</u>	<u>237330.</u>	<u>241921.</u>
Avg.		392045.	225540.	229584.
Total		ACFM	SCFMD	SCFMW
Flow		1,425,756.	1,134,250.	1,154,546.

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 **- 8440** (904) 964 - 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-4-00		
Run Number	1	Volume Metered	31.4
Start Time	0	Meter Temp (Deg R)	545.6
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	12	Condensate Volume	9
Avg of SQRT of V.H.	1.3231	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.80
Pitot Correction Factor	0.84	Stack Temp (Deg R)	592.3

0.0136598
0.9863402
28.84
28.69
0.990
4739.7
952974
939957
834555
846112.73

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-4-00		
Run Number	2	Volume Metered	31.79
Start Time	0	Meter Temp (Deg R)	549.0
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	12	Condensate Volume	13.4
Avg of SQRT of V.H.	1.3321	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	2 9 .85
Pitot Correction Factor	0.84	Stack Temp (Deg R)	595

Moisture in stack gas, volume fraction	0.0200732
Dry Stack Gas, volume fraction	0.9799268
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.62
Specific gravity of Stack Gas Relative to Air	0.987
Excess Air (%)	
Average Stack Velocity, FPM	4786.0
Actual Stack Gas Flow Rate, ACFM	962283
Actual Stack Gas Flow Rate, (Dry) ACFMD	942967
Stack Gas Flow Rate (Standard conditions), SCFMD	834826
Stack Gas Flow Rate (Standard conditions), SCFMW	851926.87

Ambient Air Services, Inc.

Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-4-00		
Run Number	3	Volume Metered	31.196
Start Time	0	Meter Temp (Deg R)	546.0
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	12	Condensate Volume	12.5
Avg of SQRT of V.H.	1.3087	Delta H (inches H20)	1 .5
Meter Correction (Y)	1	Stack Pressure	29.87
Pitot Correction Factor	0.84	Stack Temp (Deg R)	579.3

Moisture in stack gas, volume fraction	0.0189781
Dry Stack Gas, volume fraction	0.9810219
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.63
Specific gravity of Stack Gas Relative to Air	0.988
Excess Air (%)	
Average Stack Velocity, FPM	4635.6
Actual Stack Gas Flow Rate, ACFM	932043
Actual Stack Gas Flow Rate, (Dry) ACFMD	914355
Stack Gas Flow Rate (Standard conditions), SCFMD	831991
Stack Gas Flow Rate (Standard conditions), SCFMW	848086.1

Ambient Air Services, Inc.

Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 2		
Run Date	5-4-00		
Run Number	1	Volume Metered	31.4
Start Time	0	Meter Temp (Deg R)	545.6
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	9
Avg of SQRT of V.H.	0.3231	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.88
Pitot Correction Factor	0.84	Stack Temp (Deg R)	628.9

Moisture in stack gas, volume fraction	0.0136598
Dry Stack Gas, volume fraction	0.9863402
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.69
Specific gravity of Stack Gas Relative to Air	0.990
Excess Air (%)	
Average Stack Velocity, FPM	1191.0
Actual Stack Gas Flow Rate, ACFM	93541
Actual Stack Gas Flow Rate, (Dry) ACFMD	92263
Stack Gas Flow Rate (Standard conditions), SCFMD	77357
Stack Gas Flow Rate (Standard conditions), SCFMW	78428.315

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091 (904) 964 - 8440 (904) 964 - 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 2		
Run Date	5-4-00		
Run Number	2	Volume Metered	31.79
Start Time	0	Meter Temp (Deg R)	549.0
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	13.4
Avg of SQRT of V.H.	0.2778	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.89
Pitot Correction Factor	0.84	Stack Temp (Deg R)	566.9

Moisture in stack gas, volume fraction	0.0200732
Dry Stack Gas, volume fraction	0.9799268
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.62
Specific gravity of Stack Gas Relative to Air	0.987
Excess Air (%)	
Average Stack Velocity, FPM	973.6
Actual Stack Gas Flow Rate, ACFM	76467
Actual Stack Gas Flow Rate, (Dry) ACFMD	74932
Stack Gas Flow Rate (Standard conditions), SCFMD	69720
Stack Gas Flow Rate (Standard conditions), SCFMW	71148.169

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 - 8440 (904) 964 - 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 2		
Run Date	5-4-00		
Run Number	3	Volume Metered	31.196
Start Time	0	Meter Temp (Deg R)	546.0
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	12.5
Avg of SQRT of V.H.	0.3070	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.89
Pitot Correction Factor	0.84	Stack Temp (Deg R)	558.4

Moisture in stack gas, volume fraction	0.0189781
Dry Stack Gas, volume fraction	0.9810219
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.63
Specific gravity of Stack Gas Relative to Air	0.988
Excess Air (%)	
Average Stack Velocity, FPM	1067.3
Actual Stack Gas Flow Rate, ACFM	83826
Actual Stack Gas Flow Rate, (Dry) ACFMD	82235
Stack Gas Flow Rate (Standard conditions), SCFMD	77680
Stack Gas Flow Rate (Standard conditions), SCFMW	79182.742

Ambient Air Services, Inc.

Environmental Consultants

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Hot Duct		
Run Date	5-4-00		
Run Number	1	Volume Metered	31.4
Start Time	0	Meter Temp (Deg R)	545.6
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	9
Avg of SQRT of V.H.	1.1190	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.68
Pitot Correction Factor	0.84	Stack Temp (Deg R)	929.1

Moisture in stack gas, volume fraction	0.0136598
Dry Stack Gas, volume fraction	0.9863402
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.69
Specific gravity of Stack Gas Relative to Air	0.990
Excess Air (%)	
Average Stack Velocity, FPM	5030.6
Actual Stack Gas Flow Rate, ACFM	395103
Actual Stack Gas Flow Rate, (Dry) ACFMD	389706
Stack Gas Flow Rate (Standard conditions), SCFMD	219690
Stack Gas Flow Rate (Standard conditions), SCFMW	222732.48

Ambient Air Services, Inc.

Environmental Consultants

106 Ambient Air Way Starke, Florida 32091 (904) 964 - 8440 (904) 964 - 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Hot Duct		
Run Date	5-4-00		
Run Number	2	Volume Metered	31.79
Start Time	0	Meter Temp (Deg R)	549.0
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 02%	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	13.4
Avg of SQRT of V.H.	1.1309	Delta ti (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.63
Pitot Correction Factor	0.84	Stack Temp (Deg R)	938.7

Moisture in stack gas, volume fraction	0.0200732
Dry Stack Gas, volume fraction	0.9799268
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.62
Specific gravity of Stack Gas Relative to Air	0.987
Excess Air (%)	
Average Stack Velocity, FPM	5122.4
Actual Stack Gas Flow Rate, ACFM	402313
Actual Stack Gas Flow Rate, (Dry) ACFMD	394237
Stack Gas Flow Rate (Standard conditions), SCFMD	219601
Stack Gas Flow Rate (Standard conditions), SCFMW	224099.38

Ambient Air Services, Inc.

Environmental Consultants

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Hot Duct		
Run Date	5-4-00		
Run Number	3	Volume Metered	31.196
Start Time	0	Meter Temp (Deg R)	546.0
Finish Time	0	Orsat C02 %	0
Barometric Pressure	30.03	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	12.5
Avg of SQRT of V.H.	1.1406	Delta H (inches H20)	1.5
Meter Correction (Y)	1	Stack Pressure	29.57
Pitot Correction Factor	0.84	Stack Temp (Deg R)	816.9

Moisture in stack gas, volume fraction	0.0189781
Dry Stack Gas, volume fraction	0.9810219
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.63
Specific gravity of Stack Gas Relative to Air	0.988
Excess Air (%)	
Average Stack Velocity, FPM	4822.0
Actual Stack Gas Flow Rate, ACFM	378720
Actual Stack Gas Flow Rate, (Dry) ACFMD	371533
Stack Gas Flow Rate (Standard conditions), SCFMD	237330
Stack Gas Flow Rate (Standard conditions), SCFMW	241921.22

APPENDIX E

- MOISTURE RUN DATA SHEETS
- FLOW TRAVERSE DATA SHEETS
- PITOT TUBES POST TEST CALIBRATION CHECK
- THERMOCOUPLE POST TEST CALIBRATION CHECK
- GAS METER POST TEST CALIBRATION

20.9 K 01 NO 2000 1 NO 1000 6H. Š Probe Molder PE 20.9 20.920.9 Pitot Tube Yo. Cas Sample System A. Total Conditionte 481EVT Vt. Gitin CK B 750 1 Lesk Checks: Heter Box/Pump Che 3 17 130 Pitot Tube Leak Check: Pretest 31 Infelat Xet 101 705 x ~× ъ 8 0 XII IProcessing Alite Implogens Vole Cain Silical Ce INo. BH n m Xeter Read(hgs: Pre-test 0.004CIX Post-Test(-) OK Post-Test(.) Ok Pyrometer No. Box Operator (Orset Analyzer Filtar No. Orset Bag O Renge PACE OR SA 7 1EST 1D AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS Total Min Pitot Corr. Factor Or 8% Domstreen NA in Mipple Length NA (Effective MA Stack Pressure 1 emperature 10x 0.9c one stack 11m End 25 X0. 10 Z Stace Dismeter: Upstream WA Prox You 3 30,03 THINE OVELCA irze of Sampling Train settle Calibration Tree of Samples in Galla Plant Location Stock neignt de Assumed Resistore Stack Dimensions -72-3 1115 for. Pressure reter Box NO. יסיפקיים כו Samole line Cord Length TIME STORE Stack Area Port Size imans _

7

PORT AND	DISTANCE FROM INSIDE	נוסכג	CAS HETER	STACK	HETER PRES	HETER ORIFICE PRESS. DIFF	STACK CAS	BIGHYS	ראצו	22.52	YACUM
POINT NUMBER	ארנג אאננ (זא)			X Y	כארכי.	אכנחאר	(66)	(30)	TEXP.	(°F)	31441E 1841Y
		5.0	45.9	1	}	(5			67	86	
		0.0	86h 5.57.)	-	1.5		l	5,9	8 / 8	0
		15,0	49.8 531	1	j	5.1	}	١	9		8
		20,6	57.7	l	1	1,5	1	-	0	×77	9
		25,6	62.9	1	1	1.5	1		58	88	7
		30,0	65.7	,)	5/))	25	58	7
		35.0	69.4	(,	5.1	-	ı	25	88	20
		40.0	13:437)	1	5.1	ì	İ	57	28	8

5560 27.5) | | | 203 ¥ V.C K STANKS TO TRAIN () H () Total Condensate 13.4 "Hg Post-Tect Ococo CIN 20,9/20,9/20,9 Vr. Coin S. 4 Probe Holder PET m Pitot Tube No. VETER TEW. Orset 80g NA Ges Sample System 87 σ 9 C ٥٬٥ 420 . , 20 7 Meter Box/Purp OK Pitot Tube Leak Check: Pretest 7 Š Initial. 700 x FINBL LAST IMPINGER γ, ,, ×2× 8 × Box Operator COGOINS و و Impingers vol. Gain 8
Silical Gel No. 84-2 1EXP. (°F) 4 Mat'l Processing Rate Pre-test 0,007cfx Gas Meter Readings: Post-Test(+) OK Post · Test (·) O(L Orset 8ag MA Pyrometer No. SAMPLE BOX TEMP. (PF) Lesk Checks: filter No. fo Range_ DRSAT STACK CAS TEMP. (Of) ACTUAL ĩ. HETER CRIFICE PRESS. DIFF TEST 10 CYCC. AMBIENT AIR SERVICES INCORPORATED STACK VELOCITY READ ENVIRONMENTAL CONSULTANTS Total Xin Pitot Corr. Factor D. 84 0 source Backborles Z CAS METER READJAG (FT3) 7.67 Downstream (Effective AA in Nipple Length Stack Pressure Temperature P. 0 101 40.0 £ 86. Time End Siece Dimensions MOR thomone start 5,0 0.01 71.XE 2 min/pt DISTANCE FROM INSIDE STACK VALL Ê Stack Meight Appless 40 0 LUIDE OVER LOOK inse of Sampling Train 00 Skack Diameter: Upstream Sozzle Calibration NB Cord Length 105 5 2 \$ *SECTED MOISTURE Plant Location reter Box Mo. Bar, Pressure Time Start 10 westown Stack Area Sample Time Port Size 7) ve la ST COL

87 σ Q 00 à کی Q 5 \mathcal{A} 00 9 M Ŋ 102, 608 93.6 3%8 85.8 الخ 1101 35,0 004 25,0 30.0 20,0 150 POINT NUMBER PORT 1840 PRAVERSE

20.9 @ 15sec Y V J. Petret "Hg Post-Tect 0,002 CFX & 4 20.9 20.9 20.9 Total Condensate m (B) 2.5. Pitot Jube No. Probe Holder Vt. Cain 36.884 605.608 00 Ey RITE Pitot Jube Leak Check: Pretest OK Lesk Checks: Meter Box/Purp OK , x20 , x20 MM 700 × 1011101 - C - C 30 8 보 ×2× 0 COSGINS BH-2 Mat'l Processing Rate Gas Heter Readings: Pre-test 0.002 CFH Impingers Vol. Gain FILTER NO. NA Post-Test(.) Ok Orsat 849 VA Post-Test(.) OK Orsat Analyzer Silical Gel No. Pyrometer No. Box Operator Fo Range OR SAT PAYTRONMENTAL CONSULTANTS Total Min Pitot Corr. Factor NA <u>.</u> 2148 5 Stack Pressure Downs tream source Bes in Hipple Length Temperature . (Effective_ 5 now the mestack Time End . ox 15. type of Sampling Train CPB MY MoisTURE 5 X : 14/vje Detresm NA Stack Height Applox 4011 Plan Gallatin Stal 30.03 Plant Location GHEN **لا**ك 001 2108 Stack Diameter: "Up Kottle Calibration inse of Samples Stack Ares Stack Dimensions Assumed Moisture Sample Time reter Box NO. Bar. Pressure Cord Length TIME START 1) westower Port Size Vesther 3216 SALFOR

1831 10

AMBIENT AIR SERVICES INCORPORATED

والمتكافيات

MACUON Series	18A1X ("xg)								
		9	9	9	0	9	9	9	~
DRY CAS	(G ₀)	77	9	83	86	88	90	16	6
LAST	16MP. (°F)	29	59	53	9	53	25	26	55
SAMPLE	(96)		1	1	. [(1	Ì)
STACK CAS	(66)	hS1	147	841	149	05/	75/	148	6 h.)
HETER ORIFICE PRESS. DIFF	ACTUAL	5:	<u>s.</u>	5.	1.5	5.1	<i>j</i> ,5	(,5	5.7
METER PRESS	:כאונ	1)	1	l)	1	1	 j
STACK	AEAD HEAD	1	}	}	1	i	1	١	
CAS XETER	(113)	1095	113.4	117.4	121.3	125.3	1.621	35.0 133.0	40.0 136.884
נוסכג	5	5.0	0.0	6.0	20.02	25.0	30.0	35.0	40.0
DISTANCE	מועכע מערר נוא)								
PORT AND	POINT NUMBER								

AAS Inc. AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS ENVIRONMENTAL CONSULTANTS

PRELIMINARY VELOCITY TRAVERSE

PLANT Gallatin Steel
DATE 5-4-00
LOCATION COLD DUCT NO. 1
STACK I.D. 192,07
BAROMETRIC PRESSURE, In. Hg 30.03
STACK GAUGE PRESSURE, in. H20
OPERATORS (OGGINS PETIET
-,

SCHEMATIC OF TRAVERSE POINT LAYOUT

		· · · · · · · · · · · · · · · · · · ·	
	TRAVERSE	VELOCITY	STACK
	POINT	HEAD	TEMPERATURE
.	NUMBER	(Δp_s) , in. H_20	(T _s), ^o f
5	Static-3.1	Runi	
	1-1	1.69	140
	2	(,)5	138
	3 4	1,75	134
7.6	4	1,75	136
	5	1,80:	137
	6	1,70	138
.			
	2-1	1.85	127
į	2	(1)	128
	3	1.75	127
	4	1.75	158
	5	1.75	176
	6	1,70	128
43	1-1	1.68	120
	2	1.61	119
Stat	ic 3 V 4	1.64	119
-1.	v 4	1,75	118
	5	1,82	118
	6	1.82	118
,	H	1.93	119
	7	1.70	119
	3	1.87	120
	<u> </u>	1.70	120 121 121
	7	1.56	121
	6	1.62	121
	1	1	

TRAVERSE POINT NUMBER Stofic Z.#	VELOCITY HEAD (Aps),in.H ₂ O KUN Z	STACK TEMPERATURE (T _S), OF
1-1	[77	132
	1.75	/33
3	1.75	133
4	2.0	133
5	1.55	126
6	1.30	130
2-1	2.0	137
7	1.9	136
3	2.1	140
¥	1.8	140
5	1.7	140
6	1.75	140
0+12		
PTA-1		
Pitot	pos 0.0 at 3500	d 15 sec
leak ck	peg 0.0 at 3 incl	a 15 sec
		-
	-	
}		
		
		
		
<u> </u>		
L		

AAS Inc. AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS **ENVIRONMENTAL CONSULTANTS**

PRELIMINARY VELOCITY TRAVERSE

PLANT Gallatin Steel
DATE 5-4-00
LOCATION COLD DUCT NO.Z
STACK I.D. 120,0=
BAROMETRIC PRESSURE, in. Hg 30.03
STACK GAUGE PRESSURE, in. H20
OPERATORS COLGINS / PCTIET

SCHEMATIC OF TRAVERSE POINT LAYOUT

TRAVERSE POINT MAD MAD TEMPERATURE (Ts). OF STACK TEMPERATURE (TS). OF STACK TEMPERATURE (TS). OF STACK TEMPERATURE (TS). OF STACK TEMPERATURE (TS). OF STACK TEMPERATURE (TS). OF STACK TEMPERATURE (TS). OF STACK TEMPERATURE (TS). OF STAC			/	
2 0.12 160 3 0.12 161 4 0.12 163 5 0.10 160 6 0.10 165 7 0.09 164 8 0.09 160 2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98	S	POINT NUMBER	MAD (Δρ _S),in.H ₂ 0	TEMPERATURE
2 0.12 160 3 0.12 161 4 0.12 163 5 0.10 160 6 0.10 165 7 0.09 164 8 0.09 160 2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		1-1	0.15	156
5 0.10 160 6 0.10 165 7 0.09 164 8 0.09 160 2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98	Γ	2	t and the second second second second second second second second second second second second second second se	
5 0.10 160 6 0.10 165 7 0.09 164 8 0.09 160 2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		3		17-1
2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		•		163
2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		5		160
2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		4		165
2-1 0.09 174 2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		7	1	164
2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		8	1	160
2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98				
2 0.10 186 3 0.09 187 4 0.12 178 5 0.10 178 6 0.10 170 7 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		2-1	0.09	174
3 0.09 [87] 4 0.12 178 5 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		2		186
S 0.10 178 6 0.10 170 7 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		3	0.09	(87
S 0.10 178 6 0.10 170 1 0.10 168 8 0.09 172 RUN3 0.10 97 1-1 0.09 98		4	f ·	178
RUN3 0.10 97 1-1 0.09 98		2		178
RUN3 0.10 97 1-1 0.09 98		6	•	170
RUN3 0.10 97 1-1 0.09 98		1		168
11-11 0.09 98		8		172
11-11 0.09 98				
1-1 0.09 98 Statis 7 0.10 98		KUN3		97
SH4: 7 1 0 10 1 98 1		1-1	0.09	98
14110 0 0110	S	tatic 2	0,10	98
-1.8 3 0.10 98	1	-1.8 3	0.10	98
-1.8 3 0.10 98 4 0.10 98 5 0.09 99 6 0.08 99 7 7.08 99			0.10	98
5 0.09 99		5	0.09	49
6 0.08 99			0.08	
7 8.08 99			80.0	99
8		<u>8</u>		

VELOCITY	STACK
	TEMPERATURE
	(T_s) , of
	100
_ ' '	1
	702
	104
0.08	108
0.07	109
0.07	109
	108
Transfer	108
0.67	167
0.08	109
0,08	108
D. 03	16/07
0.07	108
	0.00
0.01	107
0 07	108
. 6 69	97
	98
	98
T	9.9
	# 45 g o
	90
	99
	90
OUD.	
1	1
	VELOCITY HEAD (Aps), In. H20 RUN2 O. IL O. 09 O. 08 O. 07 O. 09 O. 09 O. 09 O. 09 O. 10 O. 10 O. 10 O. 10 O. 10

leahele pos 0.0 @34 @15sec neg 0.0 @34 @15sec

AAS Inc.

AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS

PRELIMINARY VELOCITY TRAVERSE

	SECOLI II II II II II II II II II II II II I
PLANT Gallatin Steel DATE 5-4-00 LOCATION HOT BUCT	P. tot 10-2. leakck 0.0 @ 3" @ 15 sec
STACK 1.D. 120.0"	leakck 0.0 @ 311 @ 15 sec
BAROMETRIC PRESSURE, In. Hg 30.03	0.0 @ 3 @ 1.3366
STACK GAUGE PRESSURE, in. H20 - 4.8	
OPERATORS COGGINS PEITLET	SCHEMATIC OF TRAVERSE POINT LAYOUT

_				
	TRAVERSE POINT	VELOCITY HEAD	STACK TEMPERATURE	
	NUMBER	(Aps), In. H20	(T _s), ^O F	
	[-1	1.22	437	
	2	1.20	442	
	* 3	1.49	476	
	4	1.50	478	
	5	1,52	483	
	6	1.40	478	
	7	1,27	463	
	8	1.10	456	!
	2=11	1.20	497	
Ť	46.24	1.30	453	
	3	1.15	468	
	4	1.05	474	
3	î S	1,26	481	
4	م)	1,25	477	1
	7	1,15	172	
4	8	1,10	470	
}	1-1	1.18	329	Rus
	2.	1.31	330]
/	. 3	1.40	328	}
	4	1.40	341	}
	5	1,43	365]
	6	1.47	353	
	1 7	1.49	352	
		1.23	353	
			4	

		11011011001100111	CATOOT
	TRAVERSE POINT	VELOCITY HEAD	STACK TEMPERATURE
5	NUMBER Static SIH	(Aps), In.H20	
	(-1	1.25	455
	3	1,35	478
	3	1,45	485
	4	1.45	493
	2	1,25	487
	6	1,20	488
	7	1.25	479
	8	1.20 .	478
Ì			
	1-1	1,10	419
	2	1,20	458
	3	1,30	478
	4	1.40	478
	5	1.45	481
	6	1.30	485
	7	1.25	479
	8	1,10	478
			,
ωZ	2-1	1,28	358
		1,26	376
	3	1.76	373
	3 4 5	1,26 1,26 1,26 1,22 1,25 1,21 1,20	376 \$73 373 369 368 373 370
	5	1.25	369
		1,21	368
	7	1,20	373
	8	11,20	370

PITOT TUBE CALIBRATION MEASUREMENTS

DATE CALIBRATED 5-16-00	PITOT TUBE	PT 10-1
Picot tube assembly level?	✓Yes	No
Pitot tube openings damaged?	Yes (explain be	No No
$a1 = 1.0^{\circ} (<10^{\circ}), \alpha_2 = (0)$	° (<10°), β ₁	- <u>0.5</u> (<5°),
β ₂ = <u>O,5</u> (<5°)		
Y - 0.5 °, θ - 0.5 °, A	- 1,094 in	(Pa + Pb)
$z - A \sin y - 0.01$ in.; <0.32	/ <1/8 in.	
$w = A \sin \theta = 0.01$ in.; <0.08	/ <1/32 in.	
P _a 0.547 in. P _b 0.547 in.	D _c - 0.375	-
Calibration required?	Yes	No

AAS Inc. AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS

PITOT TUBE CALIBRATION MEASUREMENTS

DATE CALIBRATED	5-16-00	PITOT	TUBE P	T10-2	
Pitot cube assembly lev	el?	<u></u>	Yes		No
Pitot tube openings dan	naged?	_Yes (exp	lain belo	w)	No
$\alpha_1 = \frac{1.0}{1.0}$ (<10°)	· a2 = 1.0	0 (<10	°), β ₁ -	1.0	° (<5°),
$\beta_2 = 0.5^{\circ} (<5^{\circ})$					
Υ - <u>/.</u> ο °, θ	/.o °, A	1.024	_in (Pa + Pb)	
z = A sin y = 0.018	_ in.; <0.32 /	/ <1/8 in.			
w = A sin θ = <u>0.018</u>	in.; <0.08 /	/ <1/32 in	•		
P _a 0.512 in. P _b	0.512 in.	Dc	0.375"		
Calibration required?		Yes	N	О	

AAS Inc. AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS

PITOT TUBE CALIBRATION MEASUREMENTS

DATE CALIBRATED 5-16-00 PITO	OT TUBE PT12-1
Picot tube assembly level?	YesNo
Pitot tube openings damaged?Yes (ex	aplain belov)No
$\alpha_1 = \frac{7.0}{0}$ (<10°), $\alpha_2 = \frac{2.0}{0}$ (<1	10°), $\beta_1 - 1.0^{\circ}$ (<5°),
β ₂ - /,0 ° (<5°)	
Y - 1.0 °, 8 - 1.5 °, A - 1.04	9 in (Pa + Pb)
z - A sin γ - <u>0.018</u> in.; <0.32 / <1/8 in	n.
$w = A \sin \theta = 0.027$ in.; <0.08 / <1/32	in.
P 0.524 in. P 0.525 in. D =	0.375"
Calibration required?Yes	No

AMBIENT AIR SERVICES, INC. 106 Ambient Air Way Starke, Florida

THERMOCOUPLE CALIBRATION FORM

Date Ambient Temperat Barometric Pressu		- S	ime <u>0914</u> ource <u>LA</u> ource <u>LA</u>	B	Stan	idard Thermo	N	ype Ianulacturer erial Numbe	ER	T(3	s Olume		
Technician's Signal		Coggi			Pyro	meter Manuf Serial	acturer 🖒	BZOK		Model Meter Box			
TEMPERATUR	E SOURCE (A)	1 4	Œ		Ambie	riA tus		Boilin	9 H20				
REFERENCE	Actual Reading	3	2°F		S	ent Air		1	2 °F				
THERMOMETER	Corrected Temperature				·								
CALIBRATED TH	IERMOCOUPLE			Percent									_
Serial Number	Location	Indicated Temp.	Difference (B)	(C)	Indicated Temp.	Difference	Percent Diff.	Indicated Temp.	Difference	Percent Diff.	Indicated Temp.	Difference	Percent Diff.
PT12-1	Stack	32	0		83	0		213	i				
NA	Filter			·									
TT3	Impinger	32	0		83	0		217	ı				
3 in	Meter In	32	0		84	1		213	l l				
3+	Meter Out	22	Γ		84	,		214	7				

Comments:

10-2

Calibration Tolerances Stack = 1.5% of value, Filter Box = ± 5.4 °F, Impinger = ± 2 °F, Meter = ± 5.4 °F (40CFR Pt 60, App. A Method 5, and

QA Handbook Section 3.4, Method 5, page 13, Rev. O)

213

214

2

Marinea in Column

Type of calibration system used **(A)**

(B) Reference • **Indicated** = **Difference**

84

84

(ref. temp. °F + 460) - (indicated temp. °F + 460) (reference temp. °F + 460) (C)

Stack

Stack

32

32

0

0

546-00

Time 09/6

POSTTEST DRY GAS METER CALIBRATION DATA (ENGLISH UNITS)

103	ot Hambers.	<u> </u>	Date.	3 10 00	_ 1010101 1	DOX HUITIDOI.		J	
Barometric Pressure:	29.89	_inches Hg.		Dry Gas Mete	r Number:	3	Pretest	Y:	0.99
Plant: Gallatin Stee	el			Location:	Ghent, KY				

Date: 5-16-00

Meter Roy number:

Orifice	Gas v	olume		Tempe	erature				
manomtr	Wet test	Dry gas	Wet test	Dry gas meter			1		
setting	meter	meter	meter	Inlet	 .	Average	Time	Vacuum	Yi
(DH),	(Vw),	(Vd),	(Tw),	(Tdi),	(Tdo),	(Td),	in	setting	
inches H20	cu.ft.	cu.ft.	deg F	deg F	deg F	deg F	minutes	inches Hg	
1.50	11.066	11.362	84.25	107.5	88.0	97.75	14.73	12.0	0.9944
1.50	12.611	12.949	85.25	109.5	89.5	99.50	16.77	12.0	0.9956
1.50	16.631	17.110	85.50	113.0	91.0	102.00	21.06	12.0	0.9977
									1.00

If there is only one thermometer on the dry gas meter, record the temperature under Td

Vw= Gas volume passing through the wet test meter, in cubic feet

Vd= Gas volume passing through the dry gas meter, in cubic feet

Tw= Temperature of the gas in the wet test meter, degrees farenheit

Tdi= Temperature of the inlet gas of the dry gas meter, degrees farenheit

Tdo= Temperature of the outlet gas of the dry gas meter, degrees farenheit

Td= Average temperature of the gas in the dry gs meter, obtained by the average of Tdi and Tdo, degrees farenheit

DH= Pressure differential across orifice, inches H20

Yi= Ratio of accuracy of wet test meter to dry gas meter for each run.

Y= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y plus/minus 0.05Y

Pb= Barometric pressure, inches Mercury

Test numbers

Time= Time of calibration run, in minutes.

APPENDIX F

- PRODUCTION DATA
- TEST NOTIFICATION LETTER

	Run I	Run 1	Run 1		Run 2	Run 2	Run 2	Run 2	Run 3	Run 3	Run 3	Run 3	
				12:55 to 15:55				16:30 to 19:15				20:15 to 22:45	
Date	5/4/00	5/4/00	5/4/00		5/5/00	5/5/00	5/5/00		5/5/00	5/5/00	5/5/00		
Heat Number	A13562	C13217	A13563		A13564	C13219	A13565		A13566	C13221	A13567		_
Start of Heat - Power On (time)	12:52	13:44	14:38		16:32	17:23	18:24		20:16	21:08	22:07		
1st Charge (time)	12:48	13:07	14:11		15:52	16:37	17:40		19:36	20:21	21:46		
2nd Charge (time)	0	0:00	0:00		0:00	0:00	0:00		0:00	0:00	0:00		
Power On Time (min.)	49	47	48		50	48	48		49	47	64		
Tap Time	13:59	14:45	15:37		17:29	18:22	19:17		21:09	22:07	1:24*		
Tap to Tap (minutes)	59	45	51		61	52	55		56	58	196'		_
Total Scrap Weight (pounds)	391800	404000	401300		395700	397400	397900		417700	423500	409300		
Charge Carbon (pounds)	1209	1223	1217		1201	1202	1214		1207	1213	1207		
Charge Lime (pounds)	7611	7825	7617		7617	7615	7603		7611	7406	7603		
Doio Lime (pounds)	2712	2713	2722		2722	2718	2714		2706	2700	2708		Average
Liquid Steel Tons	180.0	185.0	179.7	544.7	181.3	185.0	178.1	544.4	193.5	185.0	184.1	562.6	Melt
Run Time (minutes):				180				165				170	Tons/Hour
Tons per Hour				182				198				199	193
Delays Over 10 Minutes											*Testing	(170 min above	
											ended at	includes	
											22:45		
											which was	20 minutes	ļ
											20 min.	for	
											prior to expected	expected end of heat)	
											end of heat	end of fleat)	
											((Heatwas		
	 										delayed due		_
											to lance		_
											problem)		-

RUN 3. 20 15 20.30 20.45 21:00 21 15 21:30 21 45 22:00 22:15 22:30 22:45	RUN 2: 16:30 16:45 17:00 17:15 17:30 17:45 18:00 18:15 18:30 18:45 19'00 19:15	1255 13-10 13-25 13-40 13-55 14-10 14-25 14-40 14-55 15-10 15-25 15-40 15-55	RUN 1:
127 123 123 120 129 123 121 129 130 123 125	123 123 118 120 117 121 121 121 123 121 120 125	129 118 120 118 132 121 121 123 120 121 118 123 121	MA 1 RUNNING AMPS
100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	10 10 100 100 100 100 100 100 100 100 1	DP14A % OPEN
113 111 107 106 111 111 107 111 114 107	107 107 106 108 107 107 108 107 111 107 106 111	111 102 106 106 113 111 108 111 106 107 106 111 107	MA 2 RUNNING AMPS
100 100 100 100 100 100 99 100 100 100	100 100 98 100 100 99 99 100 100 100	100 100 99 100 100 99 100 100 99 99 100 99	DP148 % OPEN
124 124 124 121 126 124 122 124 130 124 124	124 121	126 116 121 121 128 124 121 124 121 124 121 124 121	MA 3 RUNNING AMPS
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	00 00 00 00 00 00 00 00 00 00 00 00 00
116 118 118 114 118 114 114 118 119 116	114 114 113 114 116 114 116 118 114 114	118 110 114 114 119 118 114 114 113 114 118 116	118 111 WA 4 RUNNING AMPS
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	DP14D % OPEN
118 121 121 116 120 118 118 118 121 116 121	116 116 116 118 116 116 116 121 118 116	121 112 116 116 121 118 116 118 116 118 116 118	112 TEMA S RUNNING AMPS
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	80 DP14E % OPEN
0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	HG 1 RUNNING AMPS
2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DP13A % OPEN
49 45 41 49 45 46 49 42 45	46 45 41 41 45 45 45 47 43 41 46	47 43 41 46 45 45 46 43 42 41 49 45	HG 2 RUNNING AMPS
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	DP13B % OPEN
49 45 43 41 47 43 46 48 42 43	47 43 41 45 44 43 44 47 43 41 46	47 43 41 39 46 43 43 46 42 41 41 47	HG 3 RUNNING AMPS
100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	DP13C % OPEN
11 20 20 20 63 91 91 10 21 20 22	10 20 20 20 91 91 91 11 20 20	31 10 20 20 31 91 91 31 10 20 91 91	DP 1A % OPEN
2 2 1 1 1 1 1 1 2 2	1 1 1 1 1 1 1 1 2 1	1 1 1 2 1 1 2 1 1 1 1 1	DP 2A % OPEN
7 7 7 8 7 7 8 7	8. 8. 7. 8. 7. 7. 8. 7. 8. 7.	7 8 7 7 7 8 7 8 7 7	OP 2 % OPEN
20 95 94 40 10 10 44 20 94 20	20 95 95 95 20 19 20 19 49 95 95	40. 40. 95. 86. 29. 10. 19. 40. 95. 95. 95. 9.	DP 1 % OPEN
21 21 20 66 21 59 21 20 21 20	21 21 21 20 21 29 20 20 20 20 51 21	21 21 21 21 21 21 21 21 21 43 21 21	OP 4 % OPEN
0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	DP 4A % OPEN
000000000	0 0 0 0 0 0 0	00000000000	DP 7A % OPEN
0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	63 63 0 0 0 0 0 0	DP 7C % OPEN
2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2	DP 8 % OPEN
0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	DP 7B % OPEN
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	DP3CLD%OPEN
100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	OP 3 A&B % OPEN
	4 4 4	4 4 4 4 4 4 4 4 4 4	OP 6 % OPEN
13 22 22 22 23 12 13 23 22 22	13 23 23 23 23 12 23 22 12 22 22 22	23 12 22 22 12 23 22 13 23 23 23 12 23	N S & ODEN 23 12 22
2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OP 9 % OPEN
-0.03 -0.05 -0.05 -0.05 -0.09 -0.04 -0.03 -0.04 -0.03 -0.04	-0.03 -0.03	-0.05 0.02 -0.01 -0.02 0.01 -0.03 -0.03	EAF C ROOF PRESSURE PT 2 Inches / 100
-0 1/- 0.0° ; -0.1; -0.0° ; -0.0. ; -0.1; -0.1; -0.1;	-0.13 0.03 0.11 -0.05 -0.06 -0.06 -0.06 -0.09 -0.08 0.04 -0.03	-0.08 -0.13 -0.07 -0.07 -0.15 -0.01 -0.05 -0.08 -0.05 0.02 0.01 -0.03 -0.07	GEAF A ROOF PRESSURE PT 1 Inches /100

Damper Legend

DP1A C Shell water cooled damper

DP2A C Shell slag damper

DP2 A Shell slag damper

DP1 A Shell water cooled damper

DP4 LMF roof

DP4A LMF dilution air

DP7A Ladle tearout

DP7C Ladle drying

DP8 Ladle dump

DP7B Ladle preheat

DP3D/DP3C C Shell canopy

DP3B/DP3A A Shell canopy

DP5 Caster canopy

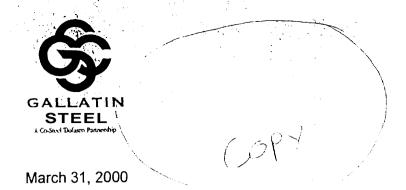
DP9 Tundish deskull

C'L	6.6	S'L	5°L	5'L	らて	5.6	77
ह्मान्य हुन	0.9	5.7	(۳۰۶	S.ŋ	<i>E.</i> 9	€,0	23
2.5	٦٠ع	_ 5،ر	P.L	8.5	ゔ゙゙゙゙	J.S.	77
0,0	7.7	Cracing P.r	C'L	8.Ľ	0.	7.0	17
6.3	7.2	6.3	O.T	O.L	5.7	5'9	70
6.3	5.7	5″)	6.0	, O.L	23	5'9	61
ين	2.0	0.5	5°L.	(Losving	2.7	1.7	18
57	<u>6.0</u>	ه.ع	5.2	C.C.	6.2	9.T	LI
6,7	a.r	e'L.	<i>e.</i> C.	C.C	CL	CLEANING	91
67	5.9	5.9	P. 2)	5.2	<i>5</i> .7	('9	SI
C.L	6.1	0, 厂	E.T	0,0	0.	6.3	Ιđ
5.0	6. F & D	5·L.	5.7	8.	E'L	1.7	εī
0,0	ي و	C,C	8.0	<u>οί.</u>	6.7	69	12
P. D	5.9	5.4)	Q'L.	۵, ک	5'9	6'9	IJ
OL.	91.	FJ	5L	5.3	EL	9'9 9'9	10
G.L	0 L	59	₽ <u>.</u> [5.ي	0,1		6
eil	0,5	0.5	SL	0,1	<i>e.</i> C.	0.6	8
Ч·L.	5")	ه،۲۰	5 L.	٥٬٢	G,T	0, Γ	L
S.C.	でいくのかり	9L	P,C	۶'۲	۶,۲	E.P.	9
0.7	2.3	0,5	6,6	0,C	Q۲	6'9	ς
0.7	b 🤊	0.7	Chaning	5.2	6.5	9.9	7
5.7	6.3	5'9	5.9	P.9)	Βŷ	9	3
5.9	5.0	5.9	5.5	5'7 0'L	ر ج'۴)	19	7
0,7	6.9	0,5	6.3		Charing	9'9	Ţ
50,171	01,14	22,51	04:51	ટકારા	01:हा	19:22	TIME
DATE \	DATE /	DATE /	DATE \	DATE /	DATE \	DATE 5/4/00	AP. BER
		NPARTMENTS	LEEENTIAL IN COM	PRESSURE DIF		BONT	COMP. NUMBER
	KEYK	IECKZ	HELIC CH	MAGNA		HLNO	M

