

Note: This is a reference cited in *AP 42, Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at [www.epa.gov/ttn/chief/ap42/](http://www.epa.gov/ttn/chief/ap42/)

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02\_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

## **Background Report Reference**

**AP-42 Section Number:** 12.11

**Background Chapter:** 2

**Reference Number:** 27

**Title:** Source Test Report for Schuylkill Metals Corporation at Cannon Hollow Facility, Forest City, MO

Burnes & McDonnell

November 1990

AP-42 section: 2<sup>nd</sup> lead 7.11

Ref #: 2

Date: 6/16/92

Rating:

Firm/company: Schuylkill Metals Corp. (Baton Rouge)

Tested by: Burns & McDonnell

Test date: Nov. 10, 11 + 12 1990

Special Process: Smelting Process (Blast furnace)  
SO<sub>2</sub> control (wet scrubber)

Test conditions: Usual I, unusual E

Sampling method: 12

Sampling location and Velocity Method: 1 → 6

Calibration Info: Yes, NOX

| PARAMETER:           | Run #1                                           | Run #2                                          | Run #3                                          | Avg.                                            |
|----------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Lead gr/dscf         | $5.408 \times 10^{-5}$ (0.0273) <sup>lb/hr</sup> | $5.23 \times 10^{-5}$ (0.0246) <sup>lb/hr</sup> | $7.401 \times 10^{-5}$ (0.034) <sup>lb/hr</sup> | $6.01 \times 10^{-5}$ (0.0286) <sup>lb/hr</sup> |
| Particulate gr/dscf  | $2.07 \times 10^{-2}$ (10.457) <sup>lb/hr</sup>  | $2.33 \times 10^{-2}$ (10.976) <sup>lb/hr</sup> | $1.706 \times 10^{-2}$ (7.869) <sup>lb/hr</sup> | $2.04 \times 10^{-2}$ (9.767) <sup>lb/hr</sup>  |
| Sulfur Dioxide (ppm) | 0.5                                              | 2                                               | 3.5                                             | 2                                               |
| % CO <sub>2</sub>    | 0.6 %                                            | 1.85 %                                          | 1 %                                             |                                                 |

no Ba Measured available given

|                   |                                                                             |             |                                                              |
|-------------------|-----------------------------------------------------------------------------|-------------|--------------------------------------------------------------|
| Production Dates: | 11/10/90                                                                    | 18588 lb/hr | $E.F. = 2.86 \times 10^{-2}$ lb/hr                           |
| E.R. =            | $5.41 \times 10^{-4}$ gr/dscf $\times 1.429 \frac{lb}{gr}$ $\times 10^{-4}$ | 11/11/90    | $20530 \frac{lb}{hr} \times 5 \times 10^{-4} \frac{ton}{lb}$ |
|                   | $\times 3535437 \frac{dscf}{hr}$                                            | 11/12/90    | $= 0.00278 \frac{lb}{ton}$                                   |
|                   |                                                                             |             | $E.F. = 9.767 \frac{lb}{ton}$                                |

Emission Factors:  $Q_1 = 3535437 \frac{dscf}{hr}$

$Q_2 = 3296680 \frac{dscf}{hr}$

$= 0.952 \frac{lb}{ton}$

$Q_3 = 3227704 \frac{dscf}{hr}$

# SCHUYLKILL METALS CORPORATION

## HOME OFFICE

P.O. Box 74040  
BATON ROUGE, LA. 70874  
504-775-3040

## CANON HOLLOW BRANCH

P.O. Box 156  
FOREST CITY, MO. 64451  
816-446-3321

June 11, 1992

Mr. Brahim Richani, PH.D.  
Environmental Engineer  
Pacific Environmental Services  
3708 Mayfair Street  
Suite 202  
Durham, North Carolina 27707

Dear Mr. Richani:

Attached are the stack tests I promised you.