Z	MONTH	MONTH		MAGNAHELIC CHECKS	ECKS	YEAR	
C(NU	Aunl		PRESSURE DIE	PRESSURE DIFFERENTIAL IN COMPARTMENTS	ARTMENTS		
OMI MBI							
P. ER	DATE 5 / 4 / ∞	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /
TIME	14:40	ζ S; h)	151.10	5e.;51	CF;61	35.51	16:10
1	מיר	6)	ŗ	0,۲	7,0	Chan	
7	6.0	6.5	(, 5	č.5	65	5')	
3	7.0	ુ ડ	j	0,۲	6.9	ن.ر	
4	7,0	6.9	ס,ר	ס'ל.	(29	70	
5	10	٥,٢	7.0	۵,۲	م ر	8,۲	
9	2,5	6.ر	7,S	5.۲	7.2	7.9	
7	7.5	0 ر	ש'ר_	7.2	0,۲	7.5	
∞	7.5	0,۲	7.0	5,८	ה.ר	ئي.ل	
6	C(mains	٥.ر	٥.۲	٥.۲	ارم.9	7.3	
10	7.5 J	ن ئ	ر فئ	٥.۲	٥.۲	ره	
11	מיך	\$3	6.5	0.9	ره. ح	ο̈́Γ	
12	ر. ھ	٥.۲	Charing	, ,	٥.٢	رد.	
<u></u>	٥.	ر. د	ر 5،۲	ئ. ئ	2.5	7.5	
14	۵,۲	6.5	6٠٢	ם.ר	Claring	٥,۲	
15	٥.۲	G, Q	ق ح	<i>ر</i> م	ک م,۲	و ق	
16	みし	6.9	۲,۲	٥.۲	6,۲	۵,۲	
17	σ	0,۲	7.5	ھار	7.5	7.8	
18	7.5	סיר	2.۲	מיר	7.5	がし	
19	٥،۲	6.2	6.9	6.9	٥,٢	٥.د	
70	6,۲	6.5	٥,۲	5,5	2.۲	٥,٢	
21	۵,۲	و:ج	۵,۲	٥.۲	7.5	رة	
22	٩٠	٥.٢	۲.۶	<u>ي.</u> ۲.5	0,8	0,8	
23	3.م)	5.5	و ف	(e. a)	ر. ان	(e.S	
24	SiL	(6.5	6,5	لا. <i>ر</i>	٦.۶	3.5	

	MONTH	-		HELIC CH	IECKS	YEA	R
No c	Run-2-		PRESSURE DI	FFERENTIAL IN COM	PARTMENTS		
COMP	DATE 5/4/00	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /
TIME	16:30	16:45	17:00	17:15	17:30	17:45	18:00
1	7.0	6,9	7.0	7.0	7.0	7.1	7.0
2	6.9	6.5	6,5	6,5	6.5	cleouing	6.5
3	6.9	6,6	6.2	6,2	7.0	7.3	6.7
4	7.0	6.9	7,0	7.0	7.0	7, 3	7.0
5	7.0	7.0	7,0	7.0	7.0	7.5	7.0
6	7.5	7.3	7,6	7,5	7,5	7.9	7.5
7	7.2	7.0	7.2	7.0	7,0	7.6	7.0
8	7.2	7,0	7.2	70	7.0	7.7	7.0
9	٦.٥	6.9	7.0	7.0	6,9	7.5	7.0
10	Cleaning	7.0	7.0	7,0	7,0	7.5	7.0
11	7.0	6.5	6.6	7,0	6.6	7.1	6.6
12	7.5	7.0	Cleaning 7.5	7.2	7.0	7.5	7.0
13	ጋ.ዓ	7.0		7.5	7.2	7.5	72
14	7.2	6.7	7.0	7,0	7.0	6.8	7.0
15	7.0	6.5	6.9	6.7	6.5	6.8	6,5
16	7.8	7.0	7,5	7.3	Cleanina_	7.4	7.0
17	7.5	7.2	7.7	7.5	7.6	7.7	2
18	75	7.0	7.5	7.5	7.5	7.7	7.0
19	7.0	6.5 6.5	7.0	6.9	7.0	6.8	<u>cleanina</u>
20	7.0	6.5	7.0	7.0	7.0	7,1	7.0
21	7.2	6.9	7.2	7.0	7.5	7.4	7.2
22	8,0	7.2	7.5	7.5	8.0	8.0	7.5
23	5.ما	6.0	6.2	6.3	6.5	6.5	6.s
24	7.5	7.0	7.5	7,5	٩,5	7.7	<u> </u>

•


	MAGNAHELIC CHEC MONTH MAY			HELIC CH	HECKS	YEAR	2000
NUN	Run 2		PRESSURE DI	FFERENTIAL IN COM	MPARTMENTS		
COM . NUMBER	5 PATF,00	PATE,	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /
TIME	18:18	18:30	18:45	19:00	19:15		
1		6.6	7,0	6.9	7.0		
2	7.0 6.5	6.4	6.6	6,6	7.0 6.7		
3	coming 7.2	6.6	6.8	6,9	6.8		
4	7.2	6.8	6.8	7.0	7.0		
5	7.5	6.9	7,0		7.1		
6	7.9	7.1	Clemuing 7,0	7.5	7.6		
7	7.5	6.9	7.0	7.2	7.5		
8	7.5	6.9	7.1	7,2	7.5		
9	7.3 7.5	6.7	7,1	7.0	Cleaking		
10	7,5	6.8	7.2	7,0	7.5		
11	7.7	6.5	6.8	6.6	7.0		
12	7.5 7.5	7.0	7.4	7,1	7,5		
13	7,5	7.1	7.3	7.3	7.6		
14	7.0	6.6	7.0	7.0	7,2 6.4		
15	6.6	6.2		6.6	4.4		
16	7,2	6.9	7.3	 	7,4		
17	7.8	7,2	7.5	7.6	7.7		
18	7.5	7.0	7,4	7 4	7,5		
19	6,9	6.4	<u> </u>	6	6.9		
20	7.0	4.5	6.9	9.9	7.0		
21	٦ <u>.</u>	Cleaning	7.1	•	73		
22	7.9	7,6	7.6	7.4	7,9		
23	6.5	613	6.2	6,0	6.6		
24	7,5	7,2	7.	7.0	7.7		

.

M	IONTH	-	MAGNA	HELIC CH	ECKS	YEAR	1
NG	Run3	-	PRESSURE DI	FFERENTIAL IN COM	PARTMENTS	-	_
COMP. NUMBER	5 / 4 / 00	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /
TIME	20:15	20:30	20:45	21100	21:15	21:30	21:45
1	6.5	cleaning	6.5	7.0	6.8	68	7.0
2	6.2	6.5	6.2	6.5	6,5	7.2	6,5
3	6,5	6.6	6.5	cleaning	6,5	6,5	6.8
4	6.6	6.6	6, 5	7.0	6.9	6.7	6,8
5	6.7	6.9	6,6	7,0	7,0	6.7	7.0
6	7.0	7.4	7.2	7.5	7.4	cleaning	7.4
7	7,0	7.0	7,0	7.5	7.0	7.0	7,0
8	7,0	7.0	7.0	7.5	7.0	7.0	7.0
9	6.7	6.9	6.7	7.4	6.8	7.0	7
10	6.7	7,0	6,3	7,4	6.8	7,0	7.0
11	6,2	6,5	6,3	7.0	6,5	6.6	6,5
12		7,0	6.7	7,2	7.0	7.2	7.0
13	7.0	7.0	7,0 6,5	7,5	7,0	7.0	7, ユ
14	6,5	6,5	6,5	7.0	6,8	6.8	6,8
15	6.2	6.2	6.5	6.8	6.5	6.5	6.5
16	7.0	7,0	7.0	7.a	7.0	7.0	7.0
17	c)eaning_	7,0	7,0	7.5	7.0	7.0	7.0
18	7.5	6.2	cleanina	7.4	7.0	7.0	7.2
19	6.5	62	6.5	6,6	6.5	6.5	6.6
20	7.0	6.5	6.9	7.0	6.5	6.7	7.0
21	7.1	6,5	7.0	7.2	cleaning	3,0	7.0
22	7.8	7.0	7,2	7.5	7.5	7,5	7.8
23	6.0	6.0	6.0	6.2	6.2	6.0	6.2
24	7.2	7.0	6.2	7.5	7.5	7.2	cleaning

į

N	IONTH	-	MAGNA	HELIC CH	ECKS	YEAR	
NUMI ER	Rum 3		PRESSURE DII	FFERENTIAL IN COM	PARTMENTS		
Ä				END			
ER:	5/4/00	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /	DATE / /
TME	32:00	a2:15	22:30	22:45	23:00		
1	7.0	6,8	6,9	7.0			
2	6.3	6.0	6.4	6.5			
3	6.6	6,5	6,5 6,8	7,0 _			
4	6,8 6,8 7.3	6,5	6,8	7 o 7.0			
5	6,8	6,8	7.0	7.0			
6		7.3	7,5	7,5			
7	7,2	7.0	7.0	7.0			
8	7.0	7.0	7,0	7.0			
9	cleaning	6.8	<i>چ</i> ,%	7.0			
10	7.0	6.8	7.0 6.5	7.0			
11	6.8 7.3	6,5	6.5	6,5			
12	7.3	7,0	cleaning	7.0			
13	7,2	7.0	1,0	7.0			
14	6	6.5	3.0	6.8			
15	6.5	6.2	6.8	6.5			
16	<u>7,0</u>	6.8	7.2	7.0			
17	7,0	7.0	3.5	7,2			
18	7.0	7.0	7.a	7.0			
19	6.5 6.5	6.5	6.8	6.5			
20	6,5	6.5	7.0	6.5			
21	7.0	6.9	7,0	7.0			
22	7.5	7.2	7.5	7.5			
23	6,0	6.0	6.3	a			
24	7.2	7.2	7.5	7.5			

Mr. Gerald Slucher
Source Sampling and Data Management
Section
Technical Services Branch
Division for Air Quality
803 Schenkel Lane
Frankfort, KY 40601-1403

RE: Gallatin Steel Company, Warsaw, KY, ID # 079-1380-0018

Permit Number F-96-009 (Revision 1)

Compliance Test Protocol for Emissions Testing

Dear Mr. Slucher:

Gallatin Steel's air testing firm, Ambient Air Services, Inc., is scheduled to be at Gallatin Steel the first week of May to conduct emissions testing on emission point E I (01) for NOx and SO, In accordance with the conditions in our permit, we are not required to conduct testing for VOC, PM, CO, and lead emissions this year based on our test results for the last two years (1998 and 1999).

The protocol submitted to your attention on January 7, 1998 will be followed for the testing of NOx and SO, with the following listed changes.

- 1) For NOx, three runs each of 3 heat cycles in duration will be performed with the inlet probe being positioned in the discharge plenum of the baghouse.
- 2) For SO, in order to obtain statistically valid sampling of levels in the baghouse (since there is not homogeneity in the baghouse), we will be testing compartments in pairs (instead of testing one single compartment) over a total of four runs, each run consisting of three heats. We are requesting to test 8 of the 24 compartments during the four runs, two compartments tested during each run. The results of the sampling will provide more accurate information and will produce an average ppm level for the baghouse emissions. Please note that 40 CFR 60 supports and addresses multiple measurement sites for correctly testing particulate emissions. This same logic is also applicable to SO, emissions, and supports the use of an "alternate" method to produce more accurate results.

The performance testing is tentatively scheduled to begin on May 5 and we will provide you with notification of the exact test date and start time at least 10 days prior to the testing. A source testing report which presents the results of the performance tests will be submitted to the DAQ within 45 days after the completion of the fieldwork in accordance with the permit.

Letter to Gerald Slucher March 31, 2000 Page Two

If you have any questions or comments, please contact me at the address below or by telephone at 606-567-3141.

Sincerely yours,

Valerie A. Hudson, P.E.

Process Manager - Environmental Systems

Salarie A. Mulson

cc: Dan Gray, DAQ

John Allen, DAQ-Regional Office

✓ Joe Cooksey, Ambient Air Services, Inc.

COMMONWEALTH OF KENTUCKY NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET

DEPARTMENT FOR ENVIRONMENTAL PROTECTION

DIVISION FOR AIR QUALITY 803 SCHENKEL LN FRANKFORT KY 40601-1403

May 5,2000

Ms. Valerie Hudson Manager, Environmental Systems Gallatin Steel Company US Highway 42, Route 1, Box 320 Ghent, Kentucky 41045

RE: ID# 079-1380-0018

Permit # F-96-009 (Revision 1)

Dear Ms. Hudson:

The Division acknowledges the receipt on April 5,2000, of the test protocol for emission point E1 (01). The Division has reviewed the protocol and concurs that the appropriate test methods are being utilized.

If you have any questions regarding this matter, please contact me at (502)573-3382, Extension 324.

sincerely,

Forrest E. Frazier, Jr., Superviso

Metallurgy Section Permit Review Branch

FEFIAJW

cc: William A. Clements / Regional Office

Source file / 5

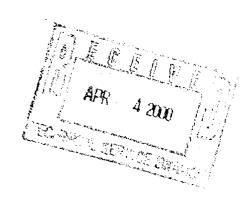
APPENDIX G PROJECT PARTICIPANTS

PROJECT PARTICIPANTS

AMBIENT AIR SERVICES, INC.

Joe Cooksey Earl Coggins Melvin Petit

GALLATIN STEEL


Valerie Hudson Joe Dougherty

STATE OBSERVER

Gerald Slucher

March 31, 2000

Mr. Gerald Slucher
Source Sampling and Data Management
Section
Technical Services Branch
Division for Air Quality
803 Schenkel Lane
Frankfort, KY 40601-1403

RE: Gallatin Steel Company, Warsaw, KY, ID # 079-1380-0018

Permit Number F-96-009 (Revision 1)

Compliance Test Protocol for Emissions Testing

Dear Mr. Slucher:

Gallatin Steel's air testing firm, Ambient Air Services, Inc., is scheduled to be at Gallatin Steel the first week of May to conduct emissions testing on emission point E1 (01) for NOx and SQ. In accordance with the conditions in our permit, we are not required to conduct testing for VOC, PM, CO, and lead emissions this year based on our test results for the last two years (1998 and 1999).

The protocol submitted to your attention on January 7, 1998 will be followed for the testing of NOx and SO, with the following listed changes.

- 1) For NOx, three runs each of 3 heat cycles in duration will be performed with the inlet probe being positioned in the discharge plenum of the baghouse.
- 2) For SQ, in order to obtain statistically valid sampling of levels in the baghouse (since there is not homogeneity in the baghouse), we will be testing compartments in pairs (instead of testing one single compartment) over a total of four runs, each run consisting of three heats. We are requesting to test 8 of the 24 compartments during the four runs, two compartments tested during each run. The results of the sampling will provide more accurate information and will produce an average ppm level for the baghouse emissions. Please note that 40 CFR 60 supports and addresses multiple measurement sites for correctly testing particulate emissions. This same logic is also applicable to SQ, emissions, and supports the use of an "alternate" method to produce more accurate results.

The performance testing is tentatively scheduled to begin on May 5 and we will provide you with notification of the exact test date and start time at least 10 days prior to the testing. A source testing report which presents the results of the performance tests will be submitted to the DAQ within 45 days after the completion of the fieldwork in accordance with the permit.

Letter to Gerald Slucher March 31, 2000 Page Two

If you have any questions or comments, please contact me at the address below or by telephone at 606-567-3141.

Sincerely yours,

Valerie A. Hudson, P.E.

Process Manager - Environmental Systems

derie A. Mulson

cc: Dan Gray, DAQ John Allen, DAQ-Regional Office Joe Cooksey, Ambient Air Services, Inc. Permit Number: V-99-003 (Revision 2) Page: 2 of 67

SECTION B -- EMISSION POINTS, AFFECTED FACILITIES, APPLICABLE REGULATIONS, AND OPERATING CONDITIONS

01 (El)

Description:

Existing melt shop, consisting of the following:

Twin-Shell DC EAF & continuous caster
Ladle and tundish bricking, deskulling, and brick tear-out
Shell bricking and brick tear-out
Two LMF's

One tundish dryer, 1.5 MMBtu/hr One ladle dryer, 8 MMBtu/hr

Three ladle preheaters, 10 MMBtu/hr, each

Two tundish preheaters, 10 MMBtu/hr, each

Two tundish casting nozzle preheaters, 5 MMBtu/hr, each

Two stirring stations

Dump pit for handling used refractory materials

Scrap cutting from slag pot

Control Equipment: positive pressure fabric filter baghouse

Construction commenced: April, 1993

APPLICABLE REGULATIONS:

- **A.** 401 KAR 51:017, Prevention of significant deterioration of air quality.
- **B.** 401 KAR 60:005 40 CFR standards of performance for new sources. Section 3. (1) (dd), Standards of performance for steel plants: electric arc furnaces and argon-oxygen decarburization vessels constructed after August 17, 1983 (40 CFR Part 60, Subpart AAa).
- C. 401 KAR 59:010, New process operations.

1. Operating; Limitations:

a. The following raw materials usage rates (including the replacement of the heel) shall not be exceeded: Scrap/substitutes: 270 tons/heat, Lime: 12 tons/heat, and Carbon/substitutes: 7 tons/heat. (Limit on PTE).

Commonwealth of Kentucky

Natural Resources and Environmental Protection Cabinet Department for Environmental Protection

> Division for Air Quality 803 Schenkel Lane Frankfort, **Kentucky** 40601 (502) 573-3382

AIR QUALITY PERMIT

Permittee Name: Gallatin Steel Company

Mailing Address: RR #1, Box 320, Ghent, KY 41045

is authorized to operate a steel mill and to **construct/operate** a second **melt** shop with associated equipment and a caster and tunnel furnace.

Source Name: Gallatin Steel Company

Mailing Address: **RR#1,** Box 320, Ghent, KY 41045

Source Location: U.S. Highway 42 West, Warsaw, Kentucky

Permit Type: Federally-Enforceable

Review Type: PSD, Title V

Permit Number: V-99-003 (Revision 2) Log Number: 54190,53839, F690

Application

Complete Date: November 26,2001 (54190), May 21,2001 (53839), June 23,1998

(F690)

AFS Plant ID #. 21-077-00018

SIC Code: 3312

Region: CINCINNATI

County: Gallatin

Issuance Date: June 22,2000
Revision 1 Date: August 27,2001
Revision 2 Date: December 10,2001

Expiration Date: June 22,2005

John E. Hornback, Director

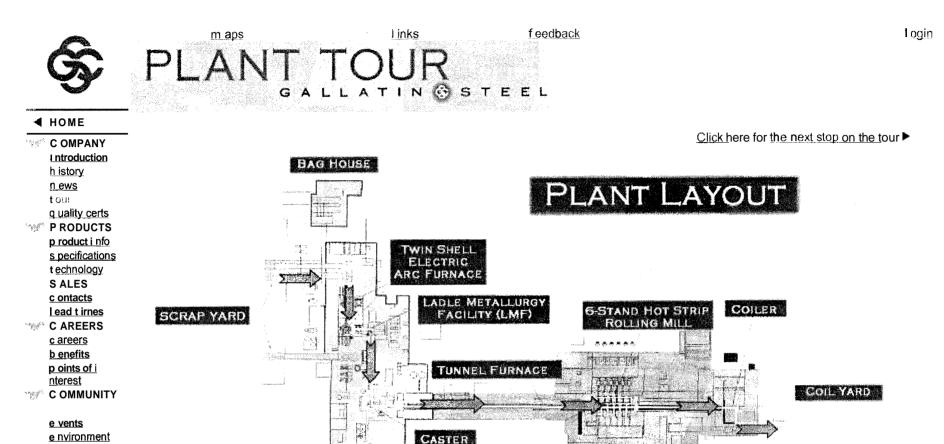
Division for Air Quality

TABLE OF CONTENTS

SECTION		DATE OF ISSUANCE	PAGE
SECTION A	PERMIT AUTHORIZATION	June 22,2000	1
SECTION B	EMISSION POINTS, AFFECTED FACILITIES, APPLICABLE REGULATIONS, AND OPERATING CONDITIONS	June 22, 2000 August 27,2001 December 10, 2001	2
SECTION C	INSIGNIFICANTACTIVITIES	June 22, 2000	46
SECTION D	SOURCE EMISSION LIMITATIONS AND TESTING REQUIREMENTS	June 22,2000	50
SECTION E	CONTROL EQUIPMENT OPERATING CONDITIONS	June 22,2000	51
SECTION F	MONITORING, RECORD KEEPING, AND REPORTING REQUIREMENTS	June 22,2000	52
SECTION G	GENERAL CONDITIONS	June 22,2000	56
SECTION H	COMPLIANCE SCHEDULE	October ,2000	63

Permit Number: V-99-003 (Revision 2) Page: 1 of 67

SECTION A -- PERMIT AUTHORIZATION


Pursuant to a duly submitted application the Kentucky Division for Air Quality hereby authorizes the operation of the equipment described herein in accordance with the terms and conditions of this permit This permit has been issued under the provisions of Kentucky Revised Statutes Chapter 224 and regulations promulgated pursuant thereto and shall become the final permit unless the U.S. EPA files an objection pursuant to 401 KAR 52:100, Section 10.

The permittee shall not construct, reconstruct, or modify any affected facilities without first having submitted a complete application and receiving a permit for the planned activity from the permitting authority, except as provided in this permit or in 401 KAR 52:020, Title V Permits.

Issuance of this permit does not relieve the permittee from the responsibility of obtaining any other permits, licenses, or approvals required by this Cabinet or any other federal, state, or local agency.

Prior to commencing construction on 02(E2), the permittee is responsible for demonstrating that all BACT requirements for all emission units in the new meltshop have not changed from the BACT requirements in F-96-009(Revision 1). If any BACT requirements have changed, the pennittee shall meet all new BACT requirements. Additionally, if any parameters changed that affect the modeled ambient impacts in F-96-009(Revision 1), the permittee shall be responsible for performing additional appropriate modeling analyses.

Gallatin Steel Company, and the adjacent slag processing plant, AFS # 21-077-00020, and the industrial gas plant, AFS # 21-077-00023, are considered by the Kentucky Division for Air Quality and the US EPA Region IV to be one source as defined in 401 KAR 51:017, Prevention of significant deterioration of air quality (PSD). Each is responsible and liable for their own violations unless there is a joint cause for the violations.

PROCESS OVERVIEW

Gallatin Steel recycles scrap steel to make new hot-rolled steel coils, using a continuous Compact Strip Production or CSP process. Quality is one of our core business values, and we are ISO 9002 certified.

Reclaimed metals from sources including junked automobiles, demolished buildings and bridges, railroad wheels and old household appliances are delivered to our site via truck, rail and barge. The reclaimed metals are stored in our Scrap Yard until the metals are carried into the Melt Shop and charged in a twin-shell electric arc furnace (EAF).

The EAF melts the scrap steel by striking an electric arc that radiates energy to the scrap charge.

The molten steel is transferred to the Ladle Metallurgy Facility (LMF). At the LMF, the molten metal is refined by making alloy additions and

P URCHASING

d irect pay auth.

a bout t erms adjusting the ladle temperature. Once the steel meets the required chemistry and temperature, the ladle is taken to the Caster, and positioned on the rotating turret.

The caster pours the steel into a vertical water-cooled copper mold, which forms a shell the required thickness and width of the slab. The shell is then drawn down through the cooling spray chamber by rollers, solidifying as it travels. The continuous strand exits at the bottom of the machine, and is sheared into slabs of specified lengths, which then enter the tunnel furnace.

The slabs move through the Tunnel Furnace and into the Rolling Mill, where six rolling stands reduce the slabs to the final thickness at a mill exit speed of about 25 mph.

A Coiler at the end of the line captures and wraps the strip into coils suitable for shipping. The coils are banded, marked, weighed and moved to the coil yard for cooling. Coils are cool enough to ship in about 2 days.

The coils are loaded on trucks, outbound rail cars or river barges for transport to the customer.

Click here for the next stop on the tour

© 2002 G allatin S teel Company. All rights reserved.

S earch u pcoming e vents e xcess I ists G SC t oday

login

◆ HOME

COMPANY i ntroduction h istory n ews t our

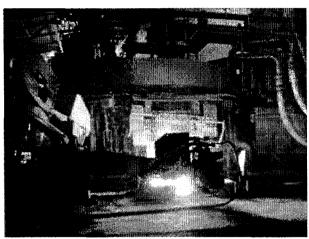
q uality certs

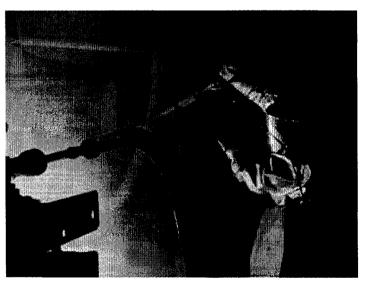
p roduct i nfo
s pecifications
t echnology
S ALES
c ontacts
Lead t imes
C AREERS
c areers
b enefits
p oints of i
nterest

C OMMUNITY
s afety
e vents
e nvironment
P URCHASING
a bout
t erms
d irect pay auth.

MELT SHOP

The Melt Shop melts the scrap charge to liquid steel at the required temperature and chemical analysis. It uses large amounts of electric power.


- ► The melting equipment consists of a twin-shell DC electric arc furnace, powered by a shared set of electrical equipment operating at up to 850 volts and 135,000 amps.
- ► Oxy-fuel burners placed at strategic locations around the furnace supply additional energy. A lance system is used to inject oxygen to decarbonize the steel. The lance can also inject anthracite carbon to produce a foamy slag.
- When the furnace is ready for scrap charging, an overhead crane brings a "clamshell" bucket over the furnace top and opens the bottom, charging the scrap into the furnace.
- ► The process of melting a charge of scrap is called a heat. The melt shop computer system identifies each production batch with a unique heat number. To begin melting, the single 30" diameter graphite electrode is lowered into the furnace, and an electric arc is struck between the top and bottom electrodes.



- ▶ The arc is like a captive lightning bolt, and radiates energy to the scrap charge from its 4000° F core, quickly boring its way down through the packed scrap. During the heat, the arc voltase is adjusted several times by the programmable controller, or PLC, which controls the furnace.
- ► A foamy slag is created, which protects the water cooled panels that make up the walls of the furnace and aids in heat transfer to the scrap.
- Oxygen is blown in to remove carbon and other oxidizable elements from the steel bath. It normally takes 50 to 60 minutes to melt a heat of steel and tap the furnace into a waitina ladle.
- ► Tapping necessitates tilting the furnace forward until liquid steel runs out of the tap hole into a ladle waiting below. The ladle sits on the platform of a transfer car, which is moved into position under the furnace.
- ▶ Some steel is always left in the furnace. The residual amount is called a heel. The heel protects the bottom electrode when scrap drops into the furnace and helps to maintain the furnace temperature.

When the steel in the ladle reaches a target weight, the furnace moves back into its level position, and the gate is closed.

Temperatures and samples for analysis

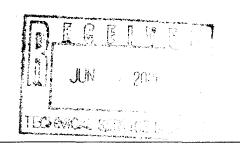
are taken with an automated mechanical arm. This is safer and more reliable than taking them manually. The temperature of the steel at tap is about 2960° F.

- The operators send samples of the steel to a Chemical Laboratory using a system of pneumatic tubes. The samples are analyzed on a high-tech optical emission spectrometer, and the results are sent by computer network back to the furnace operator to show the chemical composition of the steel.
- Based on the sample results, the operators can adjust the chemistry to meet specifications by making alloy additions at tap.

After tap, the ladle of steel is lifted to the LMF car by crane.

Tapping Molten Metal from Electric Arc Furnace

previous | next ▶


G SC today

© 2002 G allatin S teel Company. All rights resewed.

Search

u pcoming e vents e xcess lists

interoffice MEMORANDUM

to:

Jerry Slucher

from:

Edd Frazier 91

subject: Stack test review

date:

June **8,** 2001

Re: Gallatin Steel 21-077-00018/5

Please review the attached test report. This test was performed on May 3, 2001, and the NOx and SO2 emissions from the baghouse for the EAF were determined. Please inform me of your findings when your review is done.

attachment

53869

ISO 9002 CERTIFIED QS 9000 CERTIFIED **RECEIVED**

May 31,2001

JUN 4 2001

Mr. Edd Frazier Permit Review Branch Division for Air Quality 803 Schenkel Lane Frankfort, KY 40601-1403

PERMIT REVIEW BRANCH DIVISION FOR AIR QUALITY

RE: Air Emissions Performance Testing - May 2001

Gallatin Steel Company, Warsaw, Kentucky

AFS Plant I.D. # 21-077-00018, Permit # V-99-003

Dear Edd:

Enclosed is the test report prepared by Ambient Air Services, Inc. for the air emissions performance testing conducted at Gallatin Steel Company on May 3, 2001 for SO, and NOx.

Data sheets for the baghouse pressure drops, furnace shell pressures, fan amperes and damper positions are included in Appendix F of the report with the production data. The sulfur content of the charge carbon used during the test was 0.54%.

The amount of injection carbon used per heat was requested by the DAQ to be collected during the testing and Gallatin Steel considers this information confidential information. Gallatin Steel Company requests that this information be afforded confidential treatment pursuant to the provisions of 400 KAR 1:060. This information is enclosed on a separate sheet and is marked "Confidential Information, Property of Gallatin Steel". Gallatin Steel is furnishing the enclosed "Statement of Basis for Claim of Confidentiality, Air Emissions Testing" as provided by 400 KAR 1:060 Section 3.

If you have any questions regarding the request for confidential treatment of information or if you have any questions regarding the test report, please feel free to contact me at **(859)** 567-3141.

Sincerely yours,

Valerie A. Hudson, P.E.

Process Manager – Environmental Systems

lenie A. Kubson

R.R. 1 Box 320 Ghent, Ky 41045-9704 859.567.3100 859.567.3165 fax www.gallatinsteei.com

EMISSIONS TEST REPORT FOR SULFUR DIOXIDE AND OXIDES OF NITROGEN

GALLATIN STEEL COMPANY GHENT, KENTUCKY (PERMIT NUMBER V-99-003)

MAY 3,2001

AMBIENT AIR SERVICES, INC. 106 AMBIENT AIR WAY STARKE, FLORIDA 32091 (904)9648440

A STATE OF THE PARTY

.

Ambient Air Services, Inc. of Starke, Florida, has completed the testing described in this report for the Gallatin Steel Company, Ghent, Kentucky facility. To the best of our knowledge and abilities we certify that all information, facts and test data are true and correct. Information supplied to AASI for use in this report from Gallatin Steel is perceived to be accurate and is used as such where necessary.

Test Team Leader:

Earl D. Coggins

Project Manager:

Joseph L. Cooksey

GALSTLEAF

Facility Gallatin Steel
Source Type Electric Arc Furnace
Performed By Ambient Air Services Req. by E. Frazier Rvwed. By Slucher
Date Performed 5/3/2001 Received 6/8/01 Reviewed 6/19/01

PARTICULATE

	Run #1	Run #2	Run #3
Ср	0.84	0.84	0.84
Theta,min.	252	252	252
Cold Duct 1			
As1,ft2	201.062	201.062	201.062
Ts1,degF	100.5	136.6	118.3
Psl,in.Hg.	29.49	29.37	29.38
DELP1sqrt	1.3743	1.4183	1.4069
Cold Duct 2			
As2,ft2	78.54	78.54	78.54
Ts2,degF	100.1	106.2	95.5
Ps2,in.Hg.	29.59	29.48	29.48
DELP2sqrt	0.3707	0.0713	0.0213
LMF Duct			
As3,ft2	19.635	19.635	19.635
Ts3,degF	158.3	159	177.3
Ps3,in.Hg.	29.43	29.32	29.35
DELP3sqrt	0.3272	0.2231	0.3519
Furnace A Duct			
As4,ft2	63.617	63.617	63.617
Ts4,degF	544.1	123.5	50.6
Ps4, in. Hg.	29.42	29.39	29.23
DELP4sqrt	0.875	0.2356	0.2735
Furnace C Duct			
As5,ft2	78.54	78.54	78.54
Ts5,degF	103.4	510.2	504.3
Ps5,in.Hg.	29.42	29.37	29.35
DELP5sqrt	0.3462	0.7997	0.8919
Asout, ft2	12069.79	12069.79	12069.79
Gamma	0.992	0.992	0.992
Tm,degF	77.3	535.6	76.5
Ps,in.Hg.	29.74	29.66	29.66
Pbar, in. Hg.	29.74	29.66	29.66
Vlc,ml.	28.1	´ 16.5	16.3
Vm.ft3.	64.155	31.921	32.081
DELH, in.H20	1.741	1.9	1.9
C02%	0	0	0
0 2%	20.9	20.9	20.9
CO%	0	0	0
N2%	79.1	79.1	79.1
Vwstd,ft3	1.32351	0.77715	0.76773
Vmstd,ft3.	62.4065649	16.719136	31.181744
Bws	0.02076743	0.044418	0.0240295
Md	28.836	28.836	28.836
Ms	28.6109641	28.3546866	28.5756163

GALSTLEAF

vs1,ft/sec	80.4378262		86.2064839		83.8514796	
vs2,ft/sec	21.6526595		4.21398418		1.24209466	
vs3,ft/sec	20.1347455		13.8243617		22.0284517	
vs4,ft/sec	68.6283503		14.1572239		15.3560716	
vs5,ft/sec	20.3396047		61.9851898		68.6775818	
Q1std, dscf/hr.	52935706.7		51800264.3		53106710.7	
Q2std,dscf/hr.	5589085.74		1046123.02		320995.604	
Q3std,dscf/hr.	1170650.62		780531.905		1235063.09	
Q4std, dscf/hr.	7957958.71		2753920.25		3467459.48	
Q5std,dscf/hr.	5189415.75		8946699.62		10179159.2	
Qtotal, dscf/min	1214046.96		1088792.32		1138489.8	
vs,out ft/sec	0.02794044		0.02505779		0.02620155	
NITROGEN OXIDES						
ppm		1.8		1.7		1.6
tons/hr		184.8		195		191.6
lb/scf		2.15 E -07		2.0308E-07		1.911E-07
lb/hr		15.663239		13.2668418		13.056378
lbs/ton		0.0847578		0.06803509		0.0681439
Avg lbs/ton		0.0736456				
SULFUR DIOXIDE						
ppm		2.615		2.3		3.635
tons/hr		184.8		195		191.6
lb/scf		4.349E-07		3.8255E-07		6.046E-07
lb/hr		31.682209		24.990858		41.299219
lb/ton		0.1714405		0.12815825		0.2155492
Avg lbs/ton		0.171716				

1.0 EXECUTIVE SUMMARY

On May 3, 2001 emission tests were conducted at the Gallatin Steel mill located in Warsaw, Kentucky. The emission testing was conducted in accordance with the requirements listed in the Kentucky Department of Environmental Protection, Division of Air Quality, PSD Permit V-99-003. In accordance with Permit V-99-003 Gallatin Steel was required to test for NO, and SO, emissions. Based on results from testing conducted in 1998 and 1999, testing was not required for VOC, PM, CO and lead emissions. The results from this test indicate compliance with the NO, and SO, permit limitations. Table 1 summarizes the results of these testing efforts.

TABLE 1

SUMMARY OF EMISSION TEST RESULTS					
GALLATIN STEEL COMPANY - WARSAW, KENTUCKY MILL GHENT, KENTUCKY May 3, 2001					
EMISSION PARAMETER PERMIT TEST POINT LIMIT RESULT					
EAF/CASTER LMF Baghouse	Sulfur Dioxide (SO ₂)	0.201bs/ton 401bs/hr.	0.18 lbs/ton 33.70 lbs/hr.		
Emission Point El (01)	Oxides of Nitrogen	0.51 lbs/ton 102.0 lbs/hr.	0.075 lbs/ton 14.19 lbs/hr.		

A STREET OF THE STREET

TABLE OF CONTENTS

		<u>PAGE</u>
1.0	EXE	CUTIVESUMMARY i
2.0	INTI	RODUCTION 1
3.0	PRO	CESS DESCRIPTION
4.0	EAF	BAGHOUSE SO, EMISSIONS SAMPLING
	4.1 4.2 4.3	Methodology3Results14Testing Compromises16
APP	ENDIC	ES
	APPI APPI APPI APPI APPI	ENDIX A - Sample Calculations - Gaseous Emissions ENDIX B - Instrument Calibration Data - Baghouse Testing ENDIX C - Gaseous Emission Data - Baghouse Testing ENDIX D - Flow Rates ENDIX E - Field Data Sheets ENDIX F - Production Data, Test Notification Letter ENDIX G - Project Participants

2.0 INTRODUCTION

On May 3, 2001 Ambient Air Services, Inc. conducted air emission testing at Gallatin Steel Company's, Ghent, Kentucky mill. Prior to starting these tests, Kentucky Department of Environmental Protection personnel were notified of the testing schedule and provided a testing protocol for review. A copy of the Notification Letter is included in the Appendix section of this report.

Testing methods and time duration are summarized in Table 2.

A STATE OF THE STA

TABLE 2

SUMMARY OF TESTING METHODS GALLATIN STEEL COMPANY GHENT, KENTUCKY MAY 3,2001						
POLLUTANT-SOURCE	POLLUTANT-SOURCE EPA REFERENCE METHOD TIME DURATION					
Sulfur Dioxide - El (01)	Method 6C	3 runs, 3 heats each, 2 compartments tested simultaneously per run				
Oxides of Nitrogen - El (01)	Method 7E	3 runs, 3 heats each All tests conducted in Compartment 7				

3.0 PROCESS DESCRIPTION

At the Ghent, Kentucky facility of Gallatin Steel, the overall objective is to reclaim scrap steel of various forms, refining this material to create rolled steel coils. This type of mill is commonly referred to as a "mini" mill. The particular aspect of this mill examined by these testing efforts were the Electric Arc Furnace (EAF) operations. The EAF by introducing heat primarily in the form of an electric arc provides the energy necessary to melt the scrap steel. Once melted and refined, the furnace is tapped and the product is transferred to the caster/tunnel furnace to be formed into rolled steel. To control the amount of particulate escaping from the melt shop building, during all operations, a baghouse filter system is employed. This system exhausts the furnace directly through fourth hole and canopy hood ducts.

4.0 GASEOUS EMISSION SAMPLING

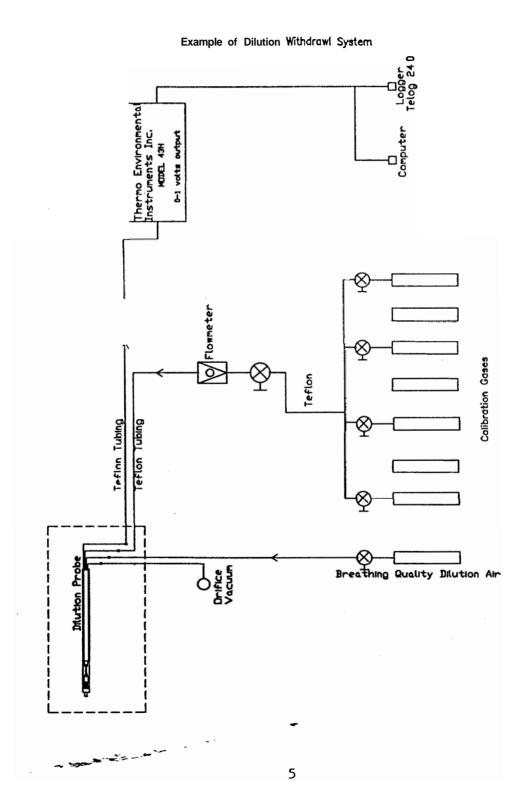
4.1 Methodology

Continuous instruments were used to measure SO, and NO, emissions. The arc furnace shop sample was obtained from the baghouse. A dilution extraction system was utilized to convey the sulfur dioxide sample gas to the sulfur dioxide analytical instruments. A fully extractive system was utilized for the NO, instrument. The sample was obtained from a representative middle point among the bag filter banks on the clean side of the baghouse. The sample probe for the NO, instrument was positioned in Compartment 7 of the baghouse for the duration of the test. The probe for the SO, sample was positioned in 6 different compartments, 2 per test run.

Gaseous emission sampling consisted of three runs, each run covering three furnace "heats".

Utilizing the flow rates (SCFM) measured duringeach run, mass emissions were calculated in lbs/hr.

and in lbs/ton.


As described in the test protocol, in order to sample a maximum number of compartments per test run, two SO, instruments were utilized. The sample probe for each instrument was positioned in separate compartments. Thus, a total of six compartments were tested for three heats each over the test period. The compartments were selected so that one inner and one outer compartment were sampled during each run. The compartments were randomly selected.

Historically all *SO*, measurements were conducted in Compartment Number 7. This originated at the request of the State of Kentucky. Compartment 7 was selected by the State due to the location of the installed CEMS probe. Through a baghouse consultant, Gallatin learned that the sulfur

NOT THE RESIDENCE OF THE PARTY

dioxide may be different in concentration in different compartments within the baghouse. This stratification is due in part to the design of the duct work and fan configuration.

As can be seen in the results summary, SO, concentrations vary considerably from compartment to compartment within the baghouse. In order to achieve a more statistically valid average, compartments were selected so that one "inner" and one "outer" compartment were sampled per test run. The inner and outer compartments were selected to achieve a cross-sectional average of all compartments based on engineering judgements.

۔ ک

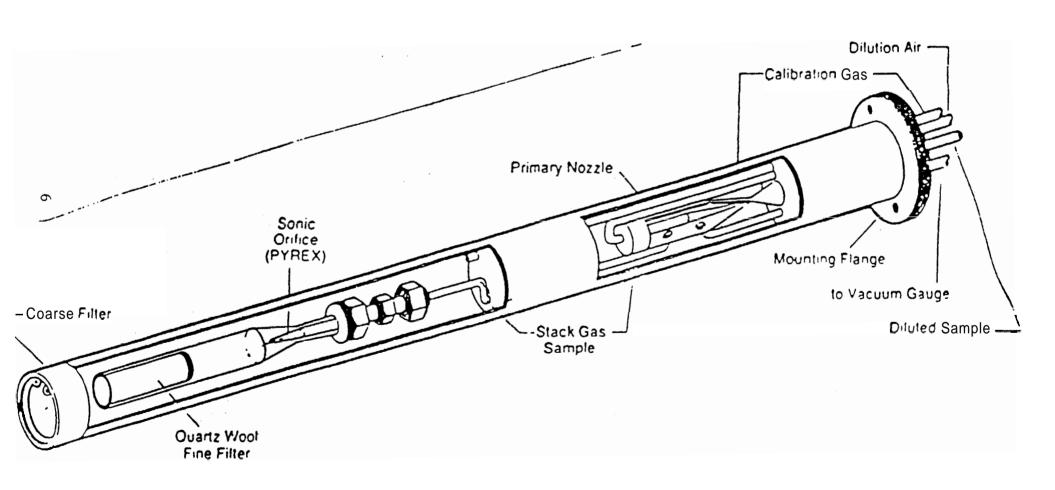


FIGURE 4-2

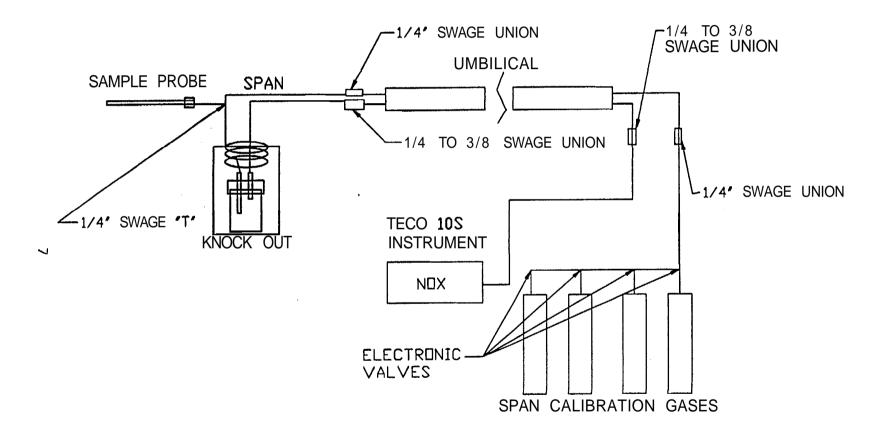


FIGURE 4-3
FULLY EXTRACTIVE WITHDRAWAL SYSTEM - NOx

Data Recording

The primary data recorder was a Telog Model 3314 electronic data recorder which is based on micro-processor technology. This recorder interrogates each analytical instrument signal on a once-every-one-second basis and for this test was instructed to accumulate 60 of these one-second readings and store the average into recorder memory. The data bank consists of a series of one minute averages. In retrieving the data from the computerized database, scaling factors were entered to reflect the appropriate calibrations which occurred immediately before and after collecting the data set of current interest. The analysis of SO, gaseous species was carried out as follows:

Sulfur Dioxide

Sulfur Dioxide concentrations were determined by EPA Method 6C. Two Thermo Environmental Instruments (TEI) Model 43H instruments were used. EPA protocol calibration gases of SO, in air were used at nominal levels of 0, 6, and 12.0 ppm (instrument range 0-15 ppm). Calibrations were performed before and after each test run. EPA Method 6C required correction factors were applied to the data based on the results of the calibrations.

Table 4-1 summarizes the **TEI** Model 43H versus those required by Method 6C.

The second secon

TABLE 4-1

SULFUR DIOXIDE SYSTEM PERFORMANCE SPECIFICATIONS METHOD 6C VS THERMO ENVIRONMENTALINSTRUMENTS MODEL 43H				
METHOD 6C TECO 43H				
Calibration error zero, mid and high gases	Less than +2% span	±1% of full scale		
Sampling system bias for zero, mid and high gases	Less than ±5% span	±1% of full scale		
Interference Check	Less than ±7% of Method 6 result	NO < 3 ppb M-Xylene <2 ppb H2O < 2% of reading		
Calibration Drift	Less than ±3% of span over the run period	±1% of full scale		

Oxides of Nitrogen - Oxides of Nitrogen were measured using EPA Method 7E. Table 4-2 relates the required performance specifications of Method 7E to those presented by the manufacturer of the TEI Model 10S used in these tests. The instrument was calibrated over a nominal range of 0-100 ppm.

Results from the test are expressed in mass per unit time with all NO, converted to the species NO,

At the beginning of the test series zero gas plus two calibration gases were used to perform calibration checks. At the conclusion of each of the three runs, zero gas plus one calibration gas was **used** as a calibration check.

TABLE 4-2

OXIDES OF NITROGEN SYSTEM PERFORMANCE SPECIFICATIONS METHOD 7E VS THERMO ENVIRONMENTAL INSTRUMENTS MODEL 10S				
METHOD 7E TECO 10S				
Calibration error zero, mid and high gases	Less than +2% span	±1% of full scale		
Sampling system bias for zero, mid and high gases	Less than 25% span	21% of full scale		
Zero Drift	Less than ±3% of span over the run period	Negligible		
Calibration Drift	Less than +3% of span over the run period	+1% of full scale		

Flow. Moisture, Oxygen and Carbon Dioxide - In order to convert concentration values of parts per million NO, and SO, into pounds per hour it was necessary to determine the effluent flow rate.

The effluent flow rate was determined in accordance with EPA Methods 1-4.

Since the baghouse exhaust does not meet the criteria of Method 1, the flow was determined on the baghouse inlet. Specifically, there are five inlet ducts to the baghouse. Row was measured on each of the inlet ducts and added together to get the total flow. All fresh air inlets to the compartments tested were blocked during the test. This prevented the influence of dilution air on the gas emission concentrations. Figures 4-4 through 4-8 depict the traverse points used.

In addition to the traverse **data**, moisture runs were conducted **in** accordance with EPA Method 4.

Oxygen and carbon dioxide levels were confirmed to be essentially ambient air (0% CO,, 20.9% O,) using Method 3. A fyrite type analyzer was used for this purpose.

· 😂 🚄

FURNACE DUCT "A" - DIAMETER = 108.0", 12 TRAVERSE POINTS

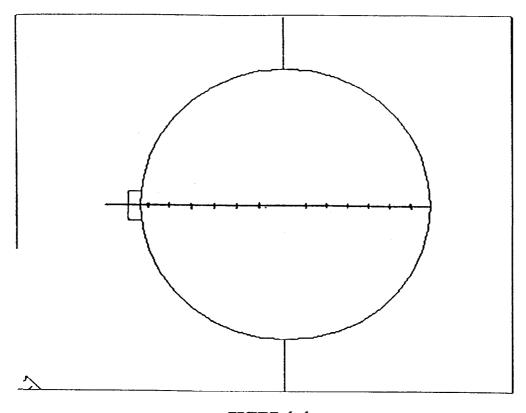


FIGURE 4-4

POINT	DISTANCE FROM WALL	POINT	DISTANCE FROM WALL
1	2.3"	7	69.6"
2	7.2"	8	81.0"
3	12.7"	9	88.9"
4	19.1"	10	95.3"
5	27.0"	11	100.8"
6	38.4"	12	105.7"

FURNACE DUCT "A" TRAVERSE POINTS

FURNACE DUCT "C" - DIAMETER = 120", 16 TRAVERSE POINTS

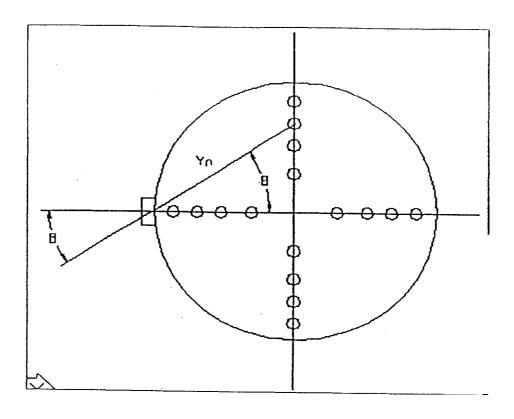


FIGURE 4-5

VERTICAL TRAVERSE		HORIZONTAL TRAVERSE		
POINT	DISTANCE FROM WALL	POINT	θ	Yn
1	3.84	1	43.1	82.2
2	12.6	2	38.3	76.5
3	23.3	3	31.5	70.3
4	38.76	4	19.5	63.6
5	81.24	5	-19.5	63.6
6	96.72	6	-31.5	70.3
7	107.4	7	-3 8.3	76.5
8	116.16	8	-43.1	82.2

FURNACE DUCT "C" TRAVERSE POINTS

LMF DUCT -- DIAMETER = 60.0", 12 TRAVERSE POINTS

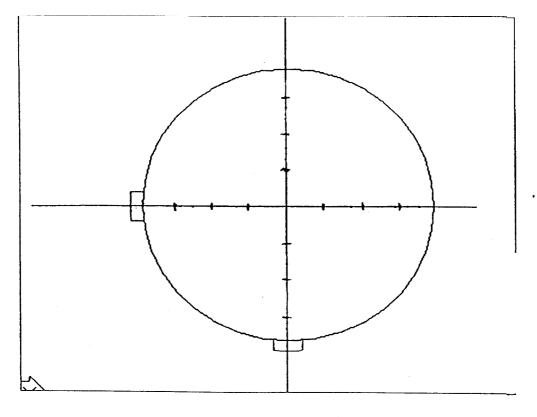


FIGURE 4-6

POINT	DISTANCE FROM WALL
1	2.6*
2	8.8"
3	17.8"
4	42.2*
5	51.2"
6	57.4"

LMF DUCT TRAVERSE POINTS

NO. 1 COLD DUCT - DIAMETER = 192", 12 TRAVERSE POINTS

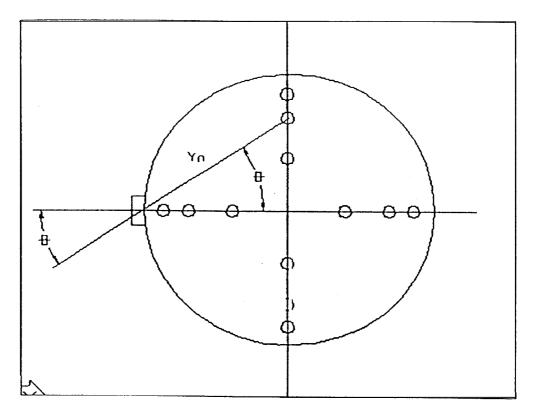


FIGURE 4-7

VERTICAL TRAVERSE		TRAVERSE HORIZONTAL TRAVERSE		
POINT	DISTANCE FROM WALL	POINT	Θ	Yn
1	8.45	1	42.4	129.9
2	28.42	2	35.2	117.4
3	56.83	3	22.2	103.7
4	135.17	4	22.2	103.7
5	163.97	5	35.2	117.4
6	183.55	6	42.4	129.9

NO. 1 COLD DUCT TRAVERSE POINTS

A SECRETARY OF THE SECRETARY

NO. 2 COLD DUCT - DIAMETER = 120", 16 TRAVERSE POINTS

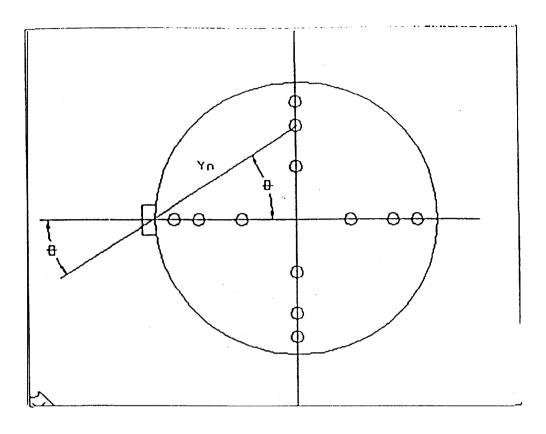


FIGURE 4-8

VERTICAL TRAVERSE		HOF	RIZONTAL TRA	AVERSE
POINT	DISTANCE FROM WALL	POINT	θ	Yn
1	3.84	1	43.1	82.2
2	12.6	2	38.3	76.5
3	23.3	3	31.5	70.3
4	38.76	4	19.5	63.6
5	81.24	5	-19.5	63.6
6	96.72	6	-31.5	70.3
7	107.4	7	-38.3	76.5
8	116.16	8	-43.1	82.2

NO. 2 COLD DUCT TRAVERSE POINTS

4.2 Test Results

The results of the instrumental testing for gaseous emissions are as follows:

ر د ک

TABLE 4-3

SUMMARY OF OXIDES OF NITROGEN EMISSION MEASUREMENTS

GALLATIN STEEL COMPANY GHENT, KENTUCKY

EAF/LMF/CASTER BAGHOUSE May 3,2001

11-20, 0,2001											
RUN NUMBER	HEAT NUMBERS	PRODUCTION	TEST TIME	OXIDES OF NITROGEN (as NO ₂)			OXIDES OF NITROGEN PERMIT LIMITS				
		TONS PER HOUR	Minutes	ppm	Lbs/ hr.	Lbs/ ton	(as NO ₂)				
1	A17462, C16853, A17463	184.8	196	1.8	15.4	0.08					
2	A17465, C16856, A17466	195.0	180	1.7	13.8	0.07	0.51 lbs/ton and				
3	A17467, C16858, A17468	191.6	198	1.6	13.3	0.07	102 lbs/hr.				
Averages ¹			574	1.71	14.19	0.075					

¹ Time Weighted Average

Notes: PPM = Parts per Million V.V

Lbs/Hr = Pounds per Hour Lbs/Ton = Pounds per ton cast

All emissions measurements taken in compartment number 7 (per prior agreement/request from State of Kentucky)

TABLE 4-4

SUMMARY OF SULFUR DIOXIDE EMISSION MEASUREMENTS

GALLATIN STEEL COMPANY GHENT, KENTUCKY

EAF/LMF/CASTER BAGHOUSE

May 3,2001

RUN NUMBER	HEAT NUMBERS	PRODUCTION	TEST TIME	INNER COMPARTMENT SO ₂		OUTER COMPARTMENT SO ₂		AVERAGE	
		HOUR	Minutes	ppm	Lb/Hr	ppm	Lb/Hr	Lb/Hr	Lb/Ton
1	A17462, C16853, A17463	184.8	196	3.20	39.7	2.03	25.2	32.4	0.18
2	A17465, C16856, A17466	195.0	180	2.67	30.2	1.93	21.8	26.0	0.13
3	A17467, C16858, A17468	191.6	198	4.55	52.6	2.72	31.5	42.0	0.22
Averages'		190.35	574	3.50	41.13	2.24	26.27	33.70	0.18

¹ Time Weighted Average

12

Notes: PPM = Parts per Million V.V Lb/Hr = Pounds per How

Lb/Ton = Pounds per ton cast

Run 1 = Compartments 7 (outer) and 19 (inner)

Run 2 =Compartments 2 (outer) and 14 (inner)

Run 3 = Compartments 4 (outer) and 16 (inner)

4.3 Testing Compromises

During performance of the velocity measurements of the baghouse inlet ducts, Ambient Air personnel encountered a port location error on Furnace " Aduct. Although the ports were located at positions 90 degrees from each other, one of these ports was located too close to Furnace Duct "C" and therefore inaccessible. After performing a traverse across the only accessible port on Furnace "A" duct, it was apparent that the velocity measurements were so similar as to negate any concerns of flow stratification. This test compromise at the time of the test and in the opinion of the test team would not affect the integrity of the test data and therefore testing was not halted.

APPENDICES

APPENDIX A - Sample Calculations - Gaseous Emissions

APPENDIX B - Instrument Calibration Data - Baghouse Testing

APPENDIX C - Gaseous Emission Data - Baghouse Testing

APPENDIX D - Flow Rates

ر س ،

APPENDIX E - Field Data Sheets

APPENDIX F - Production Data, Test Notification Letter

APPENDIX G - Project Participants

APPENDIX A SAMPLE CALCULATIONS

Gaseous Emissions Sample Calculations

- I. Concentrations as calculated from method 6c
 - A. Co, Average of initial and final system calibration bias check responses for the zero gas, ppm.

Run 1, SO2
Co =
$$(0.0+0.0)/2 = 0.0$$

B. Cm, Average of initial and final system calibration bias check responses for the upscale calibration gas.

C. Cma, Actual concentration of the upscale calibration gas ppm.

D. Cgas, Effluent gas concentration, dry basis, ppm.

- House the last the

A. SO2 Emissions

$$lb/hr. = \frac{(ppm)*(Mol.Wt.)}{385e6} * (flowrate)(60 min/hr)$$

Example: Mol. Wt. = 64, ppm = 1.61, flowrate = 121875 SCFMD

$$lb/hr SO2 = 19.9$$

IV. Emission Rates (lb/ton)

S 22 2

Lb/ton = (inner SO, lbs/hr. + outer SO, lbs/hr.) / 2 / (tons per hour produced)
=
$$(19.9 + 18.2)$$
 / 2 / 184.8
= 0.10

Note: The average of the inner and outer **SO**, emissions was used as the reported pounds per hour emitted.

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

EXAMPLE CALCULATIONS

Plant Gallatin Steel
Location Ghent, Kentucky
Stack Cold Duct No. 1
Run Date 5-3-01

Run Date 5-3 Run Number 1

1. Stack Pressure, PS Where: PB = Barometric Pressure, inches Hg

PG = Static Pressure, stack, inches

 $PS= PB + (PG \div 13.6)$ H20

PB= 29.74 PG= -3.45

PS= 29.49

2. Meter Pressure, PM Where: DH = Average meter orifice pressure

differential, inches H20

 $PM = PB + (DH \div 13.6)$

DH= 1.741

PM= 29.87

3. Volume Water Vapor, **VWV** Where: VC = Volume condensate, liquid

volume plus gain in silica gel

VWV= 0.04707 x VC weight, grams

VWV= 1.323

4. Metered Volume corrected Where: VM = Metered volume, meter to standard condition, Vstpd conditions

PM = See equation 2

Vstpd = 17.65 x VM x PM x Y TM = Temperature of meter, degrees **Rankin**

Vstpd = 62.442

Ambient Air Services, **Inc.**Environmental Consultants

106 Ambient Air Way Starke, Florida **32091**

(904) 964 - 8440

(904) 964 - 6675 fax

EXAMPLE CALCULATIONS - CONTINUED

Plant Location Stack Gallatin Steel Ghent, Kentucky Cold Duct No. 1

Run Date

5-3-01

Run Number

5-3-0 1

5. Total Volume of sample, VT

Where:

VWV = See equation 3

Vstpd = See equation 4

VT = VWV + Vstpd

VT = 63.765

6. Fraction water vapor in gas

Where:

WW = See equation 3

stream, W

VT = See equation 5

W= VWV ÷ VT

W = 0.021

7. Fraction Dry Air, FDA

Where:

W = See equation 6

FDA= 1.0 - W

FDA = 0.979

8. Molecular Weight of stack

gas, dry, MD

 $MD = (0.44 \times \%CO2) + (0.32 \times \%O2) + (0.28 \times \%N2) + (0.28 \times \%CO)$

CO2=

O2= 20.9

N2= 79.1 CO= 0.0

and the second s

0.0

≥ MD= 28.84

Ambient Air Services, Inc. Environmental Consultants

106 Ambient Air Way Starke, Florida 32091

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

√H = Average of the square roots of the velocity heads, in. H20

TS = Temperature of the stack,

EXAMPLE CALCULATIONS - CONTINUED

Plant Gallatin Steel
Location Ghent, Kentucky
Stack Cold Duct No. 1
Run Date 5-3-01

Run Date 5-3-1 Run Number 1

9. Molecular weight of stack Where: MD = See equation 8 W = See equation 6 FDA = See equation 7

 $MS= (MD \times FDA) + (18 \times W)$

MD= 28.84

FDA= 0.979

W = 0.021

MS= 28.61

10. Specific Gravity of Gas, Where: MS = See equation 9

relative to air, GS

GS= MS ÷ 28.99

GS = 0.987

11. Velocity of stack gas, feet Where: CP = Pitot Coefficient

per minute, U

U= 174 x CP x \sqrt{H} x $\sqrt{\frac{TS \times 29.92}{GS \times PS}}$

√ **GS × PS** degrees RankIn PS = See equation 1

U= 4821.5 FPM GS = See equation 10

Ambient Air Services, Inc. **Environmental Consultants**

106 Ambient Air Way Starke, Florida 32091

(904) 964 - 8440

(904) 964 • 6675 fax

EXAMPLE CALCULATIONS - CONTINUED

Plant **Locat**ion Stack

Gallatin Steel Ghent, Kentucky Cold Duct No. 1

Run Date Run Number 5-3-01 1

Where: 12. Stack Gas Flow Rate, Stack conditions, cfm, QS

AS = Cross sectional area of stack at sampling location, sq.ft.

U = See equation 11

QS= U x AS

QS= 969420 ACFM

> Where: QS = See equation 12

> > FDA = See equation 7

 $QD = QS \times FDA$

13. Stack Gas Flow Rate.

dry, QD

QD= 949306 ACFMD

14. Stack Gas Flow Rate, STP, Where: QD = See equation 13 PS = See equation 1 dry, Qstpd

TS = Temperature of stack. 528 × QD × PS Qstpd= degrees Rankin

Qstpd= **881409** SCFMD

TS × 29.92

15. Stack Gas Flow Rate, STP, Where: Qstpd = See equation 14 wet, Qstpw FDA= See equation 7

Qstpw=

۔ ٽ ،

Qstpd FDA

Qstpw= 900084 SCFMW

APPENDIX B

INSTRUMENT CALIBRATION DATA

Calibration Gas Certificates

93.8 pprn NO,

54.2 pprn NO,

24.9 ppm NO,

10.21 pprn NO,

5.94 pprn SO,

12.07 pprn SO,

- Calibration Drift/Error

NO, Compartment 7

SO, Inner Compartments

SO, Outer Compartments

- Field Test Log

SPECTRA GASES INC.

3434 Route 22 Wed • Branchburg, NJ 08876 USA Tel.: (908) 252-8300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 50 Industrial Drive • Alpha, NJ 08865

CERTIF	ICATE	OF AN	IALYSIS
--------	-------	-------	---------

EPA PROTOCOL MIXTURE

PROCEDURE#: G1

CUSTOMER:

Ambient Air Service

CYWNDER #:

CC18332

SGI ORDER#:

157906

CYLINDER PRES: 2000 PSIG

ITEM#:

CGA OUTLET:

660

P.O.# :

82100-1

CERTIFICATION DATE: 9/7/2000

EXPIRATION DATE: 9/6/2002

COTTES CATION LICTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	8/25/2000	9.953 ppm	10.00 pprn	+/- 1%
	9/7/2000	10.04 ppm		
Nitric Oxide	8/26/2000	10.20 ppm	1021 ppm	+/- 1%
!	9/6/2000	10.22 ppm		
NOx		1	10.21 ppm	Reference Value Only
	<u> </u>			<u> </u>

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	OMIS-1	CC118836	9.93 ppm
Nitric Oxide	GMIS-1	CC117561	20.16 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Carbon Monoxide	Nicolet 560	ADL9600109	FTIR	8/30/2000
Nitric Oxide	Teco 42C	42C-64942-345	Chemi	8/15/2000
				· · · · · · · · · · · · · · · · · · ·

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

DATE:

9/7/2000

SPECTRA GRSES INC.

3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Atoha, NJ 08865

CERTIFICATE OF AI	N٨	٩L	Υ	S	IS
-------------------	----	----	---	---	----

EPA PROTOCOL MIXTURE

PROCEDURE # : G1

CUSTOMER:

Gailatin Steel Company

CYLINDER#:

SGI ORDER # :

144936

CC109962

CYLINDER PRES: 2000 PSIG

ITEM#:

72399-1

CGA OUTLET:

660

P.O.#:

CERTIFICATION PATE: 8/10/99 EXPIRATION DATE:

8/10/2001

CERTIFICATION HISTORY

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY	
Carbon Monoxide	8/2/99 8110/90	24.07 pprn 26.18 ppm	26.1 ppm	+/- 1%	
Nitric Oxide	8/2/99 8/10/99	24,79 ppm 24.88 ppm	24.8 ppm	+/- 1%	
NOx			24.9 pprn	Reference Value Only	
en en en en en en en en en en en en en e					
	1				

BALANCE .

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCESTANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	NTRM-81679.	CC88366	97,4 ppm
Nitric Oxide	NTRM-81684	CC79984	98,6 ppm
	"		·
		·	

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION		
				DATE(S)		
. Carbon Monoxida	Horiba VIA-510	670423011	NDIR	7/23/90		
Nitric Oxide	Teco 10	10AR-34979-249	Chemi	7/20/99		

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOTUSE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 160 PGIG.

ANALYST .:_

FRED PIKULA

DATE:

8/10/99

SPECTRA GASES INC.

3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 952-0524 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE # : G1

CUSTOMER:

Gallatin Steel Company

CYLINDER # :

CC110128

SGI ORDER #:

144536

CYLINDER PRES: 2000 PSIG

ITEM#:

CGA OUTLET:

660

P.O.#:

72300-1

CERTIFICATION DATE: 8/10/99 EXPIRATION DATE:

8/10/2001

CERTIFICATION LICTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	8/2/99 8/10/99	64.89 ppm 54.70 ppm	54.7 ppm	+I- 1 %
Nitric Oxide	8/2/99 8/10/99	53.74 ppm 64.16 ppm	53.9 ppm	+/• 1 Y₀
NOx			54 2 ppm	Reference Value Only

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	NTRM-81679	CC88366	97.4 ppm
Nitric Oxide	NTRM-81684	CC79984	98.6 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SEWI	DETECTOR	CALIBRATION DATE(S)
Carbon Monoxide	Horiba VIA-510	570423011	NDIR	7/23/99
Nitric Oxide	Teco 10	10AR-34978-249	Chemi	7/20/99
		•		
	•			

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 160 PSIG.

ANALYST:

۔ ڪ ۔

FRED PIKULA

DATE

8/10/99

ISO CERTIFICATION: 9002

Air Products and Chemicals, Inc. * 12722 S. Wentworth Avenue, Chicago, 1L 60623

EPA PROTOCOL GAS STANDARD CERTIFICATE OF ANALYSIS:

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

DURBS3 Bar Code No: Cylinder Mo: 809110934

TD0Z/6Z/90 Expiration Date: Certification Date: 06/29/1999 Cylinder Pressure*: 2000 paig

Batch No: 861-59188 OKGGK NO: 824-024614-01

кетеве:

FL 32254-1509

YCK SOMITTE 5837 W. STH STREET

DOKKYK TENSEN

CHECOMONI

YIE PRODUCTS & CHEMICALS, INC.

ANALYTICAL INSTRUMENTATION				suav	BENCE SLYND	T38	MCERTRATION	CERTITED CO	
Γ	•								
	AnomorusesH	isal	Serial	instrument	bhebnet2	brahnst2	Cyl inder	beiti1790	
Γ	Jaqi ani 14	Calibration	Number	Make/Node(Concentration	ədKi	19chault	Concentration	Smerognos
	CHEMITTHKINESCENCE	66/81/90	25858582	LHEISHO EKAIKO	HAY 1.021	S I NO	26912 9 616841	TERMINET.	MITRIC OXIDE
I	NOW DESDERSIVE DETRATOLE	66/21/90	£-7SE8	BOWAR 721M PBO	NGG 7.981	MSTM	309150992AAL	MM S.1. 2.97	anting dioxide

Balance Gas MITROCEN MOS (Reference Value Only):

* STRUDYED SHOOT'D NOT BE USED BELON 150 PSIG

8'Eb= *ON

Approved By:

(16921) 172Ylenk

SPECTRA GRSES INC.

3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865

CF	RT	IFI	CA	TF	OF	AN	ΙΑΙ	YSI	S
\sim			\sim		\sim	\neg ı ı	-		\sim

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

Ambient Air Services

CYLINDER #:

CC20230

SGI ORDER #:

160806

CYLINDER PRES: 1500 PSIG

ITEM#:

CGA OUTLET:

660

P.O.#:

Verbal

CERTIFICATION DATE: 1111312000

5/13/2001

EXPIRATION DATE:

CERTIFICATIONHISTORY

	DATE OF	MEAN	CERTIFIED	ANAL YTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Sulfur Dioxide	1012312000 1111312000	5.916 ppm 5.966 ppm	5.94 ppm	+/- 2%

BALANCE

Air

PREVIOUS CERTIFICATION DATES: None

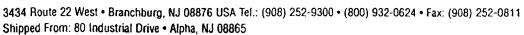
REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Sulfur Dioxide	GMIS-1	CC106646	24.67 ppm
····			

INSTRUMENTATION

COMPONENT	MAKUMODEL	SERIAL#	DETECTOR	CALIBRATION Date(s)
Sulfur Dioxide	Nicolet 560	ADL9600109	FTIR	1012412000
				,

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.


ANALYST:_

DATE: 1111312000

FRED PIKULA

SPECTRA GASES INC.

CEI	RTI	IFI	$C\Delta^{-}$	ΓF	OF	ΔΝ	JΔ	$I \setminus$	/21	2
\cup LI	\ I I		\sim		OI.	\sim 1	\mathbf{v}			J

EPA PROTOCOL MIXTURE

PROCEDURE #: GI

CUSTOMER:

Ambient Air Services

CYLINDER#:

CC85129

SGI ORDER #:

0005686

CYLINDER PRES: 2000 PSIG

ITEM#:

1

CGA OUTLET:

660

P.O.#:

9589

CERTIFICATION DATE: 4/27/2001

EXPIRATION DATE:

10/27/2001

CERTIFICATIONHISTORY

OLIVIII IO/VIIOIVIIIO IOIVI				
	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Sulfur Dioxide	6/29/2000	12.12 ppm	12.07 ppm	+/- 1%
	4/27/2001	12.03 ppm		

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Sulfur Dioxide	GMIS-1	CC113875	19.78 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION DATE(S)
Sulfur Dioxide	Horiba VIA-510	851221093	NDIR	4/19/2001

THIS STANDARO WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. **00** NOT USE **THIS STANDARD** IF THE CYUNOER PRESSUREIS LESS THAN 150 **PSIG.**

ANALYST:	11.
	ERED PIKLII A

DATE:	4/27/2001

GHENT, KENTUCKY

SUMMARY OF NOX CALIBRATIONS 3-May-01

		5 Way 01		
INSTRUMENT RANGE, PPM	100			
CALIBRATION GAS PPM	5/3/2001 8:00 INITIAL CALIBRATION	5/3/2001 13:05 END RN 1	5/3/2001 18:10 END RUN 2	5/3/01 22:17 END RUN 3
0.0	-0.7	-0.7	-0.7	-0.8
93.8	92.5	NIA	NIA	N/A
54.2	56.0	56.2	53.3	54.3
24.9	25.4	NIA	NIA	NIA
10.0	9.8	N/A	NIA	N/A
CALIBRATI	ON ERROR	((INSTRUMENT RESPONS	E-CALIBRATION GAS VALU	IE/INSTRUMENT RANGE)X100
0.0	-0.7	-0.7	-0.7	-0.8
93.8	-1.3	NIA	NIA	N/A
54.2	1.8	2.0	-2.7	0.1
24.9	0.5	N/A	N/A	NIA
10.0	-0.2	NIA	NIA	NIA
CALIBRAT	TION DRIFT	((FINAL CALIBRATION	I - INITIAL CALIBRATION)/II	NSTRUMENT RANGE)X100
0.0	N/A	0.0	0.0	0.0
93.8	N /A	NIA	NIA	NIA
54.2	N/A	0.1	-2.9	-1.7
24.9	NIA	NIA	NIA	NIA
10.0	NIA	N/A	NIA	NIA
ZERO BIA	S CHECKS	(SAMPL	E SYSTEM-DIRECT)/R	ANGEX100
SAMPLE ZERO	DIRECT ZERO		AS	
N/A	NIA	N/A	INITIAL	†
NIA	N/A	NIA	FINAL	ALL CAL
CALIBRATION BIAS CHECKS				GASES INJECTED
CALIBRATION GAS, PPM	N/A			TO PROBE TIP ONLY
SAMPLE	DIRECT	Bl	AS	
N/A	NIA	NIA	INITIAL	
N/A	N/A	NIA	FINAL	

GHENT, KENTUCKY

SUMMARY OF SO2 CALIBRATIONS - INNER COMPARTMENTS 3-May-01

		3-1VIay-01			
INSTRUMENTRANQE, PPM	15				
CALIBRATION GAS PPM	5/3/2001 8:30 INITIAL CALIBRATION	5/3/2001 7:10 PRE RUN 1	5/3/2001 1 2:45 END RUN 1	5/3/01 17:50 END RUN 2	
0.0	0.0	0.0	0.1	0.1	
12.1	12.3	NIA	N/A	N/A	
5.9	5.9	5.9	5.8	5.8	
CALIBRATI	ONERROR	((INSTRUMENT RESPO	NSE-CALIBRATION GAS VALU	JE/JINSTRUMENT RANGE)X100	
0.0	-0.1	-0.1	0.4	0.3	
12.1	1.5	NIA	NIA	NIA	
5.9	-0.1	-0.1	-0.7	-0.7	
CALIBRAT	IONDRIFT	((FINAL CALIBRATION - INITIAL CALIBRATION)/INSTRUMENT RANGE)X100			
0.0	N/A	0.0	0.5	-0.1	
12.1	N/A	NIA	N/A	NIA	
5.9	N/A	-0.1	-0.6	0.1	
ZERO BIA	\$ CHECKS	(SAMI	PLE SYSTEM-DIRECT)/R	ANGEX100	
SAMPLE ZERO	DIRECTZERO		BIAS		
NIA	N/A	N/A	INITIAL	7	
N/A	N/A	NIA	FINAL	ALL CAL	
CALIBRATION BIAS CHECKS				GASES INJECTED	
CALIBRATION GAS, PPM	N/A			TO PROBE TIP ONLY	
SAMPLE	DIRECT		BIAS		
N/A	N/A	N/A	INITIAL		
N/A	N/A	N/A	FINAL		

GHENT, KENTUCKY

SUMMARY OF SO2 CALIBRATIONS INNER COMPARTMENTS 3-May-01

INSTRUMENTRANGE, PPM	15			
CALIBRATION GAS PPM	5/3/2001 8:30 INITIAL CALIBRATION	5/3/2001 21:50 END RUN 3		
0.0	0.0	0.0	N/A	N/A
12.1	12.3	N/A	N/A	N/A
5.9	5.9	5.9	N/A	N/A
CALIBRAT	ION ERROR	((INSTRUMENT RESPO	NSE-CALIBRATION GAS VA	ALUE/INSTRUMENT RANGE)X100
0.0	-0.1	0.1	NIA	N/A
12.1	1.5	NIA	NIA	NIA
5.9	-0.1	0.0	NIA	NIA
CALIBRAT	ION DRIFT	((FINAL CALIBRATI	ON-INITIAL CALIBRATION	I I)/INSTRUMENT RANGE)X100
0.0	NIA	0.2	NIA	NIA
12.1	NIA	NIA	NIA	NIA
5.9	NIA	0.1	NIA	NIA
	S CHECKS	_ (SAMF	LE SYSTEM-DIRECT	
SAMPLE ZERO	DIRECT ZERO		BIAS	
N/A	N/A	NIA	INITIAL	
N/A	N/A	N/A	FINAL	ALL CAL
	BIAS CHECKS			GASES INJECTED
CALIBRATIONGAS, PPM	N/A			TO PROBE TIP ONLY
SAMPLE	DIRECT		BIAS	
N/A	N/A	N/A	INITIAL	
N/A	N/A	NIA	FINAL	

GHENT, KENTUCKY

SUMMARY OF SO2 CALIBRATIONS - OUTER COMPARTMENTS 3-May01

		3-iviayu i		
INSTRUMENT RANGE, PPM	15			
CALIBRATION GAS PPM	5/3/2001 8:30 INITIAL CALIBRATION	5/3/2001 7:10 PRE RUN 1	5/3/2001 12:45 END RUN 1	5/3/01 17:50 END RUN 2
0.0	-0.2	-0.1	-0.1	-0.1
12.1	12.4	N/A	N/A	N/A
5.9	5 . 9	5 . 9	5.7	5.8
CALIBRATI	ON ERROR	((INSTRUMENT RESPO	NSE-CALIBRATIONGAS VALU	JEYINSTRUMENT RANGE)X100
0.0	-1.1	-0.3	-0.9	-0.3
12.1	2.1	N/A	N/A	N/A
5.9	-0.3	-0.5	-1.5	-0.7
CALIBRAT	IONDRIFT	((FINAL CALIBRAT	TION - INITIAL CALIBRATION)/II	NSTRUMENT RANGE)X100
0.0	N/A	0.7	-0.5	0.5
12.1	N/A	N/A	N/A	N/A
5.9	N/A	-0.2	-1.0	0.8
ZERO BIA	S CHECKS	(SAM	PLE SYSTEM-DIRECTYR	ANGEX100
SAMPLE ZERO	DIRECT ZERO		BIAS	
N/A	N/A	NIA	INITIAL	
N/A	N/A	NIA	FINAL	ALL CAL
CALIBRATION				GASES INJECTED
CALIBRATION GAS, PPM	N/A			TO PROBE TIP ONLY
SAMPLE	DIRECT		BIAS	
N/A	N/A	N/A	INITIAL	
NIA	N/A	N/A	FINAL	

GHENT, KENTUCKY

SUMMARY OF SO2 CALIBRATIONS - OUTER COMPARTMENTS 3-May-01

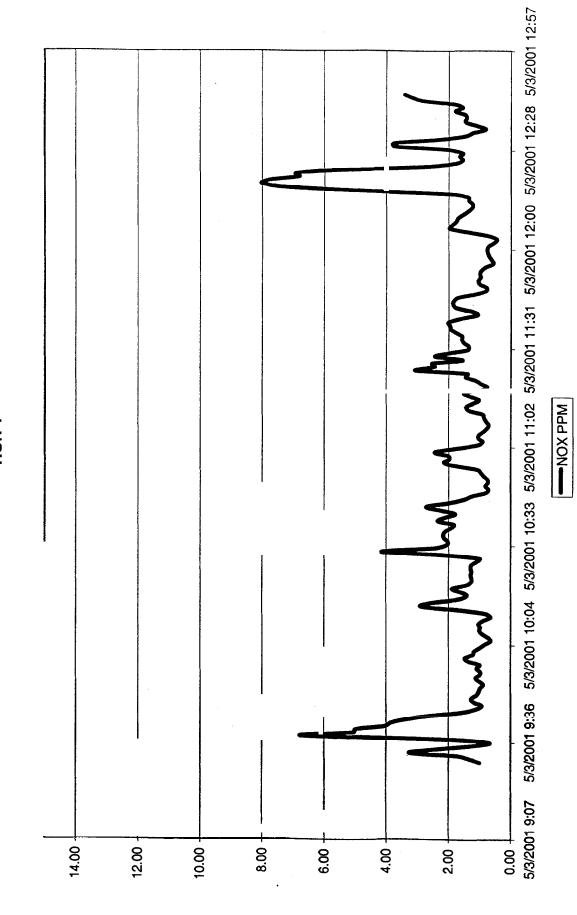
		0 21200		
INSTRUMENTRANGE, PPM	15			
CALIBRATION GAS PPM	5/3/2001 8:30 INITIAL CALIBRATION	5/3/2001 21:50 END RUN 3		·
0.0	-0.2	-0.1	NIA	NIA
12.1	12.4	NIA	NIA	NIA
5.9	5.9	5.8	NIA	NIA
CALIBRATI	ON ERROR	((INSTRUMENT RESPO	DNSE-CALIBRATION GAS V	/ALUE//INSTRUMENT RANGE)X100
0.0	-1.1	-0.8	NIA	NIA
12.1	2.1	NIA	NIA	NIA
5.9	-0.3	-0.7	NIA	NIA
CALIBRAT	TIONDRIFT	((FINAL CALIBRAT	TION - INITIAL CALIBRATIO	N)/INSTRUMENT RANGE)X100
0.0	NIA	0.3	N/A	N/A
12.1	NIA	NIA	N/A	N/A
5.9	NIA	-0.3	N/A	N/A
ZERO BIA	S CHECKS	(SAN	IPLE SYSTEM-DIREC	TVRANGEX100
SAMPLE ZERO	DIRECTZERO	•	BIAS	
N/A	NIA	NIA	INITIAL	
N/A	N/A	N/A	FINAL	ALL CAL
CALIBRATION	BIAS CHECKS			GASES INJECTED
CALIBRATION GAS, PPM	N/A			TO PROBE TIP ONLY
SAMPLE	DIRECT		BIAS	
N/A	N/A	N/A	INITIAL	
N/A	N/A	N/A	FINAL	

2			Service Company Com	Service Services
	GALLATIA	Mellow dilut	SD2: 0-15 ppm	CH 317, 418
		. • ·	100x, 0-100 fpm	CH 216 \ No.1
I IME	PARAM			CH 145 ORCH
0530	SO ₂ -1	STD, CONC		Notes
0530	SQ-2	Ø	0.025 V	channel 447
0 6 5 8	502-1	5,94	0.025V	n #8
0558	SD2-2	5.94	0,401 V	
0645	SO ₂ - 1	12,07	0,400 V	to the special
0645	SO ₂ -2	12.07	0.810V 0.812V	
0800	Both SO2-			Oz-1: Comp. 7, yellow
- 0830	No_{x}	93.8	9.60 V= 92.6	02-1: Comp. 7, yellow 02-2: Comp. 19, black
0855	NOX	54,2	5.95 = 56.0	Channel #6
0855	CO	54.7	0,531 = 55.1	01 1
0908	CO	25.1	0,252 24.4	Channel #5
0908	NOX	24.9	2.872 = 25.3	
0916	Co	10,0	0.115 9.3	
0916	NOx	10,21	1.317 9.8	CO - NOZ
0920	CO	Ø	0.039 1.0	
0920	NOX	Ø	0,265 = -1.0	
0925	NO _x —	ONLINE		
. 0938 - 12		ONLING		
:	S02-1	Ryn 1)		3 Heats
4	SO ₂ -2	Ø Ø	0.02 pm	Cu
1255		5,94	-0.15 pm	ولا
1255 5		5,94 5,94	5.75	
	Both SOz -	ONLINE	5.51	
	NOX	Ø	\-\(\)	scenario #1)
1310	Co	Ø	0.10 -0.7	
	The state of the s		Section 1	

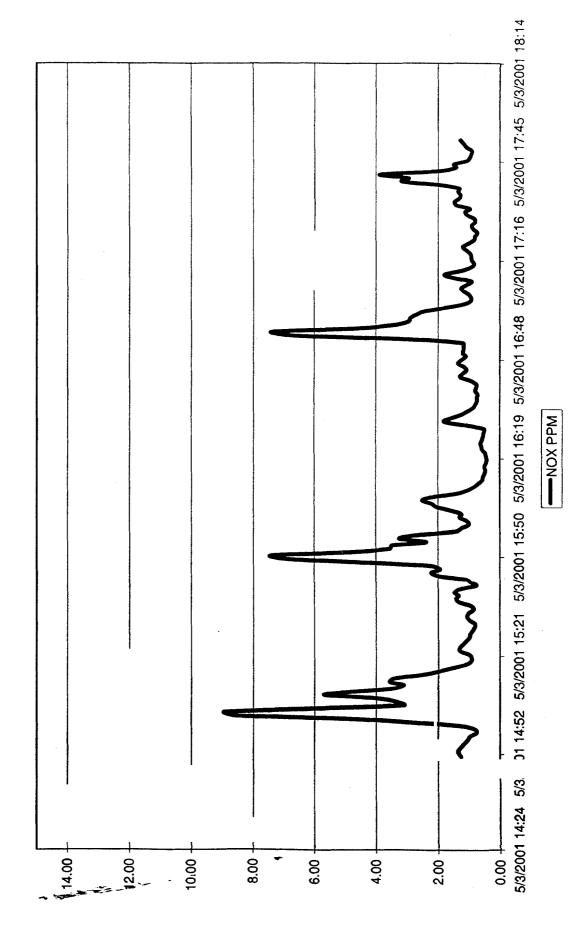
Yellow dilution umbilical = Black dilution umbilical =

			3 (18)			
1	TIME	PARAM		STD, CONC.	Datalogger	Notes
1 0.	1320	Co		54.7	52.te 56.2	
	1317	NO×		54.2	57.0 /	•
1	1325	Co		BNLINE		
18	1325	100x		ONLINE		
	1430	502-1		φ	0.028	Recheck
10	1430	SO ₂ -2		φ	8.0	((
10	1442	502-1	YELLOW	5.94	5.98	и
10	1442	SO2-2	BLACK	5,44	5,88	Ы
7	1453	502-1		- ON LINE		S Comp. 2
70	1453	SO2-2				S Comp. 2 Comp. 14
-0.	1458	· · · · · · · · · · · · · · · · · · ·		start Pun	2	
-0	1752			END -		
-0	1756	SO2-1		$arphi_{\cdot}$	0.024	
-0	1756	SO ₂ -2		, , , , , , , , , , , , , , , , , , ,	-,056	
	1804	SO2-2		5.94	5.92	
	1804	SO2-2		5,94	5,84	
4	1811			54.7	54.05 38	.8
7 4 9	18/0	$NO_{\mathbf{x}}$		54.2	54.2 53.3	· · · · · · · · · · · · · · · · · · ·
	1815	00		Ø	0.15 -0.2	
4	1815	NO_{x}		Ø	0,07 -0.8	
 ساهند	1836	So ₂ -1		- 00 6108	<u> </u>	Comp. 4 yellow Comp. 16 black
	1836	SO ₂ - 2				Coup. 16 black
		<u>.</u>	<u>-</u>	Start Ru	in 3	
٠. ا	2142	: -	,,	End Ro	ur3	
. هر						
	`. <u>`</u> _	~				

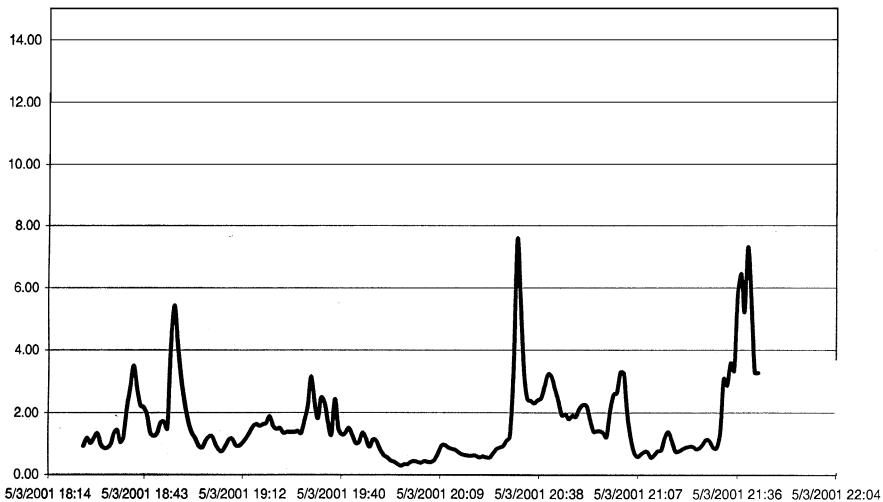
1				\ / /	Notes
10	TIME	PARAM	STD, CONC	Datalogger	100 405
10	2200	SO2-1	<u> </u>	-0.024	v.
10	2200	SO ₂ -2		-0,176	
10	2210	502-1	5.94	5.45	
10	2210	502-2	5,94	5,83	•
O	2217	(0	54.7	54.2 38.	
70	2217	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	54,2	55.2 94.	~~~ ~~
70	2221	Co	ϕ	-0.15 -0.6	
000	2221	N_{∞}	Ý.	0.12 -0.7	7
70		<u>.</u>			
0000000		i • •			
-0		1			
•		•			
C		÷			
-0		÷			
4					


APPENDIX C

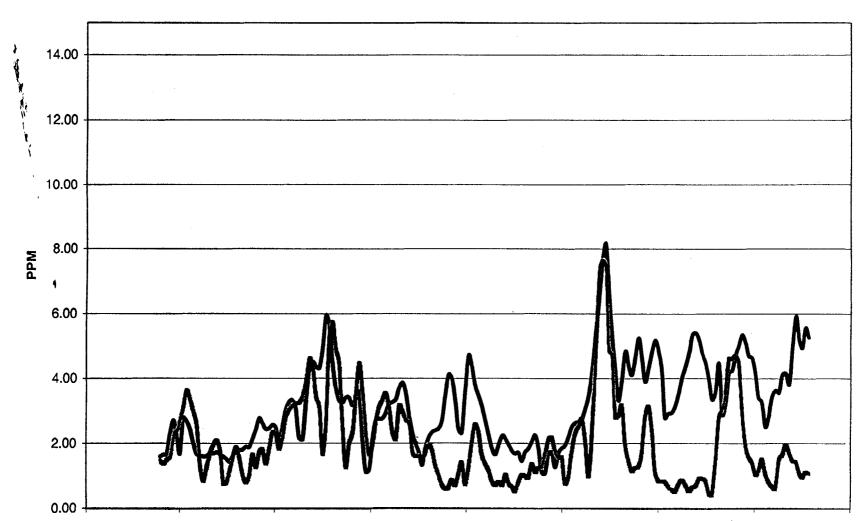
GASEOUS EMISSION DATA SO, and NO,


- DATAGRAPHS NO, - Run 1, Run 2, Run 3 SO, - Run 1, Run 2, Run 3
- DATA SUMMARY 5/3/01 **05:00** 5/3/01 **22:45**

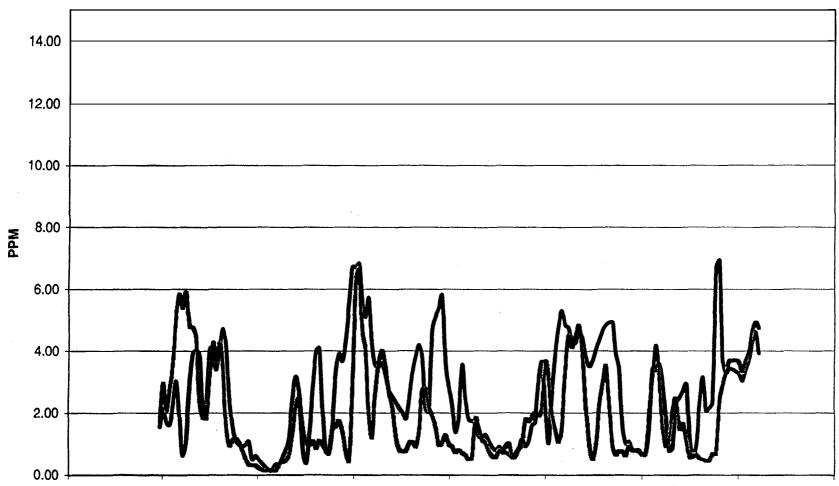
and the second s


GALLATIN STEEL NOX RUN 1

GALLATIN STEEL NOX RUN 2

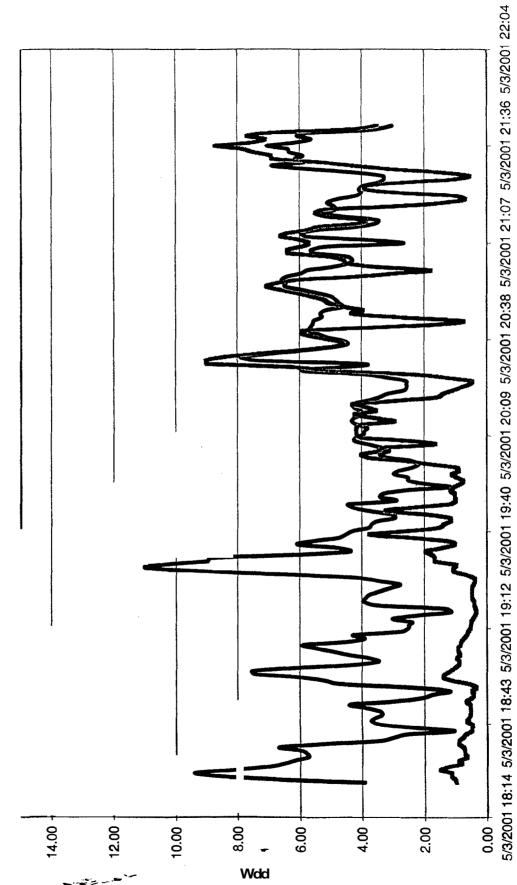


GALLATIN STEEL NOX RUN 3


NOX PPM

ĺε

5/3/2001 9:07 5/3/2001 9:36 5/3/2001 10:04 5/3/2001 10:33 5/3/2001 11:02 5/3/2001 11:31 5/3/2001 12:00 5/3/2001 12:28 5/3/2001 12:57


SO2 COMP 7 SO2 COMP 19

5/3/2001 14:24 5/3/2001 14:52 5/3/2001 15:21 5/3/2001 15:50 5/3/2001 16:19 5/3/2001 16:48 5/3/2001 17:16 5/3/2001 17:45 5/3/2001 18:14

SO2 COMP 2 SO2 COMP 14

GALLATIN STEEL SO2 RUN 3

SO2 COMP 4 -----SO2 COMP 16

⇉
₽
Ξ
ž
ď.

	α	MOT/BELL MOT/BELL	
	EMISSION FACTOR	NOL/SETS XON	
	OISSIM		
1	w	MONTOUCHO PHARMOT	
		AVERAOR BO2 LB6AR	
		FIHE &L	
	SHONS		
,	MASS EMISSIONS	MI SOR	
	3 	PHARAL! XON	
		JATOT.	
		D BOYNUM	
	FLOW MEASURMENTS SCFM	A SOAMBUR	
-	SURMES		
: TES	W MEA	#n	
ANCE	ıξ	5-0100	
MPL		1-0100	
GALLATIN STEEL SO2MOX C(MPLIANCE TEST	89	TUO ECOE	######################################
SOZA	CORRECTED PPM VALUES	M 200	通讯作品 医克朗特氏 医克朗特氏 医克朗特氏征 医克朗氏征 医克克氏征 医克克氏征 医克克氏征 医克克克氏征 医克克克氏征 医克克克氏征 医克克氏征 医克克克氏征 医克克克氏征 医克克克氏征 医克克氏征 医克克氏征 医克克氏征 医克克氏征 医克克氏征 医克克氏征 医克克氏征 医克克氏征 医克克克氏征 医克克克氏征 医克克氏征 医克克氏征 医克克克氏征 医克克克氏征 医克克克氏征 医克克氏征 医克克氏征 征 医克克氏征 医克氏征 医
TEEL	RECTE		
S N	8	7 - XOH	
Ă	S CHOOLS	•	
₽ S			
	ON CO		
	KE .	£146	
	CONTRACT	n	
		NUR R38MUN	### ### ### ### ### ### ### ### ### ##
	COMMENTS	206	### ##################################
		жом	
	TION PPM	7UO 2008	
	OBSERVED CONCENTRATION PPA	MK 8006	
	PAED CO	-	
	*	WOO KON	第四日の大学 19 19 19 19 19 19 19 1
		3MIT	202001 100 00 00 00 00 00 00 00 00 00 00 00

£M88	 	
<u>.</u>	PRODUCTION	
	NVERAOR MARRADE	
	FHAREL	
MA88 EMISSIONS	NH-YSETI HS ZOS	
MA88	WHEEL KON	
	JATOT	
8CFM	о вомиялы	
JRMENTS	FURNINCE A	
FLOW MEABURMENTS BCFM	#n	
FLC	\$-01100	
	t-07000	
ALUES	TV0 £08	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
CORRECTED PPM VALUES	ME ZOB	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
CORREC	T-XON	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1		
ECTIONS	60	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
N CORRECTIONS	61	
	40	
CALIBRATION	276	
ЫŢ,	7	444444444444444444444444444444444444444
	NUR R364UN	Ityma
COMMENTS	206	# # # # # # # # # # # # # # # # # # #
	XON	
ATION PPM	Tuo soe	
OBSERVED CONCENTRATION PPM	M COS	
EMED	L SINCO XON	
ğ	1	∤
	3WIT	1000000 1 1 1 1 1 1 1

8810N FACTOR

HOT/E &L

THE POST IN THE PO
WYSS EMBRIONS EMBRION EVELUGE

5/16/2001

10R	-	SOR SOR		g	2 2	N.	2 2	8	ă (8	91.0	0 0 1	670	0.27		0.10	1.0	2	8	Z :	0.18	0.10	ដ	Q :	. 0	5.0	0.12	= 5	9 6	0.14	9 1	0.12	1.0	9.14	0 0	9.14	2 0	0.15	8 2	0.20	2,0	2 2	0.12	8 6	800	9 -	8	8 1	0.0	0.0	8 8	1.0	0.11	o o	8	0.13	0.0 1.0	0.11	0.11
EMBSION FACTOR	•	XON IOTABALI	8 8 8	8	0 0 1 2	90.0	6 8	8 8	0.0	8 8	8	0.0	8 8	8	8 .	2	0.12	0 0	2 9	0.10	2 5	8 8	0.1	0.10	8 :	2 5	0.0	0.07	8 8	8 8	8	8 1	8 8	8	8 1	8 0	8.0	0.0	0.0	8 8	8	8 6	3	8	3 3	8	8 6	8	8	8 6	8	\$ 8	8	0.07	6.0	. 6	0.12	0.0	8	0.07
EMS	300	PRODUCT PREHOT	11	1]]	ž	3	3	4	3	1	3	1	3	3	1 3	Ī	į	1	ž	3	1	1	1	1		į	17	1	1	ž	2	1	Ĭ	10.	1 1	17	1	ĭ	3 3	1	7	į	3	1	4	1	1	7	1	1	1	1	144	1	1	4,4	ž	1	ĭ
	*	903 FBBN	2 7	3 3	7 5	3	9 :	2.5	8	3 :	ž	20	ž ž	2	3	i R	17.7	ri i	i s	1.11	00		Ä	42.5	7	¥ :	1 7	Z,	20.7		ń	N.	2 2	1 12	ĸ.	, .	72	2,2	5.02	ž	Ä	28.5	ž	21.4	2	2	? :	=	0.5	3 5	3	3	1 2	20.4	2 5	3	7.22	7 5	R	212
	1	NO SOR FIHASELI	2 3		3 5	2	8 :	ì	7.17	8	X 2	15.8	24.8	5	58.	200	20.7	24.3	2 5	12	45	Ą R	28.5	8.0	*	3 5	212	19.0	207	18.7	243	22	12.8	0.	9.7	101	:	12,0	1,	74.	7.16	297	17.1	8,4	8. 8.	10.1	3 5	:	7		12.7	23.3	6. 6.	13.9	15,3	8 8	Ř	4 5 5 4 5 5		5,0
MASS EMISSIONS		CBSHIR	2 2	, <u>7</u>	5	8.8	9 1		0.86	¥ ;	7 0	7	7 7	19	3:	7 0	3	ę.	3 3	ž	7	2 5	£ 5	q	47.	7 ;	ž	24.5	2	5 5	27.0	9	r s	22	9.7	Q 9		207	0.2	ž ;	27	9	7 F	8	. a	24.5	7.7	34.7	21.g	Q :	=	51.5	, x	4.72	ត្ត :	3 3	902	2 4 2 4	17	22.
MASS		NOX FBBN	5.8	2 2	ž s	2 2	22	-	122		2 2	1.0	7 :	3	2	7 0	22	17.8		3	787	3 5	2 2	701	5.81	·	17.0	13.5	10.6	0.	2 2	3	7.5	: 3	2	2 g	17.2	•	9	2:		3	: 3	7	2 2	2	 	3	:	2 :	3	::	2 2	12.0	2 2	2 2	8	ž !	17.2	12.0
-	+	#AYOT	2475	2 2 2	2	E	12873	2 2	200	2	2 2 2	2878	2873	200	2873		K.	5.82	2	2	2878			51821	12873	2		12875	12875	2	2	SURE	2	2	12875	200	STEE	12075	273	2	2.0	2.00	5 12 12	2,007	2 2	12878	2	E	200		2	22.0	1287	22.0	1287	2 12	2.5	2		12873
	-	MANAGE	8 8 8 15 17		8		9		5040	8		22	2 2			9 9	9	-			808	9 9		20	*	8		8048		2 :		27			-		3	8		9 1						808	8		-	9 9	9	8			9 5			8 8 8		- 804
FLOW MEASURMENTS SCFM	\v_1	BOWNER	32503	888	32503	100	32203	822	12503	32503		35203	2200	100	32503	822	32503	3203	5000		32503	2002	9000	10503	2000	800		32303	32500	2000	12021	32503	800	120	32503	32303	32503	8828	32503	800	1000	32503	3200	32503	1200	12500	800	8828	32503	882	32303	35303	1250	32503	2002	1000	32503	32203	120	32303
EASURM	-	•	1	ī	í	į	Ī	i	-	Ī.	í	-	1	ii	i		i	-	- ·		-	- ·		-	- -	- ·		1	-	Ī		1	- ·		1		ī	1	Ī	1	i	-		-		-	Ī:	•	- -	Ī	•			1	Ī.		Ī	1	i	-
FLOW N	+		5000		8	200	200	200	1 200	2000	200		500	2 200	1 2000		200	1 2900		200	200	2 1		1906	2000	50		100	19063	500	200	19063	2 1	2 20	2000		100	200		200	2000	1906	2000	200	200	2000	E 1		5900	8 1	100	2002		200	8 1		2002		2 20 20 20 20 20 20 20 20 20 20 20 20 20	13063
		1-67100	81408	80418	80719		81408	8 140	81408	81408	140	8710	80716	100	80719		91408	80716			61408	8 1		61408	87408	807		907.5	61408	8 1		80710	8		91408	8 5	9140	8		801		60410	9140	1 400	8010	61408	8 1		81408	8	940	91408		61408	80418		9140	875		1 404 1
895	+,	TUU £08	27	-	8			2 2	2	8	* 5	-		_	•	6	_	*	5 5		-	= :	9 :		*	5.5		8	8	5		R	<u>.</u>		•			3 5		= :		2	2 8	•	2 2		2:		# ·	8 1	8 8		2 2	2	3 5			2.	<u>.</u>	- 8
CORRECTED PPM VALUES	\vdash	MI EOS	217	3 3	5		5	2 2		F :	2 X	4 5	51	5 6	8	3:	2 2	=			2	51	·	5 5		3 !			2	ą:	4 =	, X	9 9		3	21	1 24	3 5	1 2	8 :	4 5		. 2	5	5 8		4	2 12	.1	8 :		E.	4 8	, A	4	P, 8		ĘI	15	28,
MRECTED	\vdash		0.86 2		_		_		1 =	~ ·	 		a :	 	8	~ ·			8:		2	- ·				~ :	21	· -	. 24	197		2.74	2.5		6	R:		8 :		67	. B	8	# F	2	e s	- -	٠ ٦	2 12	8	- ·		F.	 u :		- ·	8 4	; a	8:	3 4	- بر
L	丄	•	0 88	3 3	2 .	9 8	1	3 3	3	8.8	9 5	2 4	-	3 4 5	-	4:	4 8	2.0	2.0		2.0	2.		2 4 5	4.5	5,8	8 .		8.	8.	9 5	8	45		48	8	8 6 6	3	2 2 2	8 :	8 8 8	8	8 8		8 6	-	9 .	4 4	5.8	8 .	9.0	8.8	9 .	28	8	4 6	8 8	9		1 8.0
BRATION CORRECTIONS	\$02 OUT	••	5 F	Ş	Ģ.	ē ē	ē	ة	ē	9	- -	į	6	- -	9	ē :	Ģ Ģ	ą	Ģ.	ē <	Ģ	Ģ	5 5	4	Ģ	.	Ģ.	ő	ē	Ģ.	~ ~	Ş	Ş	ē ē	ş	÷ ;	Ģ	6	ē ē	9	Ģ Ģ	ő	ē ē	é	,	Ş	Ģ.	ē ē	Ş	ģ.	ē	ģ	Ģ ç	, ē	.	÷	ē	Ş	őő	÷
CORR	802 IN	n	33	3:	3	3 3	3	3 :	: :	3	3 :	: 3	3	3 3	3	3:	2 2	3	9	3 :	3	3	:	3	•	•	3:	: :		3	2 :	: :	3 :	3 :	3	3:	3	3	: :	3	3 3	3	3 :	3	3:	3	3	3 3	3	3	3 3	3	3 :	3	3	3 :	: :	3:	: 3	•
TION	¥	6.0 E.M.	2 2	5 6	-	55	•		5 5	70	5 6		5	5 5		5 :	5 6		ŏ :	*		•	š		10		3 3		0.0			: =	5	5 6		56		5	5 5	6	5 6	5 6	3 3 = =	: 5	56	: =	5	5 5	5		5	5	5 6 5 :	3 8	5	3 3 5 5	3 3	5 6	3 8 5 5	0.0
CAUB	NOX 7	60	0.7	۵ <u>۲</u>		8 8 6 6	Ģ	\$;	; .	6. 24	3 3	; 3		* *	7.0	٥ 3	e e	*	, o	* ;	. .	٥	Ç (, 6	7.0	2.	٥, ږ د د	e e	6.7	, 1,	2 S	i a	٠ ا	, ç	; ;	٠. د د	K JA P P	7.	× ×	6.7 R	6 6 8 8	ė,	* *		÷ ;		6. 2.	# # \$ \$. W	٥ ا	, ç	6. M	æ :	i i	4.0 8	* *		4	K BR	6, 14
	T	NUR RBBINUN	5 ž	3	Ē	3 3	Ī	ž	3	ž	3	5 3	ž	Š	ž	ž	5 2	ŝ	ž	3	š	ž	3		ž	ž	ž	5 5	ī	ž	3	5	ž	ź	3	ž	5 5	ž	5 5	ź	ž	ž	ž	ž	ž	ž	ž	5 2	Š	ž	5 5	ž	3	Š	ž	2	į	ź	ž	ž
			2 =	= :	•	: :	•	= :		•			:	• •	. =	•	2 :	: 2	•	2 :	: :	•	2 9			•	•		•		- •:		•	= :	: :	• :		•	: :	•	• •	: :	2:	: :	<u>.</u>	: :	•		. 2	•	= =	•	2 :		•	<u>.</u>	: :	=	= =	•
COMMENTS		206	SO2 ordes 7, SO2 ordes 7,	SOZ orden	SO2 ordre 7	SOZ orine 7	SO2 orders 7	SOZ ordne 7	902 orders 7	902 orders 7	902 orden 7	802 orane 7	SO2 ordes ?	902 order 7	802 order 7	902 ording 7	302 ordine 7	200	302 orans 7	300	305 04	SOZ ordne 7	905 orms	200	302 order	902 ording 7	302 origin 7	2020	302 order 7	302 ording 7	302 order 7	302 ordre 7	302 ording 7	302 order	902 ordre 7	SO2 orfre 7	502 orang	802 ordine 7	902 ordina 7	802 ordine 7	302 orden 7	802 oriens 7	802 or may	902 ordina 7	SO2 ording 7	902 04	302 orang 7	20204	302 04	302 ording 7	902 order 7	302 oriting 7	302 ordes 7	302 orang 7	802 ording 7	302 ordina 7	202 04	SO2 ording 7	SO2 ordre 7	502 ording 7
8		хон	NOX ONLINE 7	HOX ONL ME 7	NOX ONE INE 7	NOX ONLINE 7	NOX ONLINE ?	NOX ONE INE 7	NOX ONLINE?	NOX ONLINE 7	MOX CHE PE 7	NOX CHEME?	HOX ONLINE 7	HOX ONE INE 7	NOX CHEME?	NOX ONLINE 7	HOX ONLINE 7	NOX ONLINE 7	HOX ONLINE 7	HOX CHUPPE 7	OX ONLINE ?	NOX ONLINE?	NOX ONE INE 7	MOX CHICKEY	HOX CHUME 7	HOX CHLINE 7	HOX CHUPE ?	MOX CHE PRE 7	NOX ONLINE 7	NOX ONLINE 7	HOX CHE PIE 7	MOX ONLINE?	MOX ONLINE 7	HOX ONE INC.	NOX ONLINE ?	HOX CHE INE 7	MOX CHE PAE 7	HOX CHLINE 7	HOX ONE INE 7	HOX ONLINE 7	NOX ONLINE 7	HOX ONLINE 7	HOX ONE INE 7	NOX ONLINE 7	NOX ONE INE 7	NOX ONLINE 7	HOX ONLINE 7	MOX ONE INE 7	MOX CHEME 7	HOX ONLINE?	MOX CHE PAE 7	NOX ONE INE 7	HOX ONE INE 7	MOXONE N	NOX CHUME 7	NOX ONE INE 7	MOX CHE PRE 7	NOX CHEME?	NOX ONLINE 7	NOX ONLINE 7
Made NO	1	TUO £OB	2 9	_			-						_				_		_				_		-	_	_			_						_	_		_	-				_						_	_	_						8		_
OBSERVED CONCENTRATION PPM	-	MIECO	81.7 21.2	# !	3	9 5	3	3 :		2	X	2 2	1	2:	1 3	70	<u> </u>	3 2	288	7.7	5 5	=	1	3 3	1 5	7	278	9 5		3	# :	, A	2	¥ ;	3 7	8	4 5	3	a 9	3	3 !	2 2	1,1	2 2	8	5	2	2 2	4 5		5 3	Ē	4	8 2	181	2.7	8 4	Ē	ā i	2
ERVED CA	+	ANOO XON	200	= 1	. 4	4 8	12		* *		z :	ā a		# 1	R	8	¥:	4	R	a :	, =		•	r (u	77	4 :		=	8	~ 8	8	21	F 8	2	a 3	, ,	.	8	ដុរ	, n	21	8 6	9 !			£ :	X M	1	z :	8 6		4 6	7	•	1 1	(2	¥ 3	2
8			0 21.01						- 0	2	10.2M	* *		8 1	1 8		# I		*	- : E !		N.S.	•	 5 !	, ,		2	•		•	2		2	4		_			 5 8		31	8 8	_				_			•	٠.		•			2		•		•
		3W(T	527201 10 527201 10	972001 10	5 700	5 POSC 2	50 FOOT 10	9-2-2001 10	91 100767	91 moz.c.4	937001 10	5 1000	01 1002-03	5.7001 10	93.000.10	16-01 10-34	2000110:3	M-01 1007-02	System 16.	PAY2001 10.34		55 TOOL 16	527001 16	92.000	91	972001 10	\$5000 TE	-	91 1002	9.7001	973001 10		\$572001 10	5.572001 1G.	9 1000	925201 10.	0 100764	95-11 1002-C4	1 102.65	1002.65	11 1002-65	0:11 1002.C4	10:11 1002/6/8	11.002.65	5/3/2001 11:10	20200	11 1002.65	1100245		11 1002/6/2	11 1002-05	50000	52000111	100265	1002.65	S-2001 11.	1 1002.05	8211 1002.455	11 1002464	11 MOCACA

E 0	SOR MOTVEELI		
EMISSION FACTOR	XON NOTABLI	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
EMIS	HARMOT RHARMOT		
	905 FBBHH VAEWVOE		
	700 506 SHAREJ	# C C # E F F F F F F F F F F F F F F F F F F	
MASS EMISSIONS	MHEET NI ZOS		
MASS	SHABEL XON	######################################	
	AA101		_
BCFM	D BOWMAN		
JAMENTS	V EDVINA		
FLOW MEASURMENTS SCFM	ant.		
ž	CO179-1		
	1-67000		
VALUES	TUB \$08	<u> </u>	8 8
COMRECTED PPM VALUES	M 208	9 7 2 2 3 7 7 2 2 7 7 2 6 6 2 2 2 6 4 4 5 3 5 7 7 5 8 8 8 8 8 5 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	B 5
COPINE	1 - XOM		2.36
2	<u> </u>		33
ECTIONS	· •	<u> </u>	Q Q
ATION CORRECTIONS	z 67		22
T I	¥ 60		3
CAUBR	ž rve		
ЫŢ	NUMBER 50	1	
	NOR		* *
COMMENTS	206	800 centre 2 (1) c	
0	KON	100 CO LINE COLUMN COLU	33
MAN NOLLY	TUO 508	· · · · · · · · · · · · · · · · · · ·	41.6 81.6
OBSERVED CONCENTRATION PPM	M SOS		8 8
ERVED	4 almoo xoa	## # # # # # # # # # # # # # # # # # #	82
8	1	•	
	3WIT	100000 1000000 1000000 1000000 1000000 1000000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 10	
<u>. </u>		1	

_	_	—												_					_		_	_	_			_					_				_		_					_		_	_		_				_			_				_		_		_	
٩		MOLESTI 206																																																													
FARBSION FACTOR	-	HQL/BET1																																																													
000		XOM								_				_	_	_								_	_					_									_							_		_					_										_
٦		MOCTOUGORY PRABINOT	ł																																																												
	1	NVERACE BO2 LBBAR											_																																																		•
	-		-													-	_	_	-		_	_			-		_	_				_			_														_							-		_		_		_	-
9	,	TUG SOR RIFEREL																																																													
000		MHEET! BOS IN																																																													
MARS EMBRIONS			-													_							_				_	_																							_	_							_				-
		NOX LBSAHM																																																													
Γ	1	JATOT											_		_				_																									_								_						_			_	_	•
			-							_				_	_				-		_			_		_	_												_		_						_				_									_			-
SCFN		ENMANACE C	<u>'</u>																																																												
HENTS		FUMMACE A																																																													
EASUR	l	.en	1																																																												
FLOW MEASURMENTS SCFM			┨																																																												
		cono-s																																																													
		1-07100																																																													
182		TUS SOB	855	8 8	8 2		8 8	= :	2 3	2	ą:	 5 £	. 8	8 :		15		4 :	. 8	1	2 5	; :	- -	8	ā	2 1	4 8	3 2	*	2	8 :		. 12	8	18, 6	. .	4	2 =	4	2	<u>-</u>	. 2	2:		8	8		2 1	-		8	3 :		8	83	ą	តុ :	<u> </u>	. 2		9 :	æ :	<u>-</u>
WALL			```	41 W	•		en wo	•		~	-		•	- (• •	•		• •	•	•	••	•		• •	•	•	• •	•	•	•	•	• •	. 57	-		- 0	•		•	•		-	-		-	-	•	0 6		٥	•	•	9 0	•	c,	-	-	~ .	•	-	٠.	e .	
CORRECTED PPM VALUES		905 M	6.00 t	2.6	3 3	6	. S	8		2	4 i	174	\$ 5	22	4	9	3	Ç.	7	7.8	2 5	•	1 2	2	7.7	4	8	1	2	10.61	1.48	2 2	2 2	1,7	2 5	9 4	7.	8.6	8	7	8 7	•	8	2	2	9.7	7	Š	2	6.87	1.	8	1	8	3	Ę,	2	5	9 5	0.17	7 1	8 :	į
CORREC		4-X0N	22 2 3	2 2	2 5	9	<u> </u>	9 1	8 2	8	8	6 4 6 4	5 5	100	5 5 6 6	5 5	6 0	5 5		86.36	25.57		3	19.53	53,08	93.08	2 2	3	8	8.	2	3 3	2 2	1,86	3 1	8	17	2 E	1 N	40.0	r t	8	87'0	9 8	2	0.87	1	8 6		¥.0	1,16	9 1	8 2	4	3	2.87	17 7	i i	3 5	3.16	2.46	<u> </u>	4
Ł	┯┛	65	222	3 4	3 :	3	4 4 8	8.	2 3	3	3	8 8	3	2 :	7 3	3	5	3 3		3	3:		3	3	4	a :	1		3	4.5	3		4	5,8	3 :	9 5	5.0	3 7	4	a	9 4	3	8	3 3	3	8.0	9		3	8	88	# :	2 2	8.8	8.8	8.0	4			8	3	5 ;	5
RATION CORRECTIONS	100 200	6.0	999	÷ ÷	4 4	Ş	2 2	5	q q	ē	ē	9 4	7 5	Ş :	ē ē	-	Ş	ē :	Ģ	ē	Ģ .	7 4	4	ē	Ģ	Ģ	ē ē	9	Ģ	á	ē	Ģ Š	9	9	ē ;	Ş	ę.	~ ~	Ģ	Ģ.	Ş Ş	Ş	ą:	÷ ÷	Ş	é	ō	Ģ	ę	4	á	÷ :	5 4	ş	é	Ģ	ą:	Ģ (,	Ģ	÷ :	- -	į
E 1	#02 H	61	333	22	33	3	3 3	3	3 3	3	7	3:	13	3	: :	: 3	7	3 :	3	2	3 :	::	: :	3	3.5	3	3 :	3 3	3	3	2	3 3	: 3	3	3 :	2	3	3 3	3	3	3 :	: 3	3	3 :	; ;	3	3	3 3	3	3	7	3 :	3 3	3	9,0	7	3 :	3 :	: :	3	3 :	3 3	
NOLV:	Ľ	***	888		66			-	6 6	. 6	. 0		, a	-			6	5 d		-	3 i				.0	-	-				6	ē		9	ē		6	. ·	6	5	ē ē		3	5 6		2	ē :	5 6		-	9	2 :	5 5	3	2	-	3	5 6		6	5	ā ā	i
CALIBR	¥ÖX 1	636 636	3 3 3	* *	33	iai ee	z z 2 2	3	k k	i zi	Z O	# 1 > 1	k i cc	ai. Se	ii >:	i ä	7	3 : 5 :	(3	ı	33		i d e e	i zi	ž	3 i	3 3 5 1	.	z.	3	7	ai s	i di	ž	3 :	X X	¥	2 2	. 3	3.	3 3	.	3	3 3	i	ž.	3	i :	13	z.	3	X	ı.	*	ž	_			_	_	3		
٢	┧	MANNER	WAIT			_	_		_			5 5	<u> </u>	5 !	<u> </u>	5	7	5 5		5	55	_		_	_			_		_		-		<u> </u>	AAIT AAAIT		5	9 9	5	Q :	9 9	_	<u> </u>	_	WAIT	<u> </u>	-	_	_	5	<u> </u>	₽:		÷	_		<u> </u>	<u>. </u>		6	÷:	9 9	<i>}</i>
	ı	MUR	3 8 8	ìì	* 1	. ₹	Ì	*	Ì		*	* 3	3	ž :	į	*	*	3 3	*	*	ÈÌ	ì	•	Ì	Ì	₹ :	1	•	3	Ì	Ì	Ì	Ì	Ì	ì	Ì	3	ÌÌ	*	*	ì	*	*	Ì	•	Ì	*	ì	3	Ì	Ì	* :	•	*	Ì	Ì	3	i		*	ž.	\$ 3	į
COMMENTS		206	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	33	3	8	3 3	1	2000	8C2 ordine 7, 18	802 ordine 7, 18	800 outs 7, 10	8CE orden 7, 19	8Ot ordine 7, 19	BC2 oriens 7, 10	BC2 cells 7, 19	802 ordina 7, 19	902 ordina 7, 19	902 ordina 7. 19	802 ordine 7, 18	902 company		20 min	8C2 ordes 7, 19	802 ordhe 7, 19	802 order 7, 19	20000	100 colors / 15	90k orden 7, 19	802 pribre 7, 19	802 prilling 7, 18	2	SCE orden 7, 19	SOE ordine 7, 19	SCE oritine 7, 19	SOZ ordne 7, 19	SOE ordine 7, 18	802 ordina 7, 18	8C2 ordine 7, 19	8OE priline 7, 19	200 men 7, 15	802 orden 7, 18	BOX ordine 7, 19	900 of 1.	BO2 ordine 7, 18	BOZ orithe 7, 19	BO2 cellne 7, 19	000 company	SCE ordre 7, 18	9Off prefits 7, 19	BOX ording 7, 19	900 ordina 7, 19	7	SCE orden 7, 18	BOX celline 7, 18	802 ordine 7, 19	802 celles 7, 19	200 Common 7, 13		SC2 prefes 7, 18	BC2 cellne 7, 19	802 compa 7, 18	
8		EON	333	33	3	3	33	3	3	ð	6.9 CM	200	100	9.9 CH	101	100	200	200	3	MECH	MECA			3	3	3	3	MON CHEME 7	NOKORUNE 7	NOK ORLINE ?	NOK ONLINE ?	MOKONE 7	MOR CHE PIE 7	HOR CHEME?	MOKONENE?	MORCHINE?	HORORDRE 7	MOKONERS 7	NOX ONLINE?	HOX CHLINE 7	MOKONE 7	MOKONENE?	MORCHLINE 7	MOKONLINE?	MOKOMUME 7	HOK ONLINE 7	MOR CHLINE?	MOKONINE 7	MOKONERS 7	NOK ONLINE 7	HOX CHEME ?	MOXONE P	MOXON M	NOX CHLINE 7	NOR CHLINE 7	NORCHLINE?	MOKONENE?	MOKONEY TOTAL		NOKONE 7	NOX ON THE 1	NOXON ME 7	
1	\dashv		\$ B 3				_					_				_		-	-	-			-	-			-							-	-	_					-		_	_		_				-	-			_						_			-
TATO			+																																																												
OBSERVED CONCENTRATION PPM		HI DOS	885	39	2	1	5 5	2	2 3	į	ă	F :	15	77	= 3	! 5	*	¥ :	3 5	3	2	5	3 5		5	E,	3 3	9 9		6	=	# :		1.	Ę	3 5	Ą	3	5	3	5	9	9	Ę.	3	9	7,	3		3	7	#	4 3	5	=	3	ç	5 1	9 5	3	5	3:	ì
BREMEL		лож сомв» т	4 3 3 E	= :	3	Ė	ğ 9	9	B #	Ŗ	2.0	Ž,	d d	ž,	ę (ę ę	2	r.	1 1	 	# T		4 :	: a	8	8.8	13.10		1	8		3	2 2	2	4	3 5	*	8	2 8	 8	8 1	8 9	Ą	Q	2 8	Ą	#	8 1	8 :	. 4	8	4	X 5	3	27.0	2.13	2	# :	1	*	Ē	3 :	5
۴		L	- 1 3 3 E	1	1	1	1	5.61	<u> </u>	4	13.08	18.00	P. 2	13:06	8 X	**	12.13	2 :	. H	12.17	12.10			ă	13.23	15.5M	7			1	8.51	5	1 1	12.24	82.5		3	1 i	144	13.42	2 × 1	146	12.40	13:47	1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	81	13.51	# F	1	1	13:54	13:57	# #	8	16:01	10.5	1. 18.	5 1	9 9	6	T.	14.00	2
L		3M/T	25.52	3 5	S	2 5	2000	22.20		533	1020	92.65	25.5	25780	2	25	99700	2020		5	22.20	200		S	S	22.50	2000		S	S	BOLES	2244		273700	22,200		Total Co	Paren.		55.50	S		POTACS	22.00	1002.63	99762	102/03	1002.6			1002454	122001	S	S	Parker.	25	25700	2		20.00	POLCS	100747	
			_						-	_					_	_	-		-		_			-	_	_		_	-	_		-	_	-	_		_	_				_			_		_	_	_	_				-		_	_	_	-		_	_	-

_				
To Bot		FOR HOT/BELI	:	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EMBBION FACTOR		NOTAGE!		8 8 8 8 8 9 9 9 8 8 1 1 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1
2		PHODUCORY PHARMOT	!	*********************
		AVEALOR FOR LEGISTON		2
		SO2 OUT		**************************************
MARR FMRSIONS		NE SOS		2
1	- 1	WHAREL XOK		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H	1	TV101		(1807) (1807)
	Ì	D BOYHUNI		10 10 10 10 10 10 10 10 10 10 10 10 10 1
ENTS SCF	l	PLANNACE A		
FLOW MEABURMENTS SCFM	1	≠n		
FLOW		8-0700	į	
	İ	t-autoo		### 1708 #### 1708 ### 1708 ### 1708 ### 1708 ### 1708 ### 1708 ### 1708 ### 1708 ### 1708 ### 1708 ##
ALUEB		TUD EOR	\$ 5 5 7 8 7 7 8 8 8 7 7 8 8 8 8 8 8 8 8 8	X # # # # # # # # # # # # # # # # # # #
CORRECTED PPM VALUES	I	NE 208	## ## ## ## ## ## ## ## ## ## ## ## ##	2
CORREC		4-XXM		2444455699666666666666666666666666666666
2	15	er		क्षक के सम्बद्ध स्थक के के अंक्षेत्र के क्षेत्र के क्षेत्र के स्थ के के स्थ के के स्थ के के स्थ के के स्थ के क स्थ के के समा मा स्थ सके के समा समा समा समा समा समा समा समा समा समा
2	8 02 OUT	**	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	444444444444444444444444
HATION CORRECTIONS	Z	•**		
NOL	802 F	ore .		
JBHA	HOX 2	r N		
SALIB BILLIAN	ľ,	••		
		NUR Figura	LIVAM LIVAM	
COMMENTS		306		00 of the control of
		KON	NO. COLLEGE	MIX OLLAR 7 MIX O
MAN NOTA		TVO 508		3858386486548685868686868686868
OBSERVED CONCENTRATION PPM		HI 208		# # # # # # # # # # # # # # # # # # #
SAVED		4 49403 100N		5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8		. arvou 100M	•	
		BWIT	1000000 1111 1000000 1111 1000000 1111 1000000	100 143 143 143 143 143 143 143 143 143 143
Ţ	-			

_										_				_								_	_	_	_	_	_			_											_					_			_	-		_	_		_	_	_		_		_	-
TOR	NO.	A81	8 8	9. 0	0.0	8 6	0.0	91.0	0.15	8	8 8	1.0	0.10	0.0	0.17	0.27	3	0.0	R S	0.0	0.1	8 1	1 2	0.0	9.7	- 1	8 8	8 8	0.10	6.13	9 6	0.10	41.0	0.7		0.18	2		80.0	8 8	0 0	8	6.0	0.0	90.0	60	800	8.	5 6	8	8	8	8 8	8	8 8	90.0	0.0	9 :	41.0	0.17	0.17	!
EMISSION FACTOR	MOT	/sgn ON	888	3	8 8	2.5	8 8	90.0	8 8	8	2 5	8 6	8	8 8	91.0	0.23	200	11.0	0.14	2 5	11.0	8 6	8 8	3	8	8 5	6	8	0.10	80.0	8 8	8	8.0	8 8	8 8	0.02	8 8	8	0.02	8 8	8 8	8	8 8	8 8	9.62	8 8	800	90.0	8 8	8	8.	8 8	3 5	3 8	8	Š	8	8	1 8	8	80 1	
EMS	SCTICH SAFE	UDOR4	8 8 1	Ē	ă	ž ;	ā	ň	ž ž	1 12	ī i	3 18	2	ž ž	ā	ž ;	8 8	ř	<u> </u>	8 18	Ē	ž ;	2 1	1 12	š	ž :	2 1	2 2	ž	Ē	ž ;	ā	Ē	2 1	ž	Ē	E i	2 2	ž	ž į	2 2	ī	ž ;	Ē	ř	£ £	1	8	8 8	12	Ř	2 :	8 3	2 12	Ē	Ē	ž	ž ;	2 2	Ē	ž :	
	3077	903 FB YAE'S	2 2 3	. 0	2 5 2 6 2 6	9	222	7.2	2 2	: 3	3 :	9.02	ē :		ž	2	2	ŝ	•	3 8	7.	2	2 %	8	2	8	2 :			24.7	ž.		742	8		9.	5 5	1 2		2.0	7 7	9	5	3		3 :	9 0	8.5	:		2	::	1 :		2 2	16.3	0.0	:	2 2	72	2 2	i
		/6 gr) 2 COE	2 2	2 2	16.5	1.7	122	:	12.4	2	3	17.0	50	5 3	\$2	20.5	2 5	82.8	3	7 .	20	60	7 2	500	ŝ	7	::	2 2	17	12.0	701	30.5	716	24.5	1.2	11.1	2.	1 2	20	3 3	2	۲.	:	2 2	16.7	3 :	3	3	:	. 9	9.01	7	2 ;		3 =	2	19.7	<u>.</u>	27	912	0.14	i
MASS EMISSIONS	M4	P861	2 2	88	<u> </u>	7 ;	151	7	1.2	3	7.7	17.2	ž	4 4 5 5	7.	75.8		8	57.7	\$ \$	707	Ř	10.5	7.00	8	28.7	Ž :	2 2	842	27.5	7 :	1 2	24.2	ឆ្នាំ	× 4	4 00	28	ž ž	20,5	1.5	100	72	5	7	771	13.9	. 22	10.2		1 3	87	2 :	2:	9 9	75	10.5	12.2	<u>.</u>	C 7	17	70	
MAS	i	TT XON	2 T	: :		2	7	• 0	5 :	¥ 5	2	15.0	17.5	15.4	ž	3		787	702		7.2	5 :	3 3	: :	7.0	0.0	7. 5	7 7	: :	17.1	?:	: :	25	9 :	: 9	7	9:	: :	:	::	::	3	;;	: 3	7	. :	1 5	0.01	2 :	: 3	3	3 :	<u>.</u>	1 2		7.7	102	::		10.8	2 :	
	Tw.	TOT	70180	1018	00107	79100	70180	70180	00107	616	10100	619	08107	70180	00107	20100	70190	70180	10180	610	70190	08107	6 6	6	00E107	20110	640	2010	,0H0	20100	2010	610	20107	6 1	616	20180	20100	20100	70180	919	20100	70190	610	6 6	701100	70180	1018	70180	20100	6	70180	20180	616		6	70180	79193	2010	7018	20107	108107	-
	-		==:	==	= =	= :		-	= :	= E	= :	==	= :	= =	=	=	= =	=	= :		=	= :	= =	=	=	=	= :	_	=	<u>=</u>	= :	= =	=	= :	= =	=	= :	= =	=	= :	-	=	= :	= =	=	= :	=	=	= =	-	=	= :	= :		_	=	=	= :		=	= :	; -
SCFM	0 304	YHUN-I	15.48	1514	15148	15146	151	15148	15148	1	15148	1 2	15146	15148	15146	15146	15146	15148	15146	15148	15146	15148		2	151462	151480	151	15146	15146	15148	2 :	151	15146	15148	1 1	15146	15148	2 2	151462	15,48	2015	15148	15148	1 2	15148	13146	5	15148	191	5	15146	15.148		15148	13.46	15146	15148	151462	151482	151482	15148	
FLOW MEASURMENTS SCFM	V 204	yaan.	1000	4	4 45	100.28		46428	1002	4628	1000	46628	+6628	40628	4	468.28		468.28	40628		400.28	10628		40628	46628	40628	1002	40629	40628	40629	1	4	46828	1	4	40628	40628	400	40628	1002		40628	40628	46.2	40628		4	40628		4062	46628	40628		40629	4	46625	466.25	100	4	46628	46628	ĺ
W MEAS	L	•••	125 126 127 128 138	į	ž Š	13215	2 2	1321	22.5	¥ ¥	12215	1821	25	1221	ž.	1321	2121	žį.	12215	2 2	2124	13215	2 5	1 2	22.5	13215	ž i	1 1	ž S	1221	22	ă	1215	2	13215	12218	1321	1 2	13215	£121	1	122.	13215	522	127.5	2 2	ă	13215	1 2 2	121	13215	121	52	2 2	1215	13215	12215	123	1 H	12215	13215	į
FLO	8-0	noo	1	17.14	1	1771		17.14	1	į	Ē	14.	Ē	ĒĒ	Ė	1714	1	1714	14		Ĭ	Ē	į	Ē	1714	1714	Ē		Ė	17.14	Ē	Ē	111	Ĕ.		11.4	Ė	į	Ē	į		Ē	Ė	1.4	111	Ė	1	114		1	11.	1		1	į	17.	17.	1	1	1771	Ē	:
	1-0	поэ	877088	877088	877088	177088	877088 877088	170	877088	1700	877088	77088	8777088	17000	170	77088		770	2770	170	877088	177068	1	1	877088	87700	87708	1700	877080	87.7088	17708	100	877088	1708	87778	177088	1770	177088	8777088	17000		77088	17088	1770	877088	770	200	177088	100	2/0	8777088	170	100		90/	177088	17/088	17/068	77088	877088	877088	
/ALUE8	100	903 S	9 S	3	1 8 F	ğ	8 8	8	1.10	0.0	2.0	1 R	5	7 6	0.47	2,55	Z =	8	8	2 2	3	3,57	8 :	2 2	7.7	121	20.0	2 2	8	8	2 1	23	2.78	2.17	2 2	8	8 1	9 5	9.0	9.74		3	0.51	9 8	4.	9. 7	2.0	0.0	,	2,0	1	8	3 5	200	5 5	2	1,74	18.	1 2	18	9.	
CORRECTED PPM VALUES	**	zos	£ 0 1	2 E	2 3	0.37	¥ .	8	8 :	, o		2 0	9.60	8 8	3	5	5	5	5.1	ę s	18	3.46	9 5	3 2	2	2.38	2.16	6 5	2 2	X.	200		2.15	8		8.6	2.3	7.	2	2 1	2 5	2,52	8	2 2	1.27	ត្ត វ	3 5	000	5 6	2	27.0	8	6	8 8		2	8		27.1	2	2	141
CORREC	2-	хон	0.82 0.82	8.0	8 8	3.0	5 3	8	3 5	4 1	10	7	7	<u>.</u>	5	8	7.	8	7.	2 2	2		<u> </u>	¥ 8	5	Ŗ	8	¥ .	8	2.16	9		5.0	9.0	2 2	0.4	9	2	2	3 1	9 6	8	98.0	8 8	8,0	8 8	2 2	Ę	2 5		0.73	0.75	2 3	1 1		0.87	Ą	17	9.		1.2	á
2	§ •	FF .	8.8	3 8	2 2	8.8	\$;	8	3 :	3 8	SB	\$ 5	3	3 3	8	8		3	3		3	8.8	9	. 4	3	3	ŝ	3	3	5.8	8.	2 5	3.8	\$	3 5	8	8	2	8	3	3	3	8.	3 3	\$	3 :	3	5.8	9 :		40	8	3 :	3 3	: :	3	8.8	\$	4 4	3	\$,
ECT	802 OUT	e10	Ģ Ģ	,	9 9	9	ē \$	7 4	5 6	9 9	Ģ :	ē ē	ā	\$ \$	7	ē	٠	4	4	ē \$	ē	4	ē ;	ē ē	4	9	٠ ا	ē ē	9	ě	Ģ.	9	ą	ē :	9 9	ē	₹ :	9 4	ē	Ş ;	9 9	9	Ģ.	9 9	9	ě :	9	Ģ	÷ ÷	7	ģ	ē	Ş :	9	9	ē	ē	ą :	ē ē	Ÿ	9	į
RATION CORRECTIONS	8	ere .	2 2	33	33	5	3 3	: 2	3 :	3 3 5 5	33	2 2	3	33	: 3	2	3 : 	: =		. .		3	3 :			3	3	3 3			3		3	3 :		3	3 :		3	3		: =	3		3	.		3	3 :			3	.			3	. 28	3 :			3	
A TIO	<u> </u>	670	22	••	22		• •	•	5			••		22		•	•			• •			• •	•		•	•	•			2		•	•				•	•	5	•		•	• •	•	•	•	۰	• •	•		٠ ب	• •	9 6	•		•					,
	ğ		5 6 2 4	,	99			,	6	, , , ,		9 ¢		95	: S			9 9	٥. •		3	•		, . , .		9	3	9 S	, a		9	, ,	. 2	2	, , , ,		2	9 9	2	2:	3 3	: 2	2	, . , .		2 :		2	2 :	: 3	. 2	2	2			. 2	2	2	55	2	2	
广			žž				-			_					-	_			_	_	_	_	-	-	_		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_		_		3	ŝ	3	-	•		_	=			ž	į
EMT			802 ordine 2, 14 R 802 ordine 2, 14 R	 	2 2	2	= :	4 4 5 4	7.	= =	2 :	2 2		Z :		7	Z :		7	= :	: :	7.	Z :			=	7	2 :		= =	7		; =	7	= =	. <u></u>	7	2 2	2	2 :	2 :	: z	2	= =	Ξ	2 :		=	2 :		Combre 2, 14 R.	Corden 2, 14 P.	Contra 2, 14	: :	: :	=	7.	7	2 2	: :	=	
COMMENTS			88	88	88	8	8 8	8	8		8	88	18	88	8	8	8 8	2 8	2	8 5		8	8 8			8	8				8		8	8			8											_				_									_	
	100	юн	NOX ONLINE NOX ONLINE	MOKORUM	MOX CHE SHE	MOX CH. PR		NO COLOR	MOX CM. PM		NOK ONLINE	MOKOR.	MOXON	MOX ON THE	NO NO NO	HOXON	NOK OF THE	NO NO NO NO NO NO NO NO NO NO NO NO NO N	NOKORENE		HOKOLIN	NOK CHLANE	MOXON IN		MOX ON THE	NCK ONLINE	MOK ON. PM			NOK ON LA	MOKONOM		HOKONOM	MOX CHAPE		HOXONE	MOK ONLINE		MOK CHLINE	MOK ON IN		NO SOLD	MOK CHEST		MOK CHLINE	MOKON		HOKORUME			MOX CHLINE	HON CHEME	MOK CHE PAR			MOXON	MOX ONLINE	MOKONINE			HOKONEME	1
THON PPM	100	o toe	£ 6	1 1	5 5	2	\$ 1	7.		3 5	3	<u> </u>	ä	3 5		2	3 1	3	3	•		3	1	1:	3	2.	2	:		5	9	9:	2	3	5 5	5	8		5	3	2	3	3	3 !				5	3		3	2		6		•	=	ŗ	= :	•	*	•
OBSERVED CONCENTRATION PPM		zoe	8 E	7.7	8 8 8	9.0	9 :	9	5	# 8	27	ž į	3	2 :	3	9	3 :	5	9	5	,	3	3 !	9 :		2	1	5 :		3	11	2 5	7	2	5 5	5	9		9	Ę	9 :	3	E	<u>.</u>	2		9 :	3	3	1	Ę	9.3	Ę.	3 5			=	ž		: 5	2.0	171
ENVED		00 XON	2 2	i, #	8 :	. #	8 1		2 (i, E	. 21	ă t	4 4	4 2	. =	5		, 2	¥	3 !	i a	2	# 1	ŖS	į	z		, :	ą D	, .		R :	8 :	2	= 1	1 12	8	g s	*	2	.	2 2	*	5 8	2	R :	8 1	z	n :	2 5	; #	8	8	6 1	g ,	; 12	t		21	1	u	
8			8 =	0 0 0 0	1 4		•	5 Ö		• • • •		21					.		4	- :		•	•	o :			5	# :			•	•	9	Ý.	9 9	•	4	• •	. 4	ę F	٠ د د	* 4	ę.		_	_			_		, ă		_									
	34	MIT	922001 15.30 927001 15.31	5.21 mores	C41 1007674	£21 HOULES	E-31 HOLLES	5.27.000 13.3	\$1 HOOLA	4.81 marks	4/31 FOOT 18:4	3/3/2001 13:4	\$27001 LE	12 TOOL 18.4	#2100LF	521 MOSTAN	Saron 18-5	201100000	9797091 18:5	8-8-1 19-8-8	25 march	\$7200 18.5	E\$1 1002/4/8	224		8-2-2001 NB:0	SAZON 14:0	8/3/2001 NE:0	Die Hotel	100 M	System Med	525001 1R.1	52500 RE12	\$/3/2001 NE.13	222001	SATION HER	9/3/2001 16:17	200001161	S-Stroot 16-3	\$/24001 14:2	5/3/2001 16:2	STREET IN	\$52001 16:2	507001 IE-	Systom 16.8		220011630		5/3/2001 16:20		Sorton IC.	9/2/2001 18:37								SPRON HEA		
							_		-	_	_	_	_	_	-	_	-		_	_	_		_	-	_	-	-			-	_	_	_		_	-	_	_		-	_			-	_		_		_	_					_		_	_	_	_		_

					_					_						_		_					_			_								_	_								_					_	_		_			_				_	-	_		_	_	_
, E	EOR MOTVE	٦	0 0 2 9	200	0.24	2.0	ņ	# Z		2.0	~ ·		2	0.24	0.17	5.0	0.12	8	8	8 8	8	Į.	ă :			0.20	7	8	8 8	41.0	0.12	0.13	0.12	8 8	8	8.0	- 6	8 6	8	0.2	0.27		0.21	200	0.70	0.18	2 2	8.0	E I	2														
EMISSION FACTOR	MOTVE &	^	8 8	8 8	0.12	9 0	0.19	7 .	7 7	11.0	0.10	80	8	3 3	90.0	8	8 8	8 8	0.07	8 8	8 8	ď	5	5 5		8	8.0	8	8 8	3	8.0	8.0	4	8 2	8 8	80.0	8 5	8 8	8	80.0	2 6	0.16	90.0	8 8	8	80	8 8	8	8 8	600														
EMB	PHARMS	Д	ž ž	ē 1	ñ	2 2	Ä	18 z	ž ž	ñ	ž i	5 X	Ä	ž ž	Ř	ä	ğ ;	ğ Ž	Ř	<u>1</u> 2 1	8 12	ā	ž.	ž į	2 10	Ē	Ř	ž.	ē ž	2 12	ñ	ñ	Ē.	ž į	2 10	ā	¥ ;	2 10	12	ž į	2 %	ž ž	ī	ž į	Ē	Ř	ž ž	Ē	ž į	ž ž														•
	PHABEL S		# Y		6.53	2 5	7	7		4	ត្ត រ	2.2	707	7.7	ā	X	ā :	3 3	11.5	: :		7.5	2	2 5	1 5	i	8	¥ :	7 5	12	ä	24.6	2	00:	: 3	\$ 5	2	1 5	0,71	7	2 2	7.2	0.0	Q. 7	Ř	ğ	2 2	9	3															•
	TUO SO		23	2 3	1.72	8 2	ŝ	3 5	2 2	Ē	3 :	- 8	ă	2 2	10.7	7.6		3 2	10.7	= :	. 9	2.5	2	2 :	1 5	2	E 81	0 ·	2 6	, i	12.1	18.8	0.6	::		9			1.2	2	9 5	3.1	413	7.	9	37.4	5 4	0.05	2 2	ž														
MASS EMISSIONS	M-166	5	# # # 2	iā	ž	Z 5	3	8 6	1 2	2	9 5	\$ \$	2	3 :	8		7 :	1	77	= :	. 0	7.5		•		40.5	ž	7		ñ	0.82	30.8	0.0	ž :	2 2	2	5	5 5	7	2.7	7 6	3.7	8.86	¥ £	××	ĩ	, ,	8	ล์	8														
MAS	WH/SET X	CON	::	3 :	522	2 2	325	7.0	รูส	7.2	3 :	: :	2	2, 2		001	::	2 5	77	7.	: :	2	7 :			2	•	7	3:	2 2	2		3			11.7	9 9	7 5	9.01	15.4	e i	1 8	7'81	2:	•	•	5 5	9	¥	13		-					-			_		_		-
-	4470		108107	108107	108107	701801	108101	701801	108107	101801	70107	108107	101801	108107	701801	108107	101107	108107	108107	100101	104107	108107	108107	618	100107	101801	108107	108107	108107	100107	100101	101101	108107	10101	100	106107	100107	108107	108107	108107	701.00	108107	108107	108107	108107	108107	106107	108107	701901	701801			_											-
	D EDWIG	_	33	2 2	2	2 24	1	2	4 4	24	2	1 2	3	2 :	3	24	2 !	1 3	2	ă.	1 2	151482	ā	2		ă	ă	4	2 5	1 1	3	245	346	3 1		3	24	1 2	191482	29	3 4	1 3	24	2 5	3	34	2 2 2	2	3 5	1 3		_				_				_				-
FLOW MEASURMENTS SCFM	-	\dashv	28	8	2	8 E		2:		2	æ :		2	2 ¥ 2 1	. 2	£	E :		2	2 :																						8 8	2	2 :	. 12 . 13	2	E :		8 I	3 12														
SURMEN	A SOME	\dashv																																												•																		
W MEA	#**		12215	i i	\$120	2	Ä	ž,	2 2	25	<u> </u>	3 3	į	1221	ž	STATE	ž.	13215	£13	STA :		13215	2521	25		į	13215	1215	2		Ē	12215	SI21	<u> </u>		13215	22.5		2015	1215		2 2	213	1	123	13215	i i	13215	ž.	125														
Ĭ	e-crace	۰	14		17714	1	1771	Į.		1771	17.	17.14	17714	141	1771	1771	Ē		1	1771	1	1771	11.	Ė		17714	1771	177		14.	17714	17714	1771	į	1	1771	Ē	1	11.	11.		171	17714	Ē	177	17714	14.	17714	Ė	1														
	1-0100	۰	877088	170	177088	100	170	877088	17000	2770	1700	77068	877088	1700	8770	877088	7708	770	11000	177088	100	80778	177088	1700		77088	177088	77088	1	170	2770	8077	#1700E	170		100/	877088		17088	7708	20//0	7,000	277000	170	277088	80//8	17000	877088	170	9770														
ALUES	100 50	×	<u> </u>		2,5	3 :	3	5 !	8 8	8	15.0	2 2	28	8 :	8	0.67	5.4	5 2	Ä	000	8 2	8	0.74	8	;	ņ	1.67	98.0	3 :	2 2	15	8	5.7	S	8	3	\$:	1 5	8	2.0	2 1	2 2	8	2 .	10.	5	5 5	8	ğ	2	8	8	2 5	8	8.0	8	282	8	2.5		2		5 4	
CORRECTED PPM VALUES	NI ZOI		2 X	9 5	84	K	; 5	8 1	1	57	8 1	107	R	8 1	, <u>a</u>	#1	9 3	8 8	8	6	8 8	0.67	99'0	<u>.</u>	2 :	3	80%	202	8 1		548	173	ä	= :		23	Z (707	78	7	2 .	2 2	3,42	9 :	77	3.00	3 5	3	5 1	1 5	ā	242	5 to	8	8	g	8	2	7.8		=	8	8 2	i
CORREC	4-x0	*	<u> </u>		2.17	£ ;	2	2.5		2	2	2 7	150	¥ 5	1 5	R 7	8.	4	8	1.3	, Y	2	X.	6.	8	<u> </u>	8	0.B2	2	4 6	0.82	940	8.	7 1		3	R !	R *	3	Ĭ.	2 2	1 6	¥	3 5	8	0.9	, S	8.	# 1	3	\$	*	= 3	2	8.0	0,92	4.	7.00	5			20	19.0	! •
2	5 61	\neg	3 3	2 :	8.8	3 :	8	8		3	3	4 4	8	3:	3	3	8		8	8	9 6	3	8	3	2	4	8	8	5		5	8.8	\$	3	3 3	8	8	3 3	3	8.8	9 :	4 8 8	8	8.	9	8.8	8 .	8	8 :	à	9	8,8		3	3	8,8	8	4	9 5		1	8	8	
RATION CORRECTIONS	2020u	1	÷ ÷	ē ē	é	ē ;	į ė	ě	ē	ő	ē	ē ē	ģ	ő	ş	ş	ē	ē ē	ē	ő	ē 9	ę	ą	ē	ē ç	ē	é	é	÷ ;	ē \$	ē	ě	é	ą i	9 9	ē	ő	Ģ ç	Ÿ	ē	Ģ ç	Ģ Ģ	ą	ş	į	ē	ę ę	ē	ē	ē	Ģ	ē	ē ;	7	é	ą	é	ē	ę ę		800	8	8 8	
S S	ž "		22	: :	3	3 :	: :	3 :	3 3	3	2 :	2 2	2	::	3	3	3 :	3 3	3	3	3 :	3	3	3 :	:	3	3	3	3 :	:	3	3	3	3 :		3	3 :	3 :	3	3	3 :	2	3	3 :	3	3	::	2	3:	•	3	3	3 :	: 3	3	3	3	2	::	1	8			6
ĕ	ğ ••		2.2	5 6	6	÷ ;	6	2.	5 5	•	5	3	5	5 6	3 8	9	5	8 8	9	9	5 6	5	5	6	5 6		9	9	-	6	6	9	9	5 3	5 6	6	5			9	5 6		•	•	5 6	9	6	9	6	ŝ	ö	•	5 6		•	9	9	8	8 8	1	-	_	8 8	
	* ***		ĒĒ	î	ž	į	Ì	3	ì	ì	Î	î	î	3	Ï	7	3	î	ì	Î.	ì	ī	ĭ	3		ī	7	ì	3	;	3	3	Ĭ	Ì.	ì	3	ï		Ì	ž	3	ì	3	ì	ï	ï	:	Ē	ì	Ì	7	7	;	i	3			_	ž	•		-	2 2	•
	<u> — ``</u>	_	6 6	9 9	à	9 5	è	è	èè	Ş	\$	۶ è	\$	6 6	7	٥	3	9 9	\$	6	9 9	è	ş	\$	3	3	ş	9	2	9 9	3	ş	è	3 :	9 9	3	à	3 3	9	ş	9 9	èè	à	3 :	9	à	è				_	_					_	_			-		4 ¢	
	MJR FIBER		žž	Ž	Ž	2	Ž	ž		Ž	Ž		ž	Ž	į	Ž	Ž		Ž	Ž	Ž	Ž	ŝ	2		į	Ē	ŝ	2		Ž	Ž	ž	2		Ž	Ž	5	Ž	Ž	2		Ž	2	į	į	Ž	ž	3		WAIT	#AT	MAN.	Y	WAIT	WAST	WAIT	WAIT	Į,	1	WAT	WAIT	WY.	
COMMENTS	808		802 ordina 2, 14 802 ordina 2, 14	7 4 4	SOR orden 2, 14	BO2 ording 2, 14	BOR ordine 2, 14	BOR ording 2, 14	BOS orders 2, 12	BOR ordine 2, 14	802 ording 2, 14	#00 entre 2, 1-	BOR ordine 2, 14	BOR orden 2, 14	BOR ording 2, 14	BOR ording 2, 14	SOR orden 2, 14	POR CHARGO P. 14	í	į	Ĩ	Ĩ	ĩ	ĩ	i	ĺ	į	ĩ	Ĩ	Ĭ	i	ĩ	į	Ĩ	Ĭ	Ĩ	į	Ĭ	ĺ	į	i	i	ĩ	i	i	ĩ	-	802 ordina 2, 14	į	Ĭ	5	878	3	3 1	8	047 900	CALS	SALE.	3		8	8	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
	200		HOX ON THE 1	MONOR PROPERTY	NOK ONLINE 7	NOKOR PE 7	HOKONEJAE 7	MOK ONLINE 7	MOKONE 7	NOKONEJNE 7	HOX ONLINE?	MOX ONLINE 7	NOK CHEME?	NOKONENE 7	MOX CHEME 7	NOX CHLINE 7	NOKONE 7	MONOGOR V	MOKONEJNE?	HOR CHLINE 7	TOXONE 7	MOK CHEME 7	NOX CHEME 7	MOX CHEME 7		MORONE P	HOXONE 7	MOX ONLINE 7	NOK ONE PIE 7		10000	HOK CHLAFE 7	MOX CHEME 7	HOK CHESE?		NOKONCHE?	NOK ONLINE 7	MONOR DE LA	NOKONEJNE 7	NOKONE, P	NOKONENE 7	MONOR SHE 7	HOX CHEME 7	NOX ONL SE 7	MONOR SECTION	NOK CHLINE ?	NOK ONLINE 7	MOKONCHE 7	MOX CHESTE 7	MON ONLINE 7	3	3	3	3 8	3	3	3	3	3	3	3 3	3	3 8	Ì
ATION PPM	100 80	34	<u> </u>	3 :	2	3!	5		5 5	3	3	3 :	3	3	3	3	9	3 3	3	2	5	3	š	4	3 5	1 5	5	3	8	9 :	1 3	3	3	*	3	3	8	3 :	3	Ę	1	5 :	3	3	3 3	22	3	3 5	5	9	3	4,74	9	5 5	4	9	2	:	9 !	3 !		3	§ :	ļ
OBSERVED CONCENTRATION PPM	₩ 80	•	12.57	5 :	ţ		9 5	3	3 5	5	ž	ş ?	1 4	2	1	=	3	5 5	=	4	3 3	Ş	2.	Ç.	# :		3	2	3	5 :	3	1	3	5	3 5	3	-	9 :	3	5	£ !	£ .	3	*	2 2	ž	3	3	4	•	1	8	9	9 5	9	3	2	5	2		3 5	5	9 :	į
BSERVED	£ 4000 :	XXX	0.0	5 1	17	8	10.4	2	1	3	7.	ğ	į	# :		7	6.5	ğ ;	8	8.0	n :	2	2	Ŋ	4	2 2	9.1	6	8	2	2	=	#0	0	£ 1	5	9	15.		Z,	3	4 :	3	0,72	2.0	40	77.0	1	4.0	6.57	6	7	8	R 5	3 3	8	0.7	2	4	6	,	2	ē ;	į
۴	3840		522001 16:30 527001 16:31	*****	1 100 A	## I	72.01	V2001 16:58	#201 102A	10.11.001	2001 17.00	17.00	84,198	10.01	12.71	201 17.00	17:10		21.71.00	A1:21 Jane	17:15	11.11	17:18	17:19	97.11	44,11,000	22-71 HOST	ALC: 17-AL	271 1024	100	1000	M-71 1002	57.5	17.1	2		07-11-100E	100	1000 E	P2001 17:38	00 I I I I	2001 17:41 2001 17:41	17.00	17:44	2011746	78-CT 17-87	17:40 IT.48	971100	15-21 10-21	X	2001 17-63	A\$41 F082	2501 1758		74.10	17.100	2001 18:00	2001 18:01	2001 18:40	2001 1000	2001 10:00	2001 18:08	\$-27001 16:07	AND INVE
Ļ			2 2	S 5	S	5	Ľ	•	-	-	O	a 3	- ×	- E	4 5	8	š	S 5	S	s	Si :	í S	S	ä	s :	× \$	ă	s	5	a :	1 5	. S	S	ä	2 :	: S	S	S :	: 3	Ş	S.	s 5	. 5	S.	× \$	S	2	2 2	2	S	S	S	S	s :	: \$	S	S	S	S	S :	i \$. S	5 :	Á

	508 01/4/61			1 5 5
	XON HOTABALI		88 88 86 66 66 66 66 66 66 66 66 66 66 6	8 8
	ITOUGORY #ABHOT			
	AVERAAN		· · · · · · · · · · · · · · · · · · ·	2 2 2
1	903 OUT			179
MASS EMSSIONS	MI SOE		4 4 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 R E
1	NB B.1 XON		**************************************	222
1	JATOT			2000 2000 2000 2000 2000 2000 2000 200
	32WWCE	14-14-14-14-14-14-14-14-14-14-14-14-14-1		
FLOW MEASURMENTS SCFM	SOMBLINE			K K K
MEASUR	øn.	·	200	2 29 22
FLOW	E-G17023		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	āāā
	r-anao			8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ALUES	TUG SOR	2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 2 1 1 1 2 4 2 8 8 2 8 8 2 8 8 8 2 8 8 8 2 8 8 8 8	7 7 7
CORRECTED PPM VALUES	el cos	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################	13 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
COMPRE	7-X0H	25 25 25 25 25 25 25 25 25 25 25 25 25 2	8 # 9 # 9 8 8 8 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	2 2 E
ATION CORRECTIONS		201		0.08 5.835 0.08 5.835 0.04 5.835
N COR	er	33333333333333		133
	ENE	2		ब्रे डे डे
911				
	HOMBER			555
COMMENTS	206	333333333333333		802 ordine 4, 16 802 ordine 4, 18 802 ordine 4, 18
•	жон	121111111111111111111111111111111111111		NOX ONLINE ? NOX ONLINE ? NOX ONLINE ?
ATTON PTI	1/10 708	2		3 8 8
- T		7		555
СОНОВИ	64 EQ\$	191111111111		
ERVED CONCERN				111
WED COR	NOX CORE		200001 123 120 120 120 120 120 120 120 120 120 120	955

0

61.0 65.0 65.0	01.0 M.O 80.0 80.0	8,181 8,181 8,181	1'25 9'95 9'97 9'97	7.8 8.12 7.24	0.56 f.f8 8.66 g.ee	281 0.21 4.21	\$HEZE11 \$HEZE11 \$HEZE11	129001 129001 129001 129001	88752 88752 88752	20902 20903 20903 20903	ines ines ines	191798 121798 181798 181798	84.0 84.4 84.4	95.8 55.2 91.2	26.1 26.1 36.1	208.2 90.0 208.2 90.0	- 96.2 20 - 96.1 20 - 96.2 20	0.0 SE.2 0.0 SE.2 0.0 SE.2	87.0- 87.0- 87.0-	r m ENNU 1NNU	5) Jackes SOB 2) Jackes SOB 3) Jackes SOB 3) Jackes SOB	NOX ONLINE? NOX ONLINE? NOX ONLINE? NOX ONLINE?	61'7 61'7 60'7	66.2 66.2 51.3	436.f 435.f 535.f 100.f	17-02 LOOZA/S 99-02 LOOZA/S 57-02 LOOZA/S 77-02 LOOZA/S																										
8E 0 8E 0 15 0	51.0 51.0 51.0 51.0	0.161 0.161 0.161 0.181	£18 £28 £18 £18	8,00 4,00 2,00 2,04 7,01	643 627 627 627 203	1.05 1.05	\$962611 \$962611 \$962611	129001 129001 129001 129001	88752 88752 88752 88752	20505 20505 20505 20505	1965 1965 1965	101700	99'I 96'S 18'S 29'S	96.8 07.8 28.8 72.8	10.5 50.6 11.6 77.5	208.8 90.0 208.8 M 6 208.8 90.0	. M.1 20 90.1 20 90.1 20 90.1 20	0 52 0 52 52 0 52 52 0 53 52 0	YV uv	FNOW 1NOW FNOW 1NOW 1NOW	at , a winn SOB at , a winn SOB at , a winn SOB at , a winn SOB at , a winn SOB	MOX CMPHE 1 MOX CMPHE 1 MOX CMPHE 1 MOX CMPHE 2 MOX CMPHE 2	16.2 67.3 16.2 82.1	67 67 67 67 67 67 67	17.1 21.2 2.5 4.0 10.5	TY-OR LODGLANS TY-OR LODGLANS TY-OR LODGLANS OF-OR LODGLANS SETOR LODGLANS																										
1 0 12 b P 0	01 0 01 0 01 0	8,141 8,141	8.07 6.82 8.92 8.12	0.17 7.92 7.52 8.64	2.00 8.72 8.82	2.81 2.81	2452511 2452511 2452511	127001 127001 127001 127001 127001	98225 98225 98225	20263 20563 20563 20563	1462	1811-06	1877 9677 90'5 18'0	10.2 23.1 59.1 51.8	252 250 101 101 101	208.8 M 6 208.8 M 6 209.8 W 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		81.0 81.0	E NOW 1 NOW 1 NOW 1 NOW	81 , a drinn SOS 81 , a drinn SOS 81 , a drinn SOS 81 , a drinn SOS	NOX ONLINE? NOX ONLINE? NOX ONLINE?	671 127 167 167	867 2577 4677	55.1 10.1 12.1	SCOT TOOPING SCOT TOOPING SCOT TOOPING SCOT TOOPING SCOT TOOPING SCOT TOOPING																										
61.0 61.0	56.0 56.0 52.0	9'161 9'161 9'161	1/90 1/98 1/98 1/94	6.601 6.401 1.88 6.86	0.24 6.18 6.18 0.58	2.72 0.18 8.84 2.72	2452511 2453511 2453511	175401 175401 175401 175401	86125 66125 66125	20563 20563 20563	ives ives ives	1811-06 1811-06 1811-06	90'8 90'6 99'4	52.1 60.1 60.1	86.6 68.1 86.8 76.6	208.8 M 6 208.8 60.0 208.8 60.0	00.2 300 00.1 30 00.1 30 00.1 30	215 00 215 00 215 00 215 00	87.0- 87.0- 87.0-	1 NOU 1 NOU 1 NOU 1 NOU	81 ,4 antino SOB 81 ,4 antino SOB 81 ,4 antino SOB 81 ,4 antino SOB	NOX ONLINE 7 NOX ONLINE 7 NOX ONLINE 7	45.0 42.0 42.0 42.0	ALT MT	79.5 6.84 6.84 2.84	PLOS TOOPEN SLOS TOOFINE CLOS TOOFINE ACOS TOOFINE																										
81.0 81.0 81.0 82.0	HO.0 HO.0 BO.0 20.0	Pigi Pigi Pigi	1'59 F39 F80 2'52 9'21	F95 0'92 1.1	A 852 A 806 O.254 E.880 A.02	2.7 2.7 0.8	\$162611 \$162611 \$162611 \$162611	12901 12901 12901	99,225 99,225 99,225 99,225	20563 20563 20563 20563	ives ives ives	191798	52'9 10'5 27'2 82'1	PLE TRB	68.0 68.0 77.7 28.1	2018 MG	us 900 us 900 0075 900 us 900	o an o an o as	87.0 87.0	1 NOU 1 NOU 1 NOU 1 NOU 1 NOU	81, 3, 67870 5278 81, 3, 67870 508 81, 3, 67870 508 81, 3, 67870 508 81, 3, 67870 508	MOX CMLNE? MOX CMLNE? MOX CMLNE? MOX CMLNE?	11.79 25.00 14.14 14.14	71.£ 71.¢ 64.8	81.0 81.0 00.0 70.0	OF OR LOOSEAS SE'OR LOOSEAS LE'OR LOOSEAS SE'OR LOOSEAS SE'OR LOOSEAS																										
P O 11 0	50.0 50.0 50.0	9'161 9'161 9'161	9'81 9'81 5'12 9'82	6.51 8.8 2.8	6.85 6.85 6.85	87 87 87	SHEZELI SHEZELI SHEZELI	171001 171001 171001 171001	88752 88752 88752 88752	20002 20002 20002 20002	1465 1465 1465	101990 101990 101990 101990 101990	80.1 £6.0 12.0 12.0	45.5 45.5 46.5 70.5 71.6	82.0 82.0 86.0 17.0	268.2 60.0 268.2 60.0 268.2 60.0	. n s 200 . n s 200 . ea.e 200 . aa.e 200	o an	81.0 81.0	TINON TINON TINON	81 ,4 selection 208 81 ,4 selection 208 81 ,4 selection 208 81 ,4 selection 208	MOX CMTME 1 MOX CMTME 1 MOX CMTME 1 MOX CMTME 1	#4.0 #7.0 #5.5	3,16 2,04 13,0 13,0 13,0 14,0 14,0 14,0 14,0 14,0 14,0 14,0 14	81.0- 81.0- 81.0- 63.0-	STOR HODEAS NTOR HODEAS CTOR HODEAS 27'02 HODEAS																										
\$1.0 010 92.0 95.0	80 80 80 80	9'161 9'161 9'161	1'62 2'80 9'80 9'80	781 270 787 887	4.00 6.00 6.00 4.00	97 0'5 0'5 0'5	mrii	171-001 171-001 171-001 171-001	88752 88752 88752	20902 20902 20902	ines ines ines	181798 181798 181798	85.1 82.1 82.1	17°C CV C LZ 7 CZ 7	19.0 19.0 19.0	208.2 80.0 208.2 80.0 208.2 M G 208.2 80.0	a's SC OFF SC us SC us SC	o us o us o an o us	UP	HINDH HINDH FINDH FINDH	31 , A entire SOS 31 , A entire SOS 31 , A entire SOS 31 , A entire SOS 31 , A entire SOS	MOX CMTME 1 MOX CMTME 1 MOX CMTME 1	M.t M.t M.t	3'43 3'81 1'36 1'30	61.0- 61.0- 61.0-	BLOS HOSEAS BLOS HOSEAS BLOS HOSEAS																										
1 0 全0 K 0 成り 記り	100 100 100 100	Aret Aret Aret Aret Aret	2 tr 2 tr 2 tr 5 tr 5 tr	017 807 517 0 n	£.04 £.04 £.04 £.04	0.8 0.8 0.8	sessii sessii sessii	129001 129001 129001 129001	68752 88752 88752 88752 88752	20063 20063 20063 20063	THEE THEE THEE THEE	161106 161106 161106 161106	60.h 62.t 52.h	1019 123 123 1413 1413	78.0 17.0 17.0 10.0	208.2 80.0 208.2 80.0 208.2 80.0	MES & MES &	0 24.62 0 24.63 0 24.63	UP	HUN 3 FUN 3 FUN 3 FUN 3	37, 24 grillo SOS 302 ordino SOS 31, 24 grillo SOS 31, 24 grillo SOS 31, 24 grillo SOS	NOX ONTINE 1 NOX ONTINE 1 NOX ONTINE 1 NOX ONTINE 1	140 140 140 140 140	966 961 961 961 947	01.0 TO.0 00.0 80.0- 01.0-	61-25-1025-54 61-25-1025-55 61-25-1025-55 61-25-1025-55 61-25-1025-55 61-25-1025-55																										
K O 9₹ 0 9₹ 0 9₹ 0	100 100 100	8,161 8,161 8,161	2.04 8.04 7.04	201 201 101 121	1.2h 1.2h 2.2h 5.0h	8.2 8.7 2.7	SHEZELL SHEZELL SHEZELL	125001 125001 125001	68752 68752 88752 68752	29505 29505 29505 C9505	1 hee 1 hee 1 hee	F8F486 F8F486 F8F486	70.4 81.4 71.4	BI,A CB,C CB,C SB,C	66.0 22.0 66.0	268.8 90.0 268.8 90.0 268.8 90.0 268.2 90.0	US 983 a's 983 887 983	ro er ce ro an	87.0- 87.0- 87.0-	HUN B FILM B FILM B	31 ,4 ordino SOB 31 ,4 ordino SOB 31 ,4 ordino SOB 31 ,4 ordino SOB	NOX CHE'NE 1 NOX CHE'NE 1 NOX CHE'NE 1 NOX CHE'NE 1	#** #** #** #**	90°E 18°E 18°E	20.0- 05.0 55.0 81.0	\$1.05 1005/6/8 \$1.05 1005/6/8 \$1.05 1005/6/8																										
52 0 0 1 0 0 1 0	90.0 90.0 90.0 90.0	8,181 8,181 8,181 8,181	8.54 8.96 6.16 1.86	2.00 2.00 2.00 2.00	9'97 1'80 1'80 1'80 9'80	0'7 7'E 8'E 1'C	SHESETT SHESETT SHESETT SHESETT	FTHOSE FTHOSE FTHOSE FTHOSE	88752 88752 88752 88752 88752	20563 20563 20563 20563	1965 1965 1965 1965	131408 131408 101408 161408	00.4 00.4 00.0 00.0 70.0	51.6 51.6 57.6 57.6	11'0 11'0 11'0 11'0	208.8 MG	661 900 661 900 663 900 US W	10 SEC 10 SEC 10 SEC	87.0 87.0	HIN? HIN? HIN? HIN?	31, 24 graftin SOB 31, 24 graftin SOB 31, 24 graftin SOB 31, 24 graftin SOB 31, 24 graftin SOB	NOX ONTHE 1 NOX ONTHE 1 NOX ONTHE 1 NOX ONTHE 1	70.5 20.5 70.7 70.7	11.3 21.6 27.6 02.4	no no no no	SO-OS TODENS SO-OS TODENS SO-OS TODENS SO-OS TODENS SO-OS TODENS																										
01.0 21.0 21.0	20.0 20.0 20.0	8,181 8,181 8,181 8,181	6.60 0.62 6.72 0.63	7 57 2 06 5 02 0'11 2 01	12 12 13 14 14 15 16 16 16 17	7.2 7.2 8.6 8.6 8.6	SHESETT SHESETT SHESETT SHESETT	121001 121001 121001 121001	68752 68752 68752 68752 68752	20005 20005 20005 20005 20005	THES THES THES THES	F81A88 F81A88 F81A88 F81A88 F81A88	28.0 77.1 18.5 87.6	66.5 66.5 61.5 64.5 64.5	hE 0 11.0 10 0	909'S W6	00.1 200 00.2 200 00.2 200 00.1 200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UP UP	FUNDU FUNDU FNOU FNOU FNOU	31 ,4 artin 508 31 ,4 artin 508 31 ,4 artin 508 31 ,4 artin 508 31 ,4 artin 508	NOX ONTINE 1 NOX ONTINE 1 NOX ONTINE 1 NOX ONTINE 1	97.0 78.0 92.1 52.5 50.6	613 613 613 514	06.0- 02.0- 02.0- 02.0-	COOK TOOLOG TOOK TOOLOG SOOK TOOLOG COOK TOOLOG																										
81 0 01'0	\$0.0 10.0	9'161 9'161 9'161	5,05 1,05 8,81 8,81	#21 1/11 2/8 2/6	2 HC 2 HC 2 HC 2 HC 2 HC 2 HC 2 HC 2 HC	&¢ %¢ %\$	\$962611 \$962611 \$962611	121001 121001 121001	68752 68752 68752 88752	20502 20502 20503 20503	1468 1468 1468	101106 101106 101100 101100	74.0 27.0 11.1	202 259 259 259	11'0 WO	SC#5 WE	ME.E. 202 ME.E. 202 ME.E. 202	O WS	27.0 27.0 27.0	FUN3 FUN3 FUN3	BT, A series SOB BT, A series SOB BT, A series SOB BT, A series SOB	HOX CHE'NE 1 HOX CHE'NE 1 HOX CHE'NE 1 HOX CHE'NE 1	67.0 10.0 13.8 50.1	20.2 (4.5 24.5 24.5	25.0- 00.0- 21.0-	96-61 LOOZA/6 66-61 LOOZA/6 96-61 LOOZA/6 96-61 LOOZA/6																										
E1 0 E1 0 21 0	80 0 90 0 90 0	Pies Pies Pies Pies	711 022 124 124	611 611 611 611	7,00 1,00 1,00 1,00 7,01	87 89 88 84	SHEZELL SHEZELL SHEZELL SHEZELL	129001 129001 129001 129001	68752 68752 68752 68752 68752	20563 20563 20563 20563	1962 1962 1962 1962 1962	1811-08 1811-08 1811-08 1811-08	20,1 50,1 51,1 51,1	58.5 56.6 2.65 41.1	001 001 001 01 01	2011 W 6	US 900 90 9 900 90 9 900 US 900 a's 900	o as	87.0 87.0 87.0	FINDS FINDS FINDS FINDS	91 '7 May 200 91 '7 May 200 91 '7 May 200	HOX CHEME 1 HOX CHEME 1 HOX CHEME 1 HOX CHEME 1	#4.0 #4.0 f0.!	62.2 62.2 61.3 62.1	82.0 01.0 01.0-	95-81 100EA/6 55-81 100EA/6 35-81 100EA/6 15-81 100EA/6 05-81 100EA/6																										
12 0 05.0 11 0	MO.0 MO.0 MO.0	8,161 8,161 8,161	2 00 2 00 2 00 2 00 2 00	TTI LU TU TU Ta	6.84 6.84 5.12	72 88 611 86	SHEZELL SHEZELL SHEZELL SHEZELL	121001 121001 121001	88752 88752 88752	29605 29605 29605 29605	1962 1962 1963	187406 187406 187406 187406	1,90 5,40 2,40 1,19	57.E 57.E 65.h	80'II 86'I 16'0	SCUS WE	US W us w	oan v wis oan v an	810 810 810	ENUN FILMS FILMS	\$1 ,5 eritro SOB \$1 ,5 eritro SOB \$1 ,5 eritro SOB \$1 ,5 eritro SOB	MOX CMTME 1 MOX CMTME 1 MOX CMTME 1 MOX CMTME 1	96.1 81.6 86.5 81.1	90.£ 95.4 90.4	52.0 59.8 6.0 71.0	SP-EL LOCKENE SP-EL 21 0 71 0 51 0 01 0	80.0 80.0 80.0 80.0	9161 9161 9161	6 02 6 02 5 02 9 03	8.87 8.87 8.81 5.61 7.61	2.04 7.54 2.04 2.05	0.11 S.S.I A.O.I	SHESETT SHESETT SHESETT SHESETT	129001 129001 129001 129001	68752 68752 68752 68752	20005 20005 20005 C0005 C0005	nes nes nes	181408 181408 181408 181408	61") 91") 20") 20") 89"Z	3.50 3.69 3.50 2.64	96,1 96,1 95,1 80,1	201.2 MAG 201.2 MAG 201.2 MAG	00.4 252 00.4 252 00.8 252 00.8 252	0 PT 15 0 PT 15 0 PT 15	87.0- 87.0-	ENUM ENUM ENUM ENUM	at , A entire SCIS at , b entire SCIS at , A entire SCIS at , A entire SCIS at , A entire SCIS	MOX ONFINE 1 MOX ONFINE 1 MOX ONFINE 1 MOX ONFINE 1	50'1 50'1 50'1	110 110 110 110 110 110	50.0 57.0 17.0 62.0	5-91 1005/05 5-91 1005/05 5-91 1005/05 17-91 1005/05
27:0 27:0 04:0 U 0	00 0 90 0 LOO	8,181 8,181 8,181	97.19 97.19 07.19	9'69 E'91 E'11	5.07 9.29 0.38 5.52	8.61 8.01 5.81 5.51	SHEZELL SHEZELL SHEZELL SHEZELL	121691 121691 121691	88752 88752 88752	20902 20902 20902	1965 1965 1965	F813-06 F813-06 F813-08 F813-08	50,1 85,1 81,5 87,6	16.8 16.8 16.5	7,1 16,1 54,5 90,1	SCR.2 MO. SCR.2 M.G. SCR.2 M.G.	00.8 200 00.8 200 00.8 200	o ares	UP UP UP	ENUN FILMS FILMS	31 , A antino SCIB 31 , A antino SCIB 31 , A antino SCIB 31 , A antino SCIB	MOX ONTINE 1 MOX ONTINE 1 MOX ONTINE 1 MOX ONTINE 1	171 178 188	90'9 82'9 20'8 80'8	12.0 40.1 77.0	07-61 1002-05 07-61 1002-05 07-61 1002-05 (E-61 1002-05																										
61.0 61.0 P.O 20.0	610 610 610 610 610	8,181 8,181 8,181 8,181	0,10 0,10 8,44 8,86 8,86	202 202 203 203 201	0,601 8,501 0,66 8,06 1,88	2.25 1.01 8.51 1.05 7.81	SHESELL SHESELL SHESELL SHESELL	127691 127691 127691 127691	68752 68752 68752 68752 68752	20003 20003 20003 20003 20063	THEE THEE THEE THEE	1811-08 1811-08 1811-08 1811-08	28,1 18,1 87,1 10,1	90'6 90'9 90'9 90'9	11.6 2.36 1.63 2.47 2.30	SCOR WE	us 950 a's 950	0 256 0 US 0 256 0 an	87.0 87.0 87.0	ENUR FUNS FUNS ENUR FUNS	at , b effector 508 at , b effector 508 at , b effector 508 at , b effector 508 at , b effector 508	NOX ONTINE 1 NOX ONTINE 1 NOX ONTINE 1 NOX ONTINE 1	MLF MLF MLF MLF	527 967 967 969 969	25" i 72" i 80" i 29" i 27" i	SCRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR ACRI TOOSEAR																										
15.0 16.0 9C.0	80.0 80.0 80.0 01.0	0'161 0'161	0.00 0.00	5 11 E21 1'21 5'4	6.811 8.851 8.201 5.17	6.01 6.11 6.11	SHESETT SHESETT SHESETT	121001 121001 121001 121001	60/25 60/25 60/25	20902 20902 20902	1162 1162 1163	181488 181488 181488 181488	28.0 20.1 70.7 86.0	81.8 81.0 82.01	922 92'i 90'i 17'i	258.2 80.0- 258.2 80.0- 258.2 80.0- 258.2 80.0-	88.2 200 88.2 200 88.2 200	0 \$8.62 0 \$8.62 0 \$8.62	81.0- 81.0-	E NUM	87 , à antino SOB 81 , à antino SOB 81 , à antino SOB 81 , à antino SOB	HOX CHLINE 7 HOX CHLINE 7 HOX CHLINE 7	96.0 20.0 20.0	\$1.9 60.6 64.01	25°1 10°1 29°0 (9°0	15.41 1005424 05.41 1005424 65.41 1005424 85.41 1005425																										
100 BO2	MOV NON	NODUCTION TONISMI	AVERAGE ON LIBEARS	BOX OUT	BO2 N	NOX CE SAME	TOTAL	PURINACE C	PURHACE A	Ę	6	0000	902 BUT	802 2	NOX-7	5 8	E 8	~	8	NUMBER	Š	ğ	100 tot	# £0	HOIC COMP 7	TINE																										
A01	SON FAC	ЕМВ		SN4	88 EM8810	YM .		MHC	R BINGWE	IUSA3M W	PLO1		83079	V MMM GETO	СОЯВЕ	CHONS	BOS IN L		CYT		OMMEN18	.	MM HOTTA	нти з оноо (OBSEMAED																											

				_			_			_	_	_					_	_	_		_		_	_			_	_	_	_									_	_	_				_								_					_		_	_					_	_							
TOR	Ţ	BOS HOTNERLI	2 2	8 8	3	9 ,	0.41	8 :	8 5	2 5		1	0.20	0.27	g.	8	8	7 1	9 1	9 5	1	, X	6.2	27	2	Ř.	ř	R 1	2 :			5.	0.21	0.24	7.	0.1 9	61.0	0.12	0.17	R :	3	4 1		1 5	7	4	0.41	97.0	0.42	8	2 6	2 2																						
EMISSION FACTOR		HOLIA (ET)	8 8	8 9	80'0	8	8	8 :	8 1	5 5		1 =	11.0	75.0	0.14	8	8	8	8 :	8 5	3 5	8 8	8	8	8	8	8	8	8	8	8	8	Š	ğ	8	ğ	ğ	8	8	3	3	8 :	2 :	3 5	-	2	0.77	ង	5	13	3 3	* 60 a																						
E		XTOUGORY XHENOT	181.6 191.6	101.6	191	191.6	8.1.6	9 9	9 9				9.0	9784	1	101	9.0						6.161	91.6	101	9.16	9.16		1		•	•		9	Ē	Ī	101.6	191,6	919		=	9				-	1	191.6	181,6	8,181	9 9	9 10																						
	,	903 FBBM	3 3	8 3	8	č.	2	2	ž.			; 5	51.5	- 5	24.5	\$	¥	3	4	3		2	3	3	423	ş	ğ	9	1	37.2	516	ž	S.	462	3	58	ลี	ñ	4 E	ş.	3	2 2	72.		2 2	1	2	73.6	ž	72.0	Ŧ :	. 2																		_				
		TVO £OE RHABELL	725	7.	ě	27	2.18	7.5	2	2 2	ŝ	9	4 15	52,	27.75	21.5	,	2	2	2	3 :		9	483	4.4	38	9	3	ä	15.5	2	0	4	15.2	7.57	12.6	12.	87	19.6	2	4	- 1	n .		8 4	8	87.0	ã	8.8		\$	4 5																	~					
MASS EMISSIONS		M-808	523 54.8	S C	4 29	8.8	74.8	74.5	0.5	7 5		8 3		5.63	\$1.4	94.0	8	5.05	212	3	ğ i	8 8	7.97	404	0.0 4	73	4.08	3	Ä	9	28.2	7	48.3	47.2	45.6	40.4	8	7 8	0,64	ž.	Ę	7 .	9 .	ē;	7 .	2.4	2.0	1.58	e S	65.0	42.2	2 C																						
MA	4	HAREL XON	15,4	27.	9 2	14.4	7,11	4,1	7.	0.0	0.5		213	Ŕ	283	16.2	9	9	4.6	7.5	0, 6	2	: 3	7	9,4	7	* :	3	0.7	7	5	27	*.	7.4	?	0,7	9	87	:	7.2	0,	0.	24.9	1	R S		3	42.4	7 98	3	Ŕ	Ř E	!																	-				
		JATOT	1132345	1132545	200	1132345	1122345	132345	32345		2		57.0	132348	112245	132545	2	132345	1,32545	325	2		3624	32345	1132345	1132345	1132345	1132345	32245	32245	132348	1 32345	1132345	1132345	1132345	1132545	1132345	1132348	1132345	13254	1132345	32345	32345	2	200		7	132345	1132345	1122345	13248	22.5								-													_	
¥.	[-	SOAMACE	100471	4	Ì	10047	7	1,000	7			į	2	7	108477	108671	16	168671	17.	10867			9	4	2	7.	5	100	10847	1447	1	<u>1</u>	7	108471	- - - - -	10847	10001	10847	100471	1,000	10047	7	ž				j	14471	1684671	16847	100		<u> </u>																				_	
FLOW MEASURMENTS SCFM	V	FURNICE	\$2752 \$2758	\$27.00		\$27.88	\$278	27.78	52720				5	227.88	\$2728	\$278	527th	\$278	22728	27.20			5	\$2778	\$27.88	\$27.88	\$27.88	52788	52728	\$278	527tb	\$278	\$27.00	52780	X778	\$2.7X	52788	\$2778	5278	22728	\$278	22.03	2278	25	2		5	2272	\$27,88	\$27.B8	527.88																							
MEASUR		#∩	20563	20803		20263	2002	2002	2062					902	20062	20962	20062	20963	20663	2002			2000	20802	2002	20862	2002	20963	20902	20663	20563	20663	20563	2992	2002	2005	20063	20062	2000	2002	20653	2000	200	8			9	20962	20902	20563	20263	59 E																						
FLOY	ľ	£4700	ž ž	ž :	3	ā	ž	ž	ž	3	ž :	ā	ě	ā	25	2	ā	2	ž	ž	3	1	Š	ā	24	3	2	ž	ž	ž	ž	ž	200	2	2	ă	5341	554	ā	ž	ž	ž	3	ž	ā :	2 2	Š	3	3	ž	3	ā	Ē																					
		1-07100	84.18 18 18 18	86418		884181	884161	884181	884181	1 1	100			884181	864181	884181	864181	1864191	184181	- F	100		181	86418	884181	864181	864161	564161	864181	191799	181799	1917-00	19179	664143	1817	684181	181,790	564181	664181	864181	964181	884181	964191	204.18	1 1 1	100	18178	664161	864181	18177	664181																							
NLUE8	1	TUG EGE	3 8	ğ :	2 :	8,	7.07	F.7	5	7	5	2		. 5	8	3	8.40	8	ę.	2.87	8 :	2 !		8	8	5.14	8.8	5.78	2	×	80	200	3.01	1,91	8,	2.62		7,	1,38 26,1	8	-	5.28	28.	2	2 1			9.7	8	2	3	3 :		9.50	ĸ	5.15	2 2	1 6	ğ	000	00	8	8	8	3 3	5 S	400	900	- F.	φ. 10.	3 :	3 5	. £	
CORRECTED PPM VALUES		MI ZOS	1977	9	8 3	2	4.47	3	15.1	7		<u>.</u>		2	1	5.54	58	\$.14	2.7g	2,2	5.74	Į :	, .	3	84.6	ij	ä	4,85	8.	5.10	£.3	4.18	4.00	8.	3.57	9,50	976	3.30	4.15	5.73	8	3.87	7.	8 :	9 !	R E	3 3	3	80.0	29.5	3.65	8 .	9	R '1	111	X :	2 2	1 8	10.0	00'0	8	0.0	9,0	8	ğ ç	9 9	8	BD 0-	9 .09	8	÷ 3	, e	8.5	
CORREC		`1 - XOM	8 8	2.12	K) &	2	₹.	1.4	1.4	5	Į.	8 1	(·		3.24	8,	17	0.74	97.0	8	0.74		8 8	82.0	0,8	1.21	1.38	8.	6 7,	D.78	20	M '0	0.61	18.0	9.0	0.8 0	86.0	1,13	1.08	98.0	98'0	Ķ	6	2.87	8	3 5	7 7	ដូ		5.82	S,	E S		2.7	2.55	9	7.7		8	87	2, 10	2.17	8	28	8 1		8	27	3.12	8	17.	3 2	2.15	
CTIONS	150 204	eri eri	0.00 5.835	0.08 \$.835	900	900	0.08 5.835	0.00 5.835	-0.08 5.835	008 8.850	8 8 8 8	2.838			5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-0.08 \$.835	0.08 5.835	0.00 5.855	0.08 8.835	0.08 5,835	0.00 5.835	0.00 S.ETS		200	0.00 5.035	0.08 5.835	0.08 \$.835	0.00 5.835	0.00 5.835	0.00 5.835	0.08 5.835	0.00 5.835	0.08 8,835	0.08 5.835	2885 800	0.00 5.835	0.00 5.835	0.00 8.836	0.00 5.835	0.08 8.835	0.08 8.835	0.08 8.835	0.09 S.E3S	000 S ECO	0.00 5.835	200	4	5835	0.08 5.835	0.00 5,835	0.08 5.835	0.00 5.835	A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.08 5.835	-0.08 S.836	-0.08 S.B35	8		5 800	0.00 5.835	200 5.835	0,00 5,835	O.CH 5.005	0.00 3.835		200	28.86	0.00 5.835	0.00 5.835	0.00 5.835	0.00 5.835	A 08 5,835	0.08 5.835	
BRATION CORRECTIONS	802 N	615	0.035 5.69	88.5		2	20 20	88'8 900	8 28	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2				200	3.8	88 88	87 90	20.0	2 2 8	2 :			200	100 S.M.	88.5 888	87.8 800	85 SB	80.5	83.88	87.5	82.88	88 88	8 2 8	M.S. 80	28	8	8 28	2.00	8.08	8.28	8 58	5.8	8			3	2,00	8 8	5.00	8.5	4.00	25 B. B.	5.88	83. 88	8 1			2	200	85	20.00	200	8 1 8 1	B 2		25	5.88	8 2 8	8 8	8 2	18. 88.	
CALIBRATIC	40x 1	tvi	0.78 55.20	3			53,82 0	9.52.0		200	3				0	3	3	73 53,62 0.0	75 55.00 0.0	75 55,00 0.	75 SE 0.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0 27 55	33,820	13.82	50.00	50.52.0	53.82 0.	9 20 0	53.82 O	S 50 0	2 2 3	2	8	75 55 50	8	2	75 55.22 0.0	3	75 55,52 0,5	z		2			1 2	1 2 3	24.55	ă		2	3	SS.22 0.	24.25				0 27 55	3	2 22	०सड	27 00				348	55.82	53.82 0	0.73 52 52 0.0	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 4	
lo l	Ц.	HJBINIH R36MUN	PUNS PUNS PUNS PUNS PUNS PUNS PUNS PUNS	PLN 3		_	-	-		2		_	-					_	-		200	2			SE SE	3	2	NAS P	PUS A	1 P. C. C. C. C. C. C. C. C. C. C. C. C. C.	4	<u> </u>	EN3	4 SE	4 2 4	RN3	RN3	9	853 623	2	<u> </u>	2	_	_	_	_	_	_	E S	_	PUN3	GEN O	,	WAIT	WAIT D	WAIT D	WAIT		9	TIVA	WALT	WAIT &	WAIT &	WAIT	LYM	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 9	¢ ⊢VA	WAIT	WAIT 0	WAIT O	_		
COMMENTS		\$0\$	902 ordes 4, 16	802 orithm 4, 18	902 ordina 4, 16	802 ordina 4, 18	BO2 ordine 4, 18	802 ordina 4, 16	802 ordine 4, 18	802 ordina 4, 18	902 online 4, 18	502 ordine 4, 18	SCZ Griffie A.		Manager 18	802 ordine 4, 18	BO2 online 4, 18	802 orithe 4, 16	BO2 ordine 4, 16	902 ordina 4, 16	802 ordina 4, 16	902 ordine 4, 16	SCZ drama, 10	CO comment	902 online 4, 18	902 orithe 4, 18	902 orithe 4, 18	502 online 4, 18	302 ordina 4, 18	902 orithe 4, 18	802 online 4, 18	902 orithe 4, 18	BOZ ordina 4, 18	BOZ online 4, 18	BO2 evens 4, 16	802 online 4, 16	802 ordine 4, 16	802 ordine 4, 18	902 ordine 4, 18	BO2 online 4, 16	802 online 4, 18	BO2 online 4, 18	502 orithe 4, 18	802 online 4, 16	902 ordina 4, 18	MO2 ordina 4, 18	SCZ orane A. In	C2 order 4 16	BC2 ordina 4, 18	į	802 oriens 4, 18	- ·																				3 3	33	
400		KON	MOX CALENE?	NOX CHUME ?	MOXONE P	MOTOR DET	NOX CHEINE 7	NOX ONLINE 7	NOX CHAINE 7	NICK CHILINE 7	MOX CHE, INE 7	MOX CHEINE 7	MOX CALLINE 7	MONOR ME	MAY ON DEC 3	HOXONE 7	NOXOREME?	NOX ONLINE?	NOX ONLINE 7	NOX CHUME 7	NOX CHILINE 7	MOX CHUME 7	MOX ONLINE 7	MON CALLERY	_			_		HOX CHILINE 7	NOX OR INE 7	NOX ONLINE ?	NOX ONLINE 7	NOX ONLINE 7	NOX CHILDRE 7	NOX ONLINE ?	HOY CHE BIE 7	HOW ONE PAE 7	MOX ONLINE 7	NOX CHEINE 7	MOX CHUME 7	MOX CHILINE 7	NOXONLINE 7	HOX CHILINE 7	MOX CHILINE 7	NOXOM INE 7	MOTOR DE	MOX CHE BAE 7	HOX ONLINE ?	MOST CHELDNE?	HOX CHUBIE 7	NOX ORLINE 7	•	3	*3	3	3	3	3 3	3	8	3	3	3	3	3	3 3	3	3	378	3	3 5	13	
Men Mon	1	100 t08	4 £		-				-	_	_		-	-		-		-	-	_	-				_	-	-	-		-			_		_	-		_	-		_	-	-			-	_	-			_			1 2	4,18	8	2.10	4				Ę	2.7	A.12	51.5	9 1		4	5	5	<u> </u>	Z 5	R 25	
OBSERVED (ONCENTRATION PPM	f	NI 500	2 4	8	Ģ :	9	3	9	5	9	Ę,	2	4	,	,	3	3	5.70	2.00	1,3	2	8.8			7	*		4	4.	80%	ŗ	7.7	2	5	8	3			2.4	5	3	¥	3	į	9	¥ :	.		9	5	3.5	38	:	3 3	2	Ŗ	9	3	5 6	3		80	8	5 0	5	5	5 8	8 9	ğ	8	3	5:	5 3	
SERVED (1	į.	. 4400 XON	1	*	2			40	0.0	2	\$	펵	3 :	Z 5	: :	1 5		8	51.0	1 00	8.0	8	# F			0.40	100	×	B.	8	0.0	\$1.0	1,0	11	9.0	210		1	×	91.0	917	ä	3	2.14	2.07	# 1	5.12			3	52	*2	•	3 5	2	a	3 :	8 1		1 5	9 5	3	×		9	z :	2 5				3.5	H ?	4 7	
8	_1	3411	\$27001.20.44	8 25 68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		18	25.05.100	50:54	45.05.100	15 CO 100	85:02 LOD	8		201	4	20.21	2 2 6	101 21:07	2017.00	80.12.100	21:10	111111111111111111111111111111111111111	200	71.6	\$1.15.100	1.5	71:12	91:16	81:12	22.12.120	12.22	27.12.12	22.00	20.00	22.00			2 2 2	4.1.1	97.22	16:12:10	M.17.10	12.12.10	W 22 W	201 PL36	# 1 TO			9.17.18	304 21:41	201 21:42		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20121.45	3012134	301 21:47				100	22.5	15:12 to	21.12	2	75 11 27		8	22.00	20.00	22.03	10 TH	\$2500 22 00 \$2500 22 00	
			\$ 3	ŝ	\$	Š	Š	Š	2	Š	ξ	Š	Š	Š.		Š	S	S	S	\$	Ś	Š	Š		Š	S	S	S	S	Ş	S	S	S	S	S	Š		1 5	Š	Š	Š	Š	Š	Š	Ś	Š	S:	\$ }	Š	Š	S	Š	-	\$	Š	Š	Š	\$			3	Š	Š	Š	Š	Š		5	Š	Š	Š	Ś	: \$	

FACTO	ł	HOLISET																																						
EMISSION FACTO		XON	_																					_											_		_	_	_	_
<u>.</u>		HONDUCTION PHABHOT		_				_							_										_		_				_		_					_		
		AVEALOR NO LEBHR		_																																				
28		TUO SÓS SHASEJ																																						
MASS EMISSIONS		ME SOR																																						
¥		RHABEL XON																																		_				
		Antor																																						
ž		INDIPACE C																																						
		FURNINCE A																																						
LOW MEASURMEN B BC		æri .																																						
2		t-071000																																						
		r-cnco	L		_			_				_	_																									_		_
AALUES		TU0 508	5.81	5.63	5.83	2.5	9,8	5.83	5.83	3 .5	5.57	r.	1,7	4	4.8	£.	4.42	8	r,	8	3.68	38	9.6	8	5.24	7,82	2.7	8	1.12	<u>.</u>	4,0	121	0.20	8	9	8	900	600	60	90
COMPLECTED PPM VALUES		NO 5 IM	5.94	18 55	5.87	3 .8	5.87	10.0	8	8	5.52	17	11	ĭ	20.00	208	1,87	202	A 12	Ħ	2.80	2.88	2.01	4.4	3.44	į	3	7.17	6	ă	Ą	1.1	0.18 81.0	8	B	80	ğ	ğ	Ş	900
5		T - XON	2.08	2	2	2	2	2	2	8	0.28	20.03	7	2	Z	37.80	8	8	8	6.0	ğ	8	8	60	Ð	6	6	9	ō,	9	6.0	8	8	9.0	80	89	800	8	8	8
Γ	202 OUT	es			_	_	_	_	_	2888																									8 6.835				5,635	
l	Н	979	5.89 -0.08		8.00		•	5.88 -0.08	•	9 8		_	•			5.00 0.00		800 40,08			•	8°8	E 0.0	8.00			800			800			80°0 88'8		80°0 80'1		Ċ		S.88 -0,08	÷
l	802 N	øra .	9000					2000			-		88	8	88	18	88	200	8	900	•														9000				9000	
	MOX 7	EN6	27.53	3	27.53	27 63	200	27'05	37 ES	3	3	ă	ğ	2	2	200	59,82	#	2	ă	3	3	3	ä	3	3	Ų,	ij	ij	ij	ă	ă	3	3	ä	ŭ	27.53	ŭ	3	3
	¥	σε	⊢	-	-	_	_	_	_	_	_	_	_	-	-	_	-	_	-	_	-	_	-	_	_	_	-	-	-	-	-	-	-	_	_	_	_	Ç.	_	_
		NUR R38MUN	t ¥A	TVM	tv.	t VA	t VA	tv.	t¥M	t VM	t 🕶	t VM	t¥₩	t¥#	t V	t VA	t 🚧	t VM	t 🗱	t v	t۷M	t VA	t¥#	t¥¥	t 🗱	t 1	**	t YM	t VM	t v¥	t VA	t××	t 🗱	t 🗱	t VX	t Y	t v	t t	t t ≸	**
Ī		305	CALS	3	A 2 B	1 × 10	1 % E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	3.5	SA.S	CA.S	CALS	3	S.W.S	SAS	CAL S	CALS	3	SAS	3	8	3	3	CALS	3	3	3	3	8	S.N.S	SM.8	3	CALB	SALS.	CALS	CALB	CM.S	3	3
		XON	2	2	ž	, F.	N. S.	N.C.	M.8	3	2	¥.8	3	₹ 1	3	25	2	ž	ž	ž	ğ	ğ	ğ	ğ	ž	₫.	₹ ĕ	₫	ž	₫	3	ž	3	Ę	3	3	3	B CAL	3	3
=			Ľ	_	_	-	-	_	0	_	-	-	3	ī	3	٥	٥	90	8	8	9	·	- -	9	8	2	2	2	3	2	3	8	8	- -	-	3	8	=	8	3
MUM		Tura scale	Ę	2	3	3	3	3	3	3	3	\$	ş	3	4	3	Ħ	2	3.67	8	E.	74	2		23	ŗ		Ą	8	ā	376	1.1	6 ,12	Ş	9.4	4 .15	415	Ą	\$	410
OBSERVED CONCENTRATION PPM		HI \$08	3	5	3	Ę	3.82	4	3.57	8,	3,	7	3	9	5	82	170	2	ï	ī	47	200	8	3	2	3	2	17	8	5	¥	1,16	2	800	ē	8	8	5	69	90
OBSERVE		T WOX COMP 7	2	¥.		ā	ij	2	===	1.1	8,6	•					-0.45	R				Ę	-		2	r,	ř,	r f	ŗ	Z.	6,7,4 57,	Ę	-	R	•		9	4.7	6.7	20.0
-	- T	3WU .	50/201 22:07	S-22001 22:08	\$3200 ZE:08	\$2000 ZZ 10	\$19/2001 22:11	\$132001 22:12	\$2000 ET.13	\$72001 ZZ:14	\$2000 E2 15	5/3/2001 22-16	\$1.22 i02.43	9/3/2001 22:18	\$1.32 too2424	50-20 tags	5-27 may 22-21	93-2001 22-22	SOUTH BEE	SATOO! 22-24	S.22 HOLVS	A-22 1007474	50-3001 27-27	9/2/201 (22.58)	5797001 22:29	\$2000t 22:00	WYCOI ZZ 3)	\$/\$KB01 22.12	\$2000 ZED	607001 22:34	\$3000 EX	SATERN STAN	15.22 1005.67	\$4.42 100Z/6/6	S-22 100Z/C/2	07-7Z 100Z/6/6	5/2/2001 22:41	\$37001 £2:42	ENTON 22-43	A-2001 82-44

GALLATIN STEEL SO, TEST FLOW AVERAGES

Cold Duct 1 Avg.	R1 R2 R3	ACFM 952974. 962283. <u>932043.</u> 949100.	SCFM 834555 834820 83199 83379	5. б. <u>1.</u>	SCFMW 846113. 851927. 848086. 848709.
Cold Duct 2 Avg.	R1 R2 R3	ACFMD 93541. 76467. 83826. 84611.	SCFM 77357. 69720. <u>77680.</u> 74919.	D 78428. 71148. <u>79183.</u> 76253.	
Hot Duct Avg.	R1 R2 R3	ACFM 395103. 402313. 378720. 392045.	SCFM 21969 21960 23733 22554	0. 1. <u>0.</u>	SCFMW 222732. 224099. 241921. 229584.
Total How		ACFM 1,425,756	SCFM . 1.134.2		SCFMW 1.154.546.

- Company of the Company

الله الله الله

APPENDIX D

FLOW RATES EPA METHODS 1-4

				GALL	ATIN S	TEEL (СОМРА	NY-S	UMMAH	RYOF	BAGHO	USE F	LOW R	ATES				
		COLD 1			COLD 2			LMF		F	URNACE	Α	F	URNACE	С		TOTAL	
 }	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW
RUN 1	969420	881409	900084	101937	93063	95035	23697	19491	19904	261695	132503	135310	95756	86409	88240	1452505	1212875	1238573
RUN 2	1034806	877068	8 98983	19761	17714	18157	16205	13215	13545	52458	46628	47793	290645	151482	155267	1413875	1106107	1133745
RUN 3	101 045 7	884181	905918	5843	5341	5472	25924	20563	21069	64024	52789	54087	323278	169471	173637	1429526	11 32345	1160183
AVERAGE	1004894	880886	901662	42514	38706	39555	21942	17756	18173	126059	77307	79063	236560	135787	139048	1431969	1150442	1177500

NOTE - SCFMD TOTAL USED FOR NOX CONVERSION OF PPM TO POUNDS PER HOUR, SCFMWUSED FOR SO2.

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **- 6675** fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-3-01		
Run Number	1	Volume Metered	64.155
Start Time	1137	Meter Temp (Deg R)	537.3
Finish Time	1142	Orsat C02 %	0
Barometric Pressure	29.74	Orsat 0 2 %	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	16	Condensate Volume	28.1
Avg of SQRT of V.H.	1.3743	Delta H (inches H20)	1.741
Meter Correction (Y)	0.992	Stack Pressure	29.49
Pitot Correction Factor	0.84	Stack Temp (Deg R)	560.5

Moisture in stack gas, volume fraction	0.021
Dry Stack Gas, volume fraction	0.979
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.610
Specific gravity of Stack Gas Relative to Air	0.987
Excess Air (%)	
Average Stack Velocity, FPM	4821.5
Actual Stack Gas Flow Rate, ACFM	969420
Actual Stack Gas Flow Rate, (Dry) ACFMD	949306
Stack Gas Flow Rate (Standard conditions), SCFMD	881409
Stack Gas Flow Rate (Standard conditions), SCFMW	900084

GALLATIN STEEL SO, TEST FLOW AVERAGES

Cold Duct 1 Avg.	R1 R2 R3	ACFM 952974. 962283. 932043. 949100.	SCFMD 834555. 834826. <u>831991.</u> 833791.	SCFMW 846113. 851927. <u>848086.</u> 848709.
Cold Duct 2 Avg.	R1 R2 R3	ACFMD 93541. 76467. 83826. 84611.	SCFMD 77357. 78428 69720. 71148 77680. 79183 74919. 76253	
Hot Duct Avg.	R1 R2 R3	ACFM 395103. 402313. 378720. 392045.	SCFMD 219690. 219601. 237330. 225540.	SCFMW 222732. 224099. 241921. 229584.
Total Flow		ACFM 1,425,756	SCFMD 1,134,250.	SCFMW 1,154,546.

APPENDIX D

FLOW RATES EPA METHODS 1-4

				GALL	ATIN S	TEEL (COMPA	NY-S	UMMAI	RY OF I	BAGHO	USE F	LOW R	ATES				
		COLD1			COLD 2			LMF		F	URNACE	Α	F	URNACE	С		TOTAL	
	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMW	ACFM	SCFMD	SCFMVV	ACFM	SCFMD	SCFMW	_ ACFM	SCFMD	SCFMW
RUN 1	969420	881409	900084	101937	93063	950 35	23697	19491	19904	261695	132503	135310	95756	86409	88240	1452505	1212875	1238573
RUN 2	1034806	877068	89 8983	19761	17714	18157	16205	13215	13545	52458	46628	47793	29064 5	151482	155267	1413875	1106107	1133745
RUN 3	101 0457	884181	90 591 8	5843	5341	5472	25924	20563	21069	64024	52789	54087	323278	169471	173637	1429526	1132345	1160183
AVERAGE	1004894	880886	901662	42514	38706	39555	2194 2	17756	18173	126059	77307	79063	2365 60	135787	1 3 9048	1431969	1150442	1177500

NOTE - SCFMD TOTAL USED FOR NOX CONVERSION OF PPM TO POUNDS PER HOUR, SCFMW USED FOR SO2.

106 Ambient Air Way Starke, Florida 32091 (904) 964 - 8440 (904) 964 - 6675 fax

Volumetric Air-Flow Rates

Plant Location	Gallatin Steel Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-3-01		
Run Number	1	Volume Metered	64.155
Start Time	1137	Meter Temp (Deg R)	537.3
Finish Time	1142	Orsat C02 %	0
Barometric Pressure	29.74	Orsat 0 2 %	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	16	Condensate Volume	28.1
Avg of SQRT of V.H.	1.3743	Delta H (inches H20)	1.741
Meter Correction (Y)	0.992	Stack Pressure	29.49
Pitot Correction Factor	0.84	Stack Temp (Deg R)	560.5

Moisture in stack gas, volume fraction	0.021
Dry Stack Gas, volume fraction	0.979
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.610
Specific gravity of Stack Gas Relative to Air	0.987
Excess Air (%)	
Average Stack Velocity, FPM	4821.5
Actual Stack Gas Flow Rate, ACFM	969420
Actual Stack Gas Flow Rate, (Dry) ACFMD	949306
Stack Gas Flow Rate (Standard conditions), SCFMD	881409
Stack Gas Flow Rate (Standard conditions), SCFMW	900084

A SECRETARY OF THE SECOND

106 Ambient Air Way Starke, Florida **32091**

(904) 964 - 8440 (904) 964 - 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 2		
Run Date	5-3-01		
Run Number	1	Volume Metered	64.155
Start Time	1150	Meter Temp (Deg R)	537.3
Finish Time	1157	Orsat C02 %	0
Barometric Pressure	29.74	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	28.1
Avg of SQRT of V.H.	0.3707	Delta H (inches H20)	1.741
Meter Correction (Y)	0.992	Stack Pressure	29.59
Pitot Correction Factor	0.84	Stack Temp (Deg R)	560.1

Moisture in stack gas, volume fraction	0.021
Dry Stack Gas, volume fraction	0.979
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.610
Specific gravity of Stack Gas Relative to Air	0.987
Excess Air (%)	
Average Stack Velocity, FPM	1297.9
Actual Stack Gas Flow Rate, ACFM	101937
Actual Stack Gas Flow Rate, (Dry) ACFMD	99822
Stack Gas Flow Rate (Standard conditions), SCFMD	93063
Stack Gas Flow Rate (Standard conditions), SCFMW	95035

106 Ambient Air Way Starke, Florida 32091

(904) 964 - 8440 (904) 964 - 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	LMF		
Run Date	5-3-01		
Run Number	1	Volume Metered	64.155
Start Time	1045	Meter Temp (Deg R)	537.3
Finish Time	1053	Orsat C02 %	0
Barometric Pressure	29.74	Orsat 02%	20.9
Sack Diameter (in.)	60	Orsat CO %	0
Stack Area sq. ft.	19.635	Orsat N %	79.1
Number of Points	12	Condensate Volume	28.1
Avg of SQRT of V.H.	0.3272	Delta H (inches H20)	1.741
Meter Correction (Y)	0.992	Stack Pressure	29.43
Pitot Correction Factor	0.84	Sack Temp (Deg R)	618.3

Moisture in stack gas, volume fraction Dry Stack Gas, volume fraction Molecular Weight of Stack Gas (Dry Basis) Molecular Weight of Stack Gas (Stack conditions) Specific gravity of Stack Gas Relative to Air	0.021 0.979 28.84 28.610 0.987
Excess Air (%) Average Stack Velocity, FPM Actual Stack Gas Flow Rate, ACFM Actual Stack Gas Flow Rate, (Dry) ACFMD Stack Gas Flow Rate (Standard conditions), SCFMD Stack Gas Flow Rate (Standard conditions), SCFMW	1206.9 23697 23205 19491 19904

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant Location Stack	Gallatin Steel Ghent, Kentucky Furnace A		
Run Date	5-3-01		
Run Number	1	Volume Metered	64.155
Start Time	1009	Meter Temp (Deg R)	537.3
Finish Time	1017	Orsat C02 %	0
Barometric Pressure	29.74	Orsat 0 2 %	20.9
Stack Diameter (in.)	108	Orsat CO %	0
Stack Area sq. ft.	63.617	Orsat N %	79.1
Number of Points	12	Condensate Volume	28.1
Avg of SQRT of V.H.	0.8750	Delta H (inches H20)	1.741
Meter Correction (Y)	0.992	Stack Pressure	29.42
Pitot Correction Factor	0.84	Stack Temp (Deg R)	1004.1

Moisture in stack gas, volume fraction Dry Stack Gas, volume fraction Molecular Weight of Stack Gas (Dry Basis) Molecular Weight of Stack Gas (Stack conditions) Specific gravity of Stack Gas Relative to Air Excess Air (%)	0.021 0.979 28.84 28.610 0.987
Average Stack Velocity, FPM Actual Stack Gas Flow Rate, ACFM Actual Stack Gas Flow Rate, (Dry) ACFMD Stack Gas Flow Rate (Standard conditions), SCFMD Stack Gas Flow Rate (Standard conditions), SCFMW	4113.6 261695 256265 132503 135310

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Furnace C		
Run Date	5-3-01		
Run Number	1	Volume Metered	64.155
Start Time	1020	Meter Temp (Deg R)	537.3
Finish Time	1027	Orsat C02 %	0
Barometric Pressure	29.74	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	28.1
Avg of SQRT of V.H.	0.3462	Delta H (inches H20)	1.741
Meter Correction (Y)	0.992	Stack Pressure	29.42
Pitot Correction Factor	0.84	Stack Temp (Deg R)	563.4

Moisture in stack gas, volume fraction Dry Stack Gas, volume fraction Molecular Weight of Stack Gas (Dry Basis) Molecular Weight of Stack Gas (Stack conditions) Specific gravity of Stack Gas Relative to Air	0.021 0.979 28.84 28.610 0.987
Excess Air (%) Average Stack Velocity, FPM Actual Stack Gas Flow Rate, ACFM Actual Stack Gas Flow Rate, (Dry) ACFMD Stack Gas Flow Rate (Standard conditions), SCFMD Stack Gas Flow Rate (Standard conditions), SCFMW	1219.2 95756 93769 86409 88240

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-3-01		
Run Number	2	Volume Metered	31.921
Start Time	1606	Meter Temp (Deg R)	535.6
Finish Time	1612	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 0 2 %	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	16	Condensate Volume	16.5
Avg of SQRT of V.H.	1.4183	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.37
Pitot Correction Factor	0.84	Stack Temp (Deg R)	596.6

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.570
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	5146.7
Actual Stack Gas Flow Rate, ACFM	1034806
Actual Stack Gas Flow Rate, (Dry) ACFMD	1009579
Stack Gas Flow Rate (Standard conditions), SCFMD	877068
Stack Gas Flow Rate (Standard conditions), SCFMW	898983

106 Ambient Air Way Starke, Florida 32091 (904) 964 - 8440 (904) 964 - 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Cold Duct No. 2		
Run Date	5-3-01		
Run Number	2	Volume Metered	31.921
Start Time	1555	Meter Temp (Deg R)	535.6
Finish Time	1 604	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 02 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78 . 540	Orsat N %	79.1
Number of Points	16	Condensate Volume	16.5
Avg of SQRT of V.H.	0.0713	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.48
Pitot Correction Factor	0 . 84	Stack Temp (Deg R)	566.2

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.570
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	251.6
Actual Stack Gas Flow Rate, ACFM	19761
Actual Stack Gas Flow Rate, (Dry) ACFMD	19279
Stack Gas Flow Rate (Standard conditions), SCFMD	17714
Stack Gas Flow Rate (Standard conditions), SCFMW	18157

Control of the second of the s

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant Location Stack	Gallatin Steel Ghent, Kentucky LMF		
Run Date	5-3-01		
Run Number	2	Volume Metered	31.921
Start Time	_ 1649	Meter Temp (Deg R)	535.6
Finish Time	1657	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 0 2 %	20.9
Stack Diameter (in.)	60	Orsat CO %	. 0
Stack Area sq. ft.	19.635	Orsat N %	79.1
Number of Points	12	Condensate Volume	16.5
Avg of SQRT of V.H.	0.2231	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.32
Pitot Correction Factor	0.84	Stack Temp (Deg R)	619

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.570
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	825.3
Actual Stack Gas Flow Rate, ACFM	16205
Actual Stack Gas Flow Rate, (Dry) ACFMD	15810
Stack Gas Flow Rate (Standard conditions), SCFMD	13215
Stack Gas Flow Rate (Standard conditions), SCFMW	13545

106 Ambient Air Way Starke, Florida 32091

· Dr. ...

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Furnace A		
Run Date	5-3-01		
Run Number	2	Volume Metered	31.921
Start Time	1632	Meter Temp (Deg R)	535.6
Finish Time	1640	Orsat C02 %	0
Barometric Pre ss ure	29.66	Orsat 0 2 %	20.9
Stack Diameter (in.)	108	Orsat CO %	0
Stack Area sq. ft.	63.617	Orsat N %	79.1
Number of Points	12	Condensate Volume	16.5
Avg of SQRT of V.H.	0.2356	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.39
Pitot Correction Factor	0.84	Stack Temp (Deg R)	583.5

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.570
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	845.2
Actual Stack Gas Flow Rate, ACFM	53769
Actual Stack Gas Flow Rate, (Dry) ACFMD	52458
Stack Gas Flow Rate (Standard conditions), SCFMD	46628
Stack Gas Flow Rate (Standard conditions), SCFMW	47793

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Volumetric Air-Flow Rates

Plant Location Stack Run Date	Gallatin Steel Ghent, Kentucky Furnace C 5-3-01		
Run Number	2	Volume Metered	31.921
Start Time	_ 1620	Meter Temp (Deg R)	535.6
Finish Time	1629	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	12	Condensate Volume	16.5
Avg of SQRT of V.H.	0.7997	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.37
Pitot Correction Factor	0.84	Stack Temp (Deg R)	970.2

~______________

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.570
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	3700.6
Actual Stack Gas Flow Rate, ACFM	290645
Actual Stack Gas Flow Rate, (Dry) ACFMD	283560
Stack Gas Flow Rate (Standard conditions), SCFMD	151482
Stack Gas Flow Rate (Standard conditions), SCFMW	155267

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant Location	Gallatin Steel Ghent, Kentucky		
Stack	Cold Duct No. 1		
Run Date	5-3-01		
Run Number	3	Volume Metered	32.081
Start Time	2009	Meter Temp (Deg R)	536.5
Finish Time	2019	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 02%	20.9
Stack Diameter (in.)	192	Orsat CO %	0
Stack Area sq. ft.	201.062	Orsat N %	79.1
Number of Points	16	Condensate Volume	16.3
Avg of SQRT of V.H.	1.4069	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.38
Pitot Correction Factor	0.84	Stack Temp (Deg R)	578.3

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.580
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	5025.6
Actual Stack Gas Flow Rate, ACFM	1010457
Actual Stack Gas Flow Rate, (Dry) ACFMD	986212
Stack Gas Flow Rate (Standard conditions), SCFMD	884181
Stack Gas Flow Rate (Standard conditions), SCFMW	905918

106 Ambient Air Way Starke, Florida 32091 (904) 964 **-** 8440 (904) 964 **-** 6675 fax

Volumetric Air-Flow Rates

Plant Location Stack	Gallatin Steel Ghent, Kentucky Cold Duct No. 2		
Run Date Run Number	5-3-01 3	Volume Metered	32.081
Start Time	2021	Meter Temp (Deg R)	536.5
Finish Time	2029	Orsat C02%	0
Barometric Pressure	29.66	Orsat 0 2 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78 . 540	Orsat N %	79.1
Number of Points	16	Condensate Volume	16.3
Avg of SQRT of V.H.	0.0213	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.48
Pitot Correction Factor	0.84	Stack Temp (Deg R)	555.5

0.024
0.976
28.84
28.580
0.986
74.4
5843
5703
5341
5472

106 Ambient Air Way Starke, Florida 32091

(904) 964 - 8440 (904) 964 - **6675** fax

Volumetric Air-Flow Rates

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Furnace A LMF		
Run Date	5-3-01		
Run Number	3	Volume Metered	32.081
Start Time	1932	Meter Temp (Deg R)	536.5
Finish Time	1940	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 0 2 %	20.9
Stack Diameter (in.)	60	Orsat CO %	0
Stack Area sq. ft.	19.635	Orsat N %	79.1
Number of Points	12	Condensate Volume	16.3
Avg of SQRT of V.H.	0.3519	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.35
Pitot Correction Factor	0.84	Stack Temp (Deg R)	637.3

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.580
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	1320.3
Actual Stack Gas Flow Rate, ACFM	25924
Actual Stack Gas Flow Rate, (Dry) ACFMD	253 02
Stack Gas Flow Rate (Standard conditions), SCFMD	20563
Stack Gas Flow Rate (Standard conditions), SCFMW	21069

The second secon

- ت. ٠

106 Ambient Air Way Starke, Florida 32091

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant Location	Gallatin Steel		
	Ghent, Kentucky		
Stack	Furnace A		
Run Date	5-3-01		
Run Number	3	Volume Metered	32.081
Start Time	1948	Meter Temp (Deg R)	536.5
Finish Time	1956	Orsat C02%	0
Barometric Pressure	29.66	Orsat 62 %	20.9
Stack Diameter (in.)	108	Orsat CO %	0
Stack Area sq. ft.	63.617	Orsat N %	79.1
Number of Points	12	Condensate Volume	16.3
Avg of SQRT of V.H.	0.2735	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.23
Pitot Correction Factor	0.84	Stack Temp (Deg R)	610.6

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.580
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	1006.4
Actual Stack Gas Flow Rate, ACFM	64024
Actual Stack Gas Flow Rate, (Dry) ACFMD	62488
Stack Gas Flow Rate (Standard conditions), SCFMD	52789
Stack Gas Flow Rate (Standard conditions), SCFMW	54087

106 Ambient Air Way Starke, Florida 32091

NOW -

(904) 964 **-** 8440 (904) 964 **-** 6675 fax

Plant	Gallatin Steel		
Location	Ghent, Kentucky		
Stack	Furnace C		
Run Date	5-3-01		
Run Number	3	Volume Metered	32.081
Start Time	1959	Meter Temp (Deg R)	536.5
Finish Time	2005	Orsat C02 %	0
Barometric Pressure	29.66	Orsat 02 %	20.9
Stack Diameter (in.)	120	Orsat CO %	0
Stack Area sq. ft.	78.540	Orsat N %	79.1
Number of Points	16	Condensate Volume	16.3
Avg of SQRT of V.H.	0.891 9	Delta H (inches H20)	1.9
Meter Correction (Y)	0.992	Stack Pressure	29.35
Pitot Correction Factor	0.84	Stack Temp (Deg R)	964.3

Moisture in stack gas, volume fraction	0.024
Dry Stack Gas, volume fraction	0.976
Molecular Weight of Stack Gas (Dry Basis)	28.84
Molecular Weight of Stack Gas (Stack conditions)	28.580
Specific gravity of Stack Gas Relative to Air	0.986
Excess Air (%)	
Average Stack Velocity, FPM	4116.1
Actual Stack Gas Flow Rate, ACFM	323278
Actual Stack Gas Flow Rate, (Dry) ACFMD	315521
Stack Gas Flow Rate (Standard conditions), SCFMD	169471
Stack Gas Flow Rate (Standard conditions), SCFMW	173637

APPENDIX E

- MOISTURE RUN DATA SHEETS
- FLOW TRAVERSE DATA SHEETS
- PITOT TUBES POST TEST CALIBRATION CHECK
- THERMOCOUPLE POST TEST CALIBRATION CHECK
- GAS METER POST TEST CALIBRATION

AASINC. AMBIENT AIR SERVICES INCORPORATED	EPA METHOD 4 TEST ID	PAGE O	F
ENVIRONMENTAL CONSULTANTS	MOISTURE RUN DATA SHEET		
Plant Galla Tip Steel Source Bayous a Plant Location Ghant Vertuck Type of Sampling Train E A Wetwo Type of Samples Mois tuce Date 5-3-0 Run No. 1 Time Start O940 Time End (105) Sample Time min/pf \$5 Total Min	Mat'l Processing Rate Gas Meter Readings: Final 502.4 Initial 438.3 Impingers Vol. Gain Silica Gel No. 941 Total Condensate		fi fi fi
Bar. Pressure	Leak Checks: Meter Box/Pump Pre-Test 0.00 % CFM \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	o4 CFM 5 Holder COGG(NS Decouple No. TT 2	"H

Ŕ

PORT AND TRAVERSE POINT	DISTANCE FROM INSIDE STACK WALL	CLOCK TIME	GAS METER READING		ORIFICE 6. DIFF	LAST IMPINGER TEMP.	DRY GAS METER TEMP.	VACUUM ON SAMPLE TRAIN
NUMBER	(IN)		(FT³)	CALC.	ACTUAL	(°F)	(°F)	("Hg)
-	(Constitution)	5.0	422		[.9	62	73	5
-	1	10.0	4(0,1)	-	1,9	21	74	5
		15.0	49.9		70	51	74	5
		20,0	53.7		,19	5	75	2
		25.0	57.5		1.8	5(75	5
		30.0	61,3	-	(.8	51	76	5
		35.0	65.1		1.8	51	76	5
		40.0	5 P. P		1.8	51) 7	5
		45.0	72.5		(1)	51	77	5
		50.0	76.2		(1)	51	78	5
		55, 0	80.0		10)	51	78	5
		0.00	83.8		\?	5(79	5

AAS Inc.

AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS

PACE	01	
RUN NO. /		

PORT AND TRAYERSE	DISTANCE FROM INSIDE	CLOCK	GAS METER	STACK VELOCITY	HETE PRE	R ORIFICE SS. DIFF	STACK GAS TEMP.	SAMPLE BOX TEMP.	LAST IMPINGER	DRY GAS METER TEMP.	VACUUM OH SAMPLE
POINT NUMBER	STACK WALL (IN)	ine	(FJ3)	KEYD	CALC.	ACTUAL	(°F)	(of)	TEMP.	(96)	TRAIN ("Hg)
		65	87,4		_	1.6			50	79	5
		70	91.4			1,6			50	80	5
		75	95.1			1.6	_		50	80	5
		80	98.8			1,6			50	81	5
		85	507.492		<u> </u>	1,6			50	82	5
			,								
									<u> </u>		

											· ·
								•			
										.	

	AASINC. AMBIENT AIR SERVICES INCORPORATED	EPA METHOD 4	TEST ID	PAGE	OF
	ENVIRONMENTAL CONSULTANTS	MOISTURE RUN DATA SHEET			
,	Plant Callatin Steel source Baylouse	Mat'l Processing Rate			
(¿	Plant Location Ghent Kentucky Type of Sampling Train FPA Method 4	•	nal <u>536,948</u> tial <u>505,627</u>		^[]
	Type of Samples /VLo) Stull	Ņe			¦h
	Date 5-3-01 Run No. 2	Impingers Vol. Gain 🔔 🔼			ml
	Time Start	Silica Gel No \&\lambda\lambda	Wt. Gain ^7 5		g
•	Sample Time 5.0 min/of 4.0,0 Total Min		tal Condensate	16.5	mi
	Bar. Pressure 79. 66 "Hg Stack Pressure 7966" Hg			•	
	Assumed Moisture	leak Checks: Meter Box/Pur	mp 0K		
Ą	Weather Scottered Temperature 75 °F	Pre-Test 0,008 CFM \ 0	"Hg Post-Test D.OOY	CFM	-"Hg
Ţ	Meter Box No. 4 ΔH 1. 85 Y 0,992	Box Operator COGOINS	Probe Holder	DGGINS.	
7.	Stack Dimensions Simple Compartment	Pyrometer No.	Thermocouple No). TT 2	
₩.	Stack Area (Effective ft²)	Commenfs:	<u> </u>		
1	Stack Height Approx 7. Jit				
*	Slack Diometer: Upstream NA Downstream NA	-			
1	Port Size NA In Nipple Length NA				
	UCord Length 200 feet				

PORT AND TRAVERSE	DISTANCE FROM INSIDE	CLOCK	GAS METER		ORIFICE 6. DIFF	LAST IMPINGER	DRY GAS	VACUUM ON SAMPLE
POINT NUMBER	STACK WALL (IN)	TIME	READING (FT³)	CALC.	ACTUAL	TEMP. (°F)	METER TEMP. (°F)	TRAIN ("Hg)
		5.0	9.0		1.9	66	75	5
		(0.0	13.1	_	.9	62	75	5
		15.0	16.9		1,9	59	7.	5
		Wo	20,9		19	_59	_75	5
		52'0	24.9		19	SS	16	5
		3 <i>0</i> ,0	28.9	-	1.9	57	76	5
		35.0	32.9	~	1,9	2)	ک	5
		40.0	536.948		1,9	57	71	5

AASINC. AMBIENT AIR SERVICES INCORPORATED TEST ID _____ PAGE **EPA METHOD 4 ENVIRONMENTAL CONSULTANTS** MOISTURE RUN DATA SHEET Mat'l Processing Rate 569.697 Gas Meter Readings: Plant Location Final Type of Sampling Train EPA Method Initial Type of Samples Net Date 5-3-01 Run No. Impirgers Vol. Gain ____\O Time End 2115 Wt. Gain Time Start 203 Silica Gel No. __ 40.0 Sample Time min/pf Total Min **Total Condensate** "Hg Stack Pressure ____ Bar. Pressure 29.00 0 % FDA 0-98 Leak Checks: Meter Box/Pump bk Assumed Maistures Weather Scattered Post-Test O. OD5__ CFM_ Temperature Pre-Test 0.008 CFM 12 "Hg Probe Holder Co 66(N) Meter Box No. Box Operator _ (3661NS Thermocouple No. _TT2_ Stack Dimensions Compartment Pyrometer No. (Éffective Stack Area Comments: Stack Height Apolox 75 ft NK Downstream NA Stack Diameter: Upstream _ Port Size NA in Nipple Length NA U Cord Length 200 FPET

PORT AND TRAVERSE	DISTANCE FROM INSIDE	CLOCK	GAS METER		ORIFICE 5. DIFF	LAST IMPINGER	DRY GAS	VACUUM ON SAMPLE
POINT NUMBER	STACK WALL (!N)	TIME	READING (FT³)	CALC.	ACTUAL	TEMP. (°F)	METER TEMP. (°F)	TRAIN ("Hg)
		0 1.7	41.6	معيي	1.9	64	76	5
		10.0	45.5	-	1.9	\(\bar{\c }{\c }	6	5
			49.5)	4	59	76	5
		20,0	53.5	J	۱،۹	58		5
		2\$0	57.5	~	1.9	53	רר	5
		0,0	_ما،ام)	1,9	59	77	5
		35 ,0	65,6)	,9	59	77	5
		yo.o	569.697	1	1.9	59	71	5

			LVETITHTNVV	I VLLOCIII IK	AVERSE	
F		Clatin St	ee($ 0_2^2$	0,0	
(DATE 5-3	-01		_ ^ =	20.9	
Į	LOCATION CO	518 Duct No		02-		
	STACK I.D.		side Dianeter	•		
1	BAROMETRIC F	RESSURE, in . Hg	39.14 29.	<u>6</u> 6(112+123)	4	
		PRESSURE, in. H20	Spe each run			
		OGGINS LUT		SCHEMATI	C OF TRAVERSE PO	JINT LAYOUT
		OOV-	11413	- ·		
1			1	7 /		. (20)
	TRAVERSE	VELOCITY	STACK	TRAVERS	•	
	POINT	HFAD	TEMPERATURE	POINT	l HEAD	TEMPE

-				, ,	······································		
	TRAVERSE	VELOCITY	STACK	1	TRAVERSE	VELOCITY [STACK
	POINT	HEAD	TEMPERATURE (T _s), OF	8	POINT	HEAD	* TEMPERATUR
	NUMBER RUN 1	$(\Delta p_s), in.H_20$	(T _s), ^o f	$ \infty $	NUMBER	(Δp_s) , in.H ₂ 0	(Ts), OF
=				1	RUNZ	100	12.
1	sp /	* 1.89	99	↓ ",↓	/	1.85	135
	2	190	99	1 3	2	1,83	134
	3	1.81	99	static	3	1,91	135
	4	1.88	99		4	2.00	136
37	5	2,06	100		5	2.22	135
@113	b	2.1.88	100	12	b :	2.25	136
@	7	1.81	101		A-7	2.03	137
. [8	1.79	101	1-1	8	1,98	136
				9			
3,45	1	1.80	102	7 1	1	2.02	138
	2	1.95	101	7	2	2.15	139
ູ້ ບ	3	1.91	99	7	3.	2,04	138
ati	4	1.88	100	7	4	2.05	138
(static.	5	1,95	101		5	2.00	(37
	10	1,89	102		6	1,93	137
	7	1,89	102		7	2,01	137
	8	194	103		8	1.94	137
·				7	1		
RUNZ	1	1.90	120	1	1	2.05	118
1101	7	1.92	120	17	2	2.19	117
	3	190	120	→ ~·	3	2.07	116
9		1.90	120	- i		2.23	115
จ	5	2.10	118	式 だ に	7	1.84	1(17
2019	6	2.05	118	Static	6	1.96	119
C	7	1.90	117	S	7	1.95	120
	8	1.89	117	<u> </u>	8	2.00	121
	 	1.0	 	+	1	7.00	1-5
							
				7			
		2	7	1.			
	13-	1					
	- A		1		N.E.	1	

	DATE 5-3 DOCATION C STACK I.D. BAROMETRIC STACK GAUGE	-01	1.2 30.44 29.7 THER	- - - - - -) Of TRAVERSE POIN T	LAYOUT
	TRAVERSE POINT NUMBER	VELOCITY HEAD (Δρ _S),in.H ₂ O	STACK TEMPERATURE (T _S), OF		TRAVERSE POINT NUMBER	VELOCITY HEAD (Δρ _s),in.H ₂ O	STACK TEMPERATURI (T _S), OF
@1150 (Stetie = 2,06)	1 2 3 4 5 6 7 8	0.40 0.72 0.13 0.09 0.05 0.05 0.10 0.06 0.11	/00 /01 /01 /01 /01 /01 /01 /01	@ 1604 (static=-2,51)	1 2 3 4 5 6 7 8	0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00	103 103 107 108 109 110 109 109
	3 4 5 6 7 8	0.11 0.12 0.17 0.21 0.22 0.28	100 100 100 100 99 100		3 4 5 6 7 8	0,00 0.01 0.00 0.00 0.00	0 0 0 0 0 0 1 0
62026)	1 3 4 5 6 7 8	0.80 0.80 0.80 0.80 0.00 0.01	92 93 93 93 93 93 94 100	(static = -2, 43	3 4 5 6 7 8	5.00 5.00 6.00 6.00 6.00 6.00 6.00	99 100 100 101 95 94 94 94 94

	OCATION FO OCATION FO STACK I.D. BAROMETRIC (STACK GAUGE	108.0° Insid	e diameter	- - - - - - - -		OF TRAVERSE POINT	LAYOUT
ナナ	TRAVERSE POINT NUMBER	VELOCITY HEAD (Δρ _s),in.H ₂ O	STACK TEMPERATURE (T _S), OF	1)	TRAVERSE POINT NUMBER	VELOCITY HEAD (Aps), in H20	STACK TEMPERATURI (Is), of
, [0,79	546	(v)	1	0,05 0,74	123540
100	2	0,81	548	1	2	0.06-0,79	123544
1007 (3727.0	2 3	077	557] *	3	0.07 0.83	124 546
7	4	0,82	558	Stotic	4	0.06 0.87	124 542
2	5	0.83	540		5	0050.89	124 845
B)	4	0.81	526	@11.40	6	0.05 0.91	124535
	7	0.75	531	18	7	0.05 - 88	124 546
	8	0,80	547		8	8.04 0.89	123553
نا دي	9	0.65	554]	9	0.06 0.87	124529
	10	0.66	548		10	0.07	123
	1	0.73	530	4	11:	0.06	123
	12	0.78	544	_	12	0.05	123
\sim	•			_		11	
2,5		80.0	131	-			
4	2	0.09	150	4			
ري ع:	· 3	0.08	149	4			
(Static		0.08 0.07	150	-			
S	5	8.07	151	-			*
٩	6	0.07	151	╣.			
95510	8	0.57	151	-{			
<u>ح</u>	9	0.08	151	-			
9	10	0.07	131	-	<u> </u>		
	11	0.06	151 151	\dashv			
	12	0.07	150	-	}		
		1	135	7		 	
				7			
				7_			
		-					
	- 2	1 19		1	1		

PLANT Gallatin Steel	
DATE 5-3-01	
LOCATION FURACE C	
STACK I.D. 120.0= Inside diameter	
BAROMETRIC PRESSURE, in. Hg 74,74/29.66	129,66
STACK GAUGE PRESSURE, in. H20	•
OPERATORS Coggins/Luther	SCHEMATIC OF TRAVERSE POINT LAYOUT

	TRAVERSE POINT NUMBER	VELOCITY HEAD (Δρ _S),in.H ₂ O	STACK TEMPERATURE (T _S), OF		TRAVERSE POINT NUMBER	VELOCITY HEAD (Δp _s),in.H ₂ O	STACK TEMPERATURE (T _S), OF
	(0.16	103		/	0.71	540
	2	0,14	103		r	0.79	544
\widehat{g}	3	0.16	103	66.	3	0.83	546
光 [٠(0.17	103	135	4	0.87	542
static =430		0.14	103	1 "1	5	0.89	5.45
100	<u> </u>	0,15	103	Static	6	8.91	535
₩	7	8.11	103	13	7	0.88	546
70	8	0,08	104	- ``	8	0.87	553
@ 1020		0,10	104	57		0.12	481
6	2	0.10	104	16	2	0.25	496
Ì	3	0,10	104	G	3	0.42	486
	4	0,11	103	7	4	0,52	481
	5	0.11	104		5	0.64	467
	9	0.10	104		6.	0.63	470
	7	0.10	104		7	0.65	469
	8	0.11	102	_	8	0.70	462
	1	ev0.76	453	+-	1	0.68	529
	2	840.79	160	7/2	2	0.60	537
۸/		28.00	473	4.2		D 75	5 36
2005	4	88.0 M	419	7-4	4	0.76	541 523 541 555
7	5	8.89	488	4	5	0.75	523
(G)	7	0.85	494	_] చ	6	0.85	541
		0.88	486	Startia	7	0.86	555
	8	0.85	473 469 488 494 486 482	100	8	0.83	546
				_			
				\dashv			

AAS Inc.

- ٽ،

AMBIENT AIR SERVICES INCORPORATED ENVIRONMENTAL CONSULTANTS

		1 4 4	PRELIMINAR	A ART	OCITY TRAV	EKSE	
	LANT Da	llatin Stee	\	_		*	
	ATE 5-3 OCATION	-OI		_			
S	TACK 1.0.	60.0% Insid	e Diamete				
E	BAROMETRIC F	PRESSURE, In. Hg	79.74 /29.6	A29,	166		
ì	TACK GAUGE	PRESSURE, In. H20	*			OF TRAVERSE POINT	LAYOUT
т		/ ==		 •			
	TRAVERSE	VELOCITY	STACK		TRAVERSE	VELOCITY	STACK
	POINT NUMBER	HEAD (Δρ _S), 1n.H ₂ 0	TEMPERATURE (T _s), Of		POINT NUMBER	HEAD (Aps),in.H ₂ 0	TEMPERATU
B	, Control	(00) 571211.1120	(,2,1,		NONDER	4x62\11111\Z0	$(T_s)_i^0 F$
4		0,06	156	6	1	0.21	113
, ',	2	0.09	157	4.6	2	0,08	169
, ed	3	0.10	158	1,	3	0,08	168
Statie	4	0,10	159	tatic	4	0,08	168
S.	5	0.12	157	13	5	0.09	166
	6	0.08	144		6	0.08	164
		:		7			
	1	0.11	152	65/		0,03	144
	2	0.13	157	7 —	2	0.01	149
	3	0.12	162	18	3	0.03	154
	4	0.13	166	7	4	0.02	153
	5	0.12	167	1	5	0.01	150
\sim	6	0.14	164	7	6	0.01	150
20				7			
7	1	0.10	173				
1	2	0.0	175				
Static:	3	0.11	176				·
A	4	0.10	178				
S	5	0.11	178				
	1 /-	0.12	179				
@1940							
\ 	1	0.20	167				
@	2	0.(7 0.20 0.17	176				
	3 4	0.20	182 .	_			
	4	9.17	185	_			
	5	0.09	183				
	6	0.06	- 176				

PITOT TUBE CALIBRATION KEASUREKENTS

DATE CALIBRATED 5-10-0	PITOT TUBE FUCHACE	C" Duct
Pitot tube assembly level7	Yes	No
Pitot tube openings damaged?	Yes (explain belou)	No
$\alpha_1 = 2.0^{\circ} (<10^{\circ}), \alpha_2 = 2.0$	° (<10°), β ₁ - /.5	° (<5°),
$\beta_2 = \sqrt{1000} (<5^{\circ})$		
Y - 1,0 °, 0 - 1,0 °, A -	1.076 in (Pa + Pb)	
$z = A \sin \gamma = 0.019 in.; <0.32 /$	<1/8 in.	
w = A sin θ = <u>0.019</u> in.; <0.08 /	<1/32 in.	
P _b O.538 in. P _b O.538 in.	0 0.375"	
Calibration required?Y	esNo	

PITOT TUBE CALIBRATION MEASUREMENTS

DATE CALIBRATED 5-10-01	PITOT TUBE FUrnace	e"A" Duct
Pitot tube assembly level?		
Pitot tube openings damaged?		
$\alpha_1 = \frac{1.0}{100}$ (<10°), $\alpha_2 = \frac{1}{100}$	<u>/.ο</u> ° (<10°), β ₁ = <u>/.</u>	O (<5°),
$\beta_2 = 1.0$ (<5°)		
γ - <u>1.0</u> , θ - <u>1.0</u> °	, A = _1.078in. = (Pa +	Pb)
z - A i n y - 6.019 in.; <0	.32 / <1/8 in.	
w - A sin θO,O(9_ in.; <0	.08 / <1/32 in.	
P _a D.539 in. P _b 0.539	in. D _c = <u>0,375"</u>	
Calibration required?	Yes V No	

PITOT TUBE CALIBRATION MEASUREMENTS

DATE CALIBRATED 5-10-01	PITOT TUBE Cold Duct 1	No.2
Pitot tube assembly Level?	Yes	No
Pitot tube openings damaged?	Yes (explain below)	No
$\alpha_1 - 2.0^{\circ} (<10^{\circ}), \alpha_2 - 2.0^{\circ}$	> ° (<10°), β ₁ - [,0	° (<5°),
β ₂ - /, ο (<5°)		
Y - 1.0°, 8 - 2.0°, A -	1.058 in (Pa + Pb)	
$z = A \sin y = in.; <0.32 /$	<1/8 in.	
$w = A \sin \theta = in.; <0.08 /$	<1/32 in.	
P. 0.529 in. P. 0.529 in.	D _c - 0.375"	
Calibration required?	esNo	

PITOT TUBE CALIBRATION MEASUREMENTS

DATE CALIBRATED 5-9-01	PITOT TUBE Cold Duct No	0.(
Pitot tube assembly level?	Yes	
Pitot tube openings damaged? Yes	s (explain below)	No
$\alpha_1 = \frac{1.0}{1.0}$ (<10°), $\alpha_2 = \frac{4.0}{1.0}$	' (<10°), β ₁ - <u>[.0</u>	_° (<5°),
$\beta_2 = \frac{1}{2} (0)^{\circ} (<5^{\circ})$		
Υ - <u>/.O</u> °. θ - <u>/.O</u> °. A - <u>/.</u>	069 in (Pa + Pb)	
$z = A \sin \gamma = 0.019$ in.; <0.32 / <1/	/8 in.	
$w = A \sin \theta = 0.0(9) \text{ in.; <0.08 / <1/}$	/32 in.	
P _a 0,534 in. P _b 0,535 in.	· - 0.375"	
Calibration required7 Yes	No	

PITOT TUBE CALIBRATION MEASUREKENTS

DATE CALIBRATED 5-9-01 PITOT TUBE LMF DUCT
Bitat tubo assembly level?
Pitot tube assembly level? Yes No
Pitot tube openings damaged? Yes (explain below) No
$\alpha_1 = \frac{1}{1000} (<10^{\circ}), \alpha_2 = \frac{1}{1000} (<10^{\circ}), \beta_1 = \frac{1}{1000} (<5^{\circ}),$
$\beta_2 = 10^{\circ} (<5^{\circ})$
$Y = 3.0^{\circ}$, $\theta = 1.0^{\circ}$, $A = 1.106^{\circ}$ in. $= (Pa + Pb)$
z = A sin y = 0,058 in.; <0.32 / <1/8 in.
$w = A \sin \theta = 0.01$ in.; <0.08 / <1/32 in.
P_{a} 0.553 in. P_{b} 0.553 in. $D_{c} = 0.375''$
Calibration required? Yes No

					106 A	AIR SERVICE mblent Air W irke, Florida							
(e			TH	ERMO	COUPLI	E CALIBI	RATION	FORM					
Date Ambient Temperature Barometric Pressure Technician's Signature Standard Thermometer Type Manufacturer Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number Serial Number													
TEMPERATUR	E SOURCE (A)	Crus	hed 1	ce	Amb	ient)	tir	Boil:	ng Hz	0	Hot	0,11	
REFERENCE	Actual Reading		32°F			75°	, E	2	12° F		5	10°F	· .
THERMOMETER Corrected Temperature													
CALIBRATED TH	ERMOCOUPLE			Percent			Downt	T 47	Difference	D	V- 4:4	D'W	B
Serial Number	Location	Indicated Temp.	Differenœ (B)	%	Indicated Temp.	Difference	Pemnt Diff.	Indicated Temp.	Ditterence	Percent Diff.	Indicated Temp.	Difference	Percent Diff.
	Furnace A				74	. (212	٥		513	3	
	Furnace C				74	·		212	ව		514	4	
4	Cold Ouct 1	32	0		74	(212	٥				
	Cold Duct 2	32	0		74	(212	0				
	LMF	32	0		74	l		212	0				
Comments: Hot obt Ma	comments: Hot Oil reference temperatures were obtained utilizing Mencury in glass, Curtin Matheson Scientific, model 09302												

Calibration Tolerances Stack = 1.5% of value, Filter Box = ±5.4°F, Impinger = ±2°F, Meter = ±5.4°F (40CFR Pt 60, App. A Method 5, and QA Handbook Section 3.4, Method 5, page 13, Rev. O)

(A) Type of calibration system used

(B) Reference - Indicated = Difference

(C) $\left[\frac{\text{(ref. temp. °F + 460) - (indicated temp. °F + 460)}}{\text{(reference temp. °F + 460)}}\right] \times 100$

AMBIENT AIR SERVICES, INC.

					COUPLI	CALIB	RATION	FORM					· · · · · · · · · · · · · · · · · · ·		
Date Imblent Temperati arometric Pressur Sechnician's Signati	· <u>30.05</u>	F So	meadourceadourceLal			dard Thermo meter Manuf Serial I	M Se Acturer	ype Ianufacturer erial Numbe Maga B2BL—k	r 64	CO N CO Wodel Model Meter Box	9414 4	inglass 			
TEMPERATURE	SOURCE (A)	1	CE		Amb	ient A	iv	Boil	ling H	20					
REFERENCE	Actual Reading	3.	2° F			75° F			212°F						
HERMOMETER	Corrected Temperature														
CALIBRATED TH	ERMOCOUPLE		Difference	Percent Diff.	Indicated	Difference	Percent	Indicated	Difference	Percent	Indicated	Difference	B		
Serial Number	Location .	Indicated Temp			(B)	(C)	Temp.	Difference	Dist.	Temp.	Ditterence	Diff.	Temp.	Difference	Percen Diff.
									· !						
						0		214	2						
					_	1		214	2						
	Meter Out				-	0		214	2						
i															

Stack = 1.5% of value, Filter Box = ±5.4°F, Impinger = ±2°F, Meter = ±5.4°F (40CFR Pt 60, App. A Method 5, and QA Handbook Section 3.4, Method 5, page 13, Rev. O) Calibration Tolerances

Type of calibration system used (A)

Reference - Indicated = Difference **(B)**

(ref. temp. °F + 460) - (indicated temp. °F + 460) (C) x 100 (reference temp. °F + 460)

POSTTEST DRY GAS METER CALIBRATION DATA (ENGLISH UNITS)

Test numbers: All	Date: <u>5-9-01</u>	Meter Box number:	4	
Barometric Pressure: 29.99 inches Hg.	Dry Gas Met	er Number: 4	Pretest Y:	0.99
Plant: Gallatin Steel	Location: C	Ghent, Kentucky		

Orfice	Gas	volume		Temp	erature				
manomtr	Wet test	Dry gas	Wet test		Dry gas me	ter			
setting	meter	meter	meter	Inlet	Outlet	Average	Time	Vacuum	Yi
(DH),	(Vw),	(Vd),	(Tw),	(Tdi),	(Tdo),	(Td),	in	setting	
inches H20	cu.ft.	cu.ft.	deg F	deg F	deg F	deg F	minutes	inches Hg	
1,.90	10.320	10.764	77.50	112.5	89.5	101.00	13.38	5.0	0.9960
1.90	10.768	11.282	78.75	114.0	91.5	102.75	14.01	5.0	0.9923
1.90	12.983	13.613	79.75	112.5	91.5	102.00	16.87	5.0	0.9884
									0.992

If there is only one thermometer on the dry gas meter, record the temperature under Td

Vw= Gas volume passing through the wet test meter, in cubic feet

Vd= Gas volume passing through the dry gas meter, in cubic feet

Tw= Temperature of the gas in the wet test meter, degrees farenheit

Tdi= Temperature of the inlet gas of the dry gas meter, degrees farenheit

Tdo= Temperature of the outlet gas of the dry gas meter, degrees farenheit

Td= Average temperature of the gas in the dry gs meter, obtained by the average of Tdi and Tdo, degrees farenheit

DH= Pressure differential across orifice, inches H20

Yi= Ratio of accuracy of wet test meter to dry gas meter for each run.

Y= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y plus/minus 0.05Y

Pb= Barometric pressure, inches Mercury

Time= Time of calibration run, in minutes.

APPENDIX F

- PRODUCTION DATA
- TEST NOTIFICATION LETTER

Gallatin Steel Company - Fan Amps, Damper Positions and Furnace Static Pressure Readings for May 3, 2001

RUN 1:	76	1 126 77 12: 0 124 76 12: 0 124 76 12: 0 124 76 12: 1 128 78 12: 1 128 78 12: 1 121 74 11: 8 121 74 11: 8 121 74 11: 6 122 74 11: 7 121 74 11: 1 124 76 12: 7 121 74 11: 1 118 72 110 1 124 76 12: 1 124 76 12:	2 74 126 77 1 74 121 74 1 74 122 74 1 74 124 76 9 73 120 73 9 73 121 74 1 74 121 74 1 74 121 74 9 73 118 72 6 71 116 71 1 74 121 74 9 73 121 74	W A A A A A A A A A A A A A A A A A A A	0 43 54 0 46 58 0 42 53 0 41 52 0 41 52 0 46 58	N	\$\begin{array}{c ccccccccccccccccccccccccccccccccccc	O O O O O O O O O O O O O O O O O O O	S	MANOOF PRESSURE PT 1 Inches 100 PEN PT 100 P
RUN 2: 15:03 15:18 11:1 15:33 15:48 16:03 16:18 16:33 115:48 17:03 115 16:48 17:03 120 17:18 118 17:33 115 17:48 123 17:55	74 114 7 70 110 6 70 111 6 70 110 7 71 111 6 70 107 6 72 111 6 73 114 7 72 113 6 70 110 6 75 116 7 74 114 7	7 118 72 116 8 118 72 116 7 119 73 115 1 126 77 126 8 119 73 115 5 116 71 116 5 119 74 115 0 121 74 125 9 122 74 115 7 118 72 118	8 71 116 71 8 72 116 71 9 73 116 71 4 76 126 77 9 73 118 72 9 73 118 72 9 73 121 74 1 74 121 74 9 73 121 74 9 73 121 74 9 73 121 74 9 73 121 74 9 73 121 74 9 73 121 74	51 65 0 45 57 0 45 57 0 45 57 0 45 57 0 46 58 0 47 59 0 50 63 0 47 59 0 45 57 51 63 50 63	0 46 58 0 41 52 0 41 52 0 41 52 0 46 58 0 42 53 0 44 53 0 44 58 0 43 54 0 41 52 0 48 61 0 45 57	21 0 C 11 0 C 20 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C 91 0 C	39 2 0 99 2 0 99 2 0 0 83 4: 0 0 0 2 0 0 19 4: 0 0 99 2 0 0 99 4: 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 100 0 100 100 0 100 100 0 100 100 0 100 100	22 0 0.04 -0.11 23 0 0.01 -0.05 11 0 0.05 -0.04 22 0 0.02 -0.06 22 0 0.04 -0.05 13 0 0.20 -0.03 13 0 0.17 -0.04 23 0 0 -0.04 22 C -0.01 -0.05 22 C 0.01 -0.04

Gallatin Steel Company - Fan Amps, Damper Positions and Furnace Static Pressure Readings for May 3, 2001

RUN 1:	MA 1 RUNNING AMPS	DP14A % OPEN	MA 2 RUNNING AMPS	DP148 % OPEN	MA 3 RUNNING AMPS	DP14C % OPEN	MA 4 RUNNING AMPS	DP14D % OPEN	MA 5 RUNNING AMPS	DP14E % OPEN	HG 1 RUNNING AMPS	DP13A % OPEN	HG 2 RUNNING AMPS	DP13B % OPEN	HG 3 RUNNING AMPS	DP13C % OPEN	DP 1A % OPEN	DP 2A % OPEN	DP 2 % OPEN	DP 1 % OPEN	DP 4 % OPEN	DP 4A % OPEN	DP 7A % OPEN	DP 7C % OPEN	DP 8 % OPEN	DP 7B % OPEN	DP 3 C&D % OPEN	DP 3 A&B % OPEN	DP 6 % OPEN	DP 5 % OPEN .	DP 9 % OPEN	EAF C ROOF PRESSURE PT 2 Inches / 100	EAF A ROOF PRESSURE PT 1 Inches /100
RUN 3: 18:39 18:54 19:09 19:24 19:39 19:54 20:09 20:24 20:39 20:54 21:09 21:24 21:39 21:54	121 115 118 118 121 120 121 121 123 121 118 118 121 121	74 70 72 72 74 73 74 75 73 72 72 73 74	111 113 110 116 114 113 116 114 111	70 68 69 67 71 70 70 69 71 70 68 69 70	122 116 121 118 124 124 122 126 122 121 121 124 124	74 71 74 72 76 76 76 74 77 74 74 76 76	121 116 121 116 122 122 122 121 124 119 119 122 122	74 71 74 71 74 74 74 76 73 73 73 74 74	121	74 71 73 72 75 74 74 74 74 73 74 75 75	50 47 46 45 50 50 49 47 50 47 45 45 45 45	63 59 58 57 63 63 62 59 63 59 57 57 57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	46 43 42 41 46 43 43 41 46 41 41 41 43 47	58 54 53 52 58 54 54 52 58 52 52 52 52 54 59	21 11 20 20 41 91 91 11 10 20 20 20		0 0 0 0 0 0 0 0 0 0 0 0	39 85 99 99 12 19 19 19 43 98 99 99 88 0	21 21 21 43 21 99 21 21 43 99 21 43 43 43	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 12 22 21 11 12 22 22 12 12 23 23 23 22	0 0 0 68 68 0 0 0		-0.09 -0.02 0.02

Damper Legend

DP1A C Shell water cooled damper

DP2A C Shell slag damper

DP2 A Shell slag damper

DP1 A Shell water cooled damper

DP4 LMF roof

DP4A LMF dilution air

DP7A Ladle tearout

DP7C Ladle drying

DP8 Ladle dump

DP7B Ladle preheat

DP3D/DP3C C Shell canopy

DP3B/DP3A A Shell canopy

DP5 Caster canopy

DP9 Tundish deskull

The second secon

M	IONTH May		MAGN	AHELIC C	HECKS	YE	EAR <u>200(</u>
¥ 0			PRESSUREI	DIFFERENTIAL IN CO	OMPARTMENTS		
COMP. NUMBER							
¥ 3 ₹	DATE & D	- 1	D # 1				
TIME	DATE 5-3		Run # /	10100	10137	10153	11100
1	09:38 6.4	9:52	10:07 CL G.3	10:22	6.1	10:52	6.1
2	5.6	6.1 5.5	CL 5.6	6.0 5.5	5.6	5.6	5.4
3	5.7	5.7	4.2	5.6	5.7	5.7	5.9
4	5.3	5.3	5.47	5.4	5.5	5.3	5.5
5	5.5	5.6	6.1	5.5	5.7	5.5	5.7
6	5,5	5.6 5.7	43	5,7	5.7 5.8	5.5	6.0
7	5.5	5.4	Sig	5.4	5.5	5.4	55
8	4.4	5.5	6.1	5.4 5.5	5.6	5 .4 5.5	5.7 5.6
9	Cleanin 5.1	5.5 5.5 5.4	6.0	5.4 5.1	5.6	5.3	5,6
10	4. <u>5</u>	5.4	4.0	5.1	2.3	CL 5.1	5, 1
	5.5	5.0	<u>\$</u> ,\$	5.0	5.2	5.5	5.2
12	6.0	5,5 5,4	6.0	5.4 5.1	5.7	6.0 5.7	5.6 5.S
	F.8	5,4	5.6 8.5	5.1	5.2	5.7	<u> 5.Ş</u>
14 15	4.9 5.4	5,0 5,0	6.5	5.0	5.0	5.5	5.2
16	<u>5.4</u>	5,0	5.3	5.0	5.0	5.3	5.5 5.5
	5.7	5.5	5.7	5.I CL 5.5	5.0 5.3 5.7		
	6.1	5.8 5.8	6.3	6 H	5./	6.0	<u>(,,0</u> 5,9
19	6,0 5,5	5. 0	<i>G.</i> 5.5	5.4	5. <u>5</u>	5.5	5.3
• •		5.3	5.5	5.7	5.0	5.5	<u> </u>
• •	-2 . J V.J	5.2	5.6	5.8	5.0 5.0	5.6	5.3 5.2
21 22	5.6 5.8	5.3	5.8	6.1	5.2	5.7	5.5
23	5.7	5.0	5.6	6.0	5.2	50	5.0
	5.7	CLS,O	5.6	6.0	5.3	5.6	4.5

	MONTH May				MAGNAHELIC CHECKS					
14	Z O	PRESSURE DIFFERENTIAL IN COMPARTMENTS								
	COMP.	DATE 5-3-01		Run # 1	Run # 1					
1	TIME	11:22	11:37	11:52	12:07	12:22	12:37	12:47		
Ŷ	1	4.5	6.0	6.3	4.5	6.4	4.5	6.3		
Y	2	5.6	5.4	5.4	5.8	5.8	5.8	S. 7		
	3	CL 5.8	5.5	5.9	6.1	5.9	6.0	5.9		
[4	6.0	5.3	5.5	5.8	5.7	5.4	5.6		
	\(5	6.0 5.7	2.2	5.9	4.0	60	CL 5.5	5.8		
	٠ 6	4.4	5.6	6.0 5.5	6.0	6.0	CL 5.5 6.5 5.9	5.9		
	·7	5.9	5, 3	5.5	5.7	5.6	5.9	5, 5		
	8	Ce.l	5.2	5,6	5.9	5.7	6.2	5.6		
	9	6.1	5.2	5.7	5.7	5.7 5.8 5.5	Co. 1	5.6		
	10	4.9	5.1	5.6	5. <u>5</u> 5.0	5.5	6.0	5.9 5.6 5.6 5.4 5.5 5.7 5.1		
	110	5.7	4.8	5.3	5.0	5.3 5.8	5.7	5.0		
	12	6.1	5.3	5.7	LL 5.5	5.8	4.0	5,5		
	13	5.7	5.1	5.4	6.0	5.3	5.8	5.7		
	14	5.4	5.0	\$.4 \$.1	5.8	5.1	5.8 5.5 5.3	5.3		
-	15	5.3	4.9	5.1	5.6	4.9 5.2	5,3	5.1		
	16	5.7	5.2	5.4	6.1	5.2	5.7	45.4		
-	17	6.2	5.5	6.0	6.5	5.7	6.3	(1.5 (4.5		
-	18	6.0 5.5	CL 5.3	5.7	6.3	5.7 5.1	6.3	6.5		
-	19	5.5	5.5 5.5	5.4	5.8	5.1	5.6	6.0		
-	20	5.5	5.5	5.5	5.9	5.2 5.1	5.6	4.0		
-	21	5.6	5.6	<u> </u>	6.0		5.6	6.0		
	22	5.9	6.0	5.6 5.4	6.2	5.3	6.0	4.4		
	23	5.7	5.6	5.4	6.0	5.2	5.8	6.0 5.9		
	24	5.5	5.5	5.5	5.8	1,2	5.8	5.9		

MONTH May			MAG	MAGNAHELIC CHECKS				
Zo	PRESSURE DIFFERENTIAL IN COMPARTMENTS							
COMP.	7-20-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0							
₩.	DATE 05/03/01		Run # 2	Run # 2				
TIME	15:03	15:18	15:33	15:48	16:03	16:18	16:33	
1	6.5	4.5	6.9	\$.9	4.5	4.6	6.7	
2	6.0	S.7	6.1	6.0	5.9	5,7	4.0	
3	6.1	4.0	6.3	6.1	6.0	6.0	6.2	
4	5.4	5.7	6.0	5.9	5.8	5.5	5.8	
5	45.7	6.2	6.2	6.1	5.9	5.7	Ce. 2	
6	4.8	6.2	6.5	6.3	6.0	CL 5.7	6.3	
7	6.2	5.7	6.0	5.9	5.4	6.0	5.9	
8	6.4	5,9	6.2	6.0	5.8	4.0	6.1	
9	6.5	5.9	6.1	5.9	5.9	6.1	6.0	
10	6.3 6.0	5.8	6.0	5.5	5.1	4.8	5,9	
11	6.0	5.5	5.9	5.3	5.3	5.7	5.8	
12	6.3	5,8	6.0	5.4 CL 5.8	5.7	6.2	6.0	
13	6.0	5.8	6.0	CL S.8	5.4	5.9	6.0	
14	5.7	5.4	5.7	4.3	4.8	5.0	5.5	
15	5.7	\$,3 \$,5	5.5	G. 1	5.0	S, S 5, 9	5.4	
16	6.1	5.5	5.9	4.5	5,3 5,0	5,9	3.7	
17	6.5	6.0	6.3	4.3	5.0	5.5	5.3	
18	6.4	5.7	6.2	4.8 4.S	5.7	6.3	4.1	
19	5.8	5.5	5.7	4.5	5.2	5.7	3.8	
20	5.5 6.3	5.5 CL 5.5	\$.6	6.0	5.0	S.5 S.8	5.3	
21		6,0	5.9	6.4	5.2	5.8	CL 5.5	
22	6.3	4.3	6.1	4.7	5.4	G.(6.4	
23	6.0	6.3	5.9 5.5	4.5	5.3	5.9	4.3	
24	65 ,8	5.9	5.5	6.2	5.0	5.7	6.0	

	MONTH May	— ECR SHEETEPA TES	MAGN		YEAR 2001		
COMP. NUMBER		<u> </u>	OMPARTMENTS				
MP. BER	DATE 05/63/6 1		Run # 2				
) TIME	14:48	17:03	17:18	17:33	17:48	17:55	
1	5.9	6.4	6.7	7.0	6.7	4.5	
2	60	5.7	6.0	6.0	5.9	5.7	
3	6.4	5,8 5,5	6.1	6.0	6.0	6.0	
4	6.0	S.S	5.8	5.7	5.8	5.7	
\ 5	C. 3	5.7	Ce. 7	6.0	6.0	S.7 6.0	
• 6	6.5	6.0 S.S	6.3	5.9	6.1	6.0	
.7	Co.1	S.S	5.9	5.6	5.7	5.6	
8	6.5 6.5	5.4	6.0	CL 6.0	6.0	5.7	
9	6.5	5.6 5.2	0.0	6.4	3.4 5.5	5.7 5.5	
10	6.6	5.2	4.8	4.4	5.5	5.5	
111	6.0	4.8	5.2	5.7	s. 3	5.3 5.7	
12	6.3	5,3	6.0	6.3 6.3	3.8	5.7	
13	6.0	<u> S.S</u>	5.8	6.3	5.6	5.4	
14	5.7	5.5 5.0 CL 5.0	5,5 5.3	6.0	5.4	9.3	
15	5.6	CL 5.0	5.3	6.0	5.3	5.1	
16	5.9	4.0	3.7	6.2	5.5	8.5	
17	5.5 6.S	5.S 6.3	5.5	5.7 6.7	5.2	5. O 5. 8	
18	6.5	6.3	6.1	6.7	5.9 5.5	3.8	
19	5.8	6.0	5.5	6.0	5.5	5.3	
20	5.5 5.9	5,8	5.2	5.9	5.1	5.1	
21	50, 9	6.0	5.5	Co. (5.2	5.7	
22	6.3	6.2	5.7	6.5 4.3	5.7	5.4	
23	6.0	6.0	3.8	4.3	CL 5.0	5.5	
24	5.8	5,9	5.5	6.0	6.0	5.3	

	MONTH MAY	_	MAGNAHELIC CHECKS				YEAR 2001	
Z	PRESSURE DIFFERENTIAL IN COMPARTMENTS							
COMP.								
B P								
	DATE 5/6	3/01	Run#3					
TIME	18:39	18:54	19:09	19:24	19:39	19:54	20:09	
1	7.0	6.8	6,6	7.0	7.0	7.0	6.5	
2	CLEANING	5,8	5.8	6,0	6.0	5.9	5,6	
3	6.5	6,0	6,0	6,0	6.0	CLEANING	5,9	
4	6.0	5,5	5.5	5.6	5.8	6.0	5.6	
5	6.5	6.0	6.0	6.0	6,0	6.2	5.9	
6	6.5	6,0	6,0	6,0	6.2	6,4	5.9	
7	6,0	5.6	5.6	5.8	5.8	6.0	5.5	
8	6,5	5,8	5,8	6,0	6.0	6.4	5.7	
9	6.4	5,8	5,8	5.6	6.0	6.4	5.6	
10	5,0	5.5	5,5	CLEANING	5.5	6,0	4.4	
11	5,9	5.2	5.4	6,0	5,5	5,6	4.5	
12	6,2	5.5	5.6	6,2	5.8	6,0	5.5	
13	6.0	5,6	5,5	6,2	5.7	6.0	5.5	
14	5.6	5,5	5.4	6.0	5,5	5.5	5.4	
15	5,5	5.2	5.2	6.0	5,5	5.5	5.0	
16	5,,9	CLEANING	5,5	6.0	5.7	6.0	5.4	
17	5,4	5,5	5.0	5.5	6,0	6.2	5.6	
18	6.0	6,5	5.9	6.5	6.0	6.0	5.4	
19	5.6	6,0	5.4	6,0	5.2	5.5	ch 5.3	
20	5.5	6,0	5.0	5.6	5.0	5.5	5,6	
21	5.6	6.0	5,5	6.0	5.0	5.7	5.9	
22	6,0	6.5	5,8	6.5	5.5	6.0	6.1	
23	5.9	6.0	5.5	6.0	5.2	5.7	6,0	
24	5,6	6.0	5,2	6.0	5.0	5.7	5,9	

	ionth <u>May</u>	-	MAGNA	YEAR	YEAR <u>2001</u>				
	PRESSURE DIFFERENTIAL IN COMPARTMENTS								
M S S									
COMP. NUMBER	DATE 5/03/01		Run # 3						
TIME	20:24	20:39	20:54	21:09	21: 24	21:39	al: 545		
1	6.8	6,5	6.5 5.7	6,9	6.5	6.7	6.7		
2	6.0	5.5		6.9	5.4	6,0	5.7		
3	6.0	5.6	5,9	6.0	6.0	6,0	5.7		
4	5.6	5,5	5,5	5,4	5,5	5.7	5.2		
\ 5	6.0	5,5	5.7	CLEANING	5.9	6.0	CLEANING		
· 6	6,2	5.6	5,9	5,5	6,0	6.2	6,5		
.7	5.8	5.4	S,5	6.0	5.6	5,9	6.0		
8	6.0	5,5	5.6	6,1	5.9	6.0	6.2		
9	6,0	5,5	5.6	6.1	5,7	6.0	6,2		
10	4.5	4,2	4,2	4,7	5.5	5.8	6,0		
1 14	5.0	4,9	5.2	5.7	5,0	5.2	5,5		
12	5,8	CLEANING	5.6	6,0	5.6	5.9	6,0		
13	5,6	5,9	5.2	6,0	5,6	5.7	5,8		
14	5,5	<i>5</i> ,5	5.0	5.6	5.4	5.5	5.5		
15	5,0	5.3	5.0	<i>5,</i> 5	5,0	5.2	5.5		
16	5.5	5.6	5,2	5,9	5,5	5,5	5.7		
17	5.0	<i>5.</i> 2	4,6	5.2	6.0	6.0	6,2		
18	6.0	6-0	5,5	6.0	5,6	5,8	6,0		
19	<i>5</i> ,5	5.8	5,0	5,6	5,5	5,5	5.5		
20	5,5	5,8	5.0	5,8	CLEANING	5,5	5.6		
21	5. S	5,9	5.0	5.8	6,0	5.5	5.7		
22	5,9	6.0	5.4	6.0	6,5	6.0	6.0		
23	5,5	5,8	5,0	5.6	6.0	5.5	5,8		
24	5.5	5.	5,0	5,5	6,0	5.5	5.6		

(\$0 9002 CERTIFIED QS 9000 CERTIFIED

March 28, 2001

Mr. Gerald Slucher
Source Sampling and Data Management
Section
Technical Services Branch
Division for Air Quality
803 Schenkel Lane
Frankfort, KY 40601-1403

RE: Gallatin Steel Company, Warsaw KY, ID#079-1380-0018 Permit Number V-99-003

Compliance Test Protocol for Emissions Testing

Dear Mr. Slucher:

Gallatin Steel's air testing firm. Ambient Air Services, Inc., is scheduled to be at Gallatin Steel the first week of May to conduct emissions testing on emission point E1 (01) for NOx and SO₂. In accordance with the conditions in our permit, we are not required to conduct testing for VOC, PM, CO, and lead emissions this year based on our test results for the 1998 and 1999.

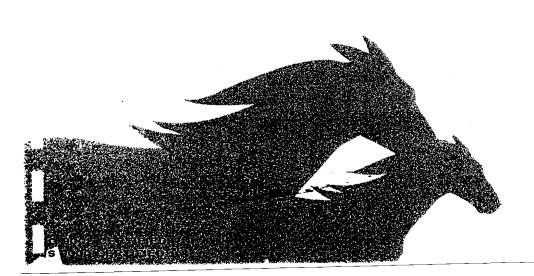
The protocol submitted to your attention on January 7, 1998 will be followed for the testing of NOx and SO, with the following listed changes:

- 1) For NOx, three runs each of three heat cycles in duration will be performed with the inlet probe being positioned in the discharge plenum of the baghouse.
- 2) For SO, in order to obtain statistically valid sampling of levels in the baghouse (since there is not homogeneity in the baghouse), we will be testing compartments in pairs (instead of testing one single compartment) over a total of four runs, each run consisting of three heats. We are requesting to test 8 of the 24 compartments during the four runs, two compartments tested during each run. The results of the sampling will provide more accurate information and will produce an average ppm level for the baghouse emissions. Please note that 40 CFR 60 supports and addresses multiple measurement sites for correctly testing particulate emissions. This same logic is also applicable to SO, emissions, and supports the use of an "alternate" method to produce more accurate results. Mr. Frazier approved the use of this procedure for the annual SO, testing that occurred last year on May 5.

The performance testing is tentatively scheduled to begin on Thursday, May 3 and we will provide you with notification of the exact test date and start time at least 10 days prior to the testing. A source testing report that presents the results of the performance tests will be submitted to the DAQ within 45 days after the completion of the fieldwork in accordance with the permit.

R.R. 1 Box 320 Ghent Ky 41045-9704 **859.567.3100 859.567.3165** fax www.gallatinsteel.com Letter to Gerald Slucher March 28, 2001 Page Two

If you have any questions or comments, please contact me at RR# 1, Box 320, Ghent, KY 41045 or by telephone at 859-567-3141.


Sincerely yours,

Valerie A. Hudson, P.E.

radout evelor

Process Manager - Environmental Systems

cc: Edd Frazier, DAQ - Permit Review Branch
Clay Redmond, DAQ - Florence Regional Office
Joe Cooksey, Ambient Air Services, Inc.

APPENDIX G PROJECT PARTICIPANTS

PROJECT PARTICIPANTS

AMBIENT AIR SERVICES, INC.

Joe Cooksey Earl Coggins Alan Luther

GALLATIN STEEL

Valerie Hudson Joe Dougherty

STATE OBSERVER

Gerald Slucher

The Second Control of the Control of

ISO 9002 CERTIFIED Q5 9000 CERTIFIED

March 28. 2001

Mr. Gerald Slucher
Source Sampling and Data Management
Section
Technical Services Branch
Division for Air Quality
803 Schenkel Lane
Frankfort. KY 40601-1403

RE: Gallatin Steel Company, Warsaw, KY, ID # 079-1380-0018

Permit Number V-99-003

Compliance Test Protocol for Emissions Testing

Dear Mr. Slucher:

Gallatin Steel's air testing firm, Ambient Air Services, Inc., is scheduled to be at Gallatin Steel the first week of May to conduct emissions testing on emission point E I (01) for NOx and SO, In accordance with the conditions in our permit, we are not required to conduct testing for VOC, PM, CO, and lead emissions this year based on our test results for the 1998 and 1999.

The protocol submitted to your attention on January 7, 1998 will be followed for the testing of NOx and SO, with the following listed changes.

- 1) For NOx, three runs each of three heat cycles in duration will be performed with the inlet probe being positioned in the discharge plenum of the baghouse.
- 2) For SO, in order to obtain statistically valid sampling of levels in the baghouse (since there is not homogeneity in the baghouse), we will be testing compartments in pairs (instead of testing one single compartment) over a total of four runs, each run consisting of three heats. We are requesting to test 8 of the 24 compartments during the four runs, two compartments tested during each run. The results of the sampling will provide more accurate information and will produce an average ppm level for the baghouse emissions. Please note that 40 CFR 60 supports and addresses multiple measurement sites for correctly testing particulate emissions. This same logic is also applicable to SO, emissions, and supports the use of an "alternate" method to produce more accurate results. Mr. Frazier approved the use of this procedure for the annual SO, testing that occurred last year on May 5.

The performance testing is tentatively scheduled to begin on Thursday, May 3 and we will provide you with notification of the exact test date and start time at least 10 days prior to the testing. A source testing report that presents the results of the performance tests will be submitted to the DAQ within 45 days after the completion of the fieldwork in accordance with the permit.

R.R. 1 Box 320 Ghent. Ky 41045-9704 859.567.3100 859.567.3165 fax www.gallatinsteel.com Letter to Gerald Slucher March 28, 2001 Page Two

If you have any questions or comments, please contact me at RR# 1, Box 320, Ghent, KY 41045 or by telephone at 859-567-3141.

Sincerely yours,

Valerie A. Hudson, P.E.

Process Manager - Environmental Systems

Valenie Hudson

cc: Edd Frazier, DAQ - Permit Review Branch Clay Redmond, DAQ - Florence Regional Office Joe Cooksey, Ambient Air Services, Inc.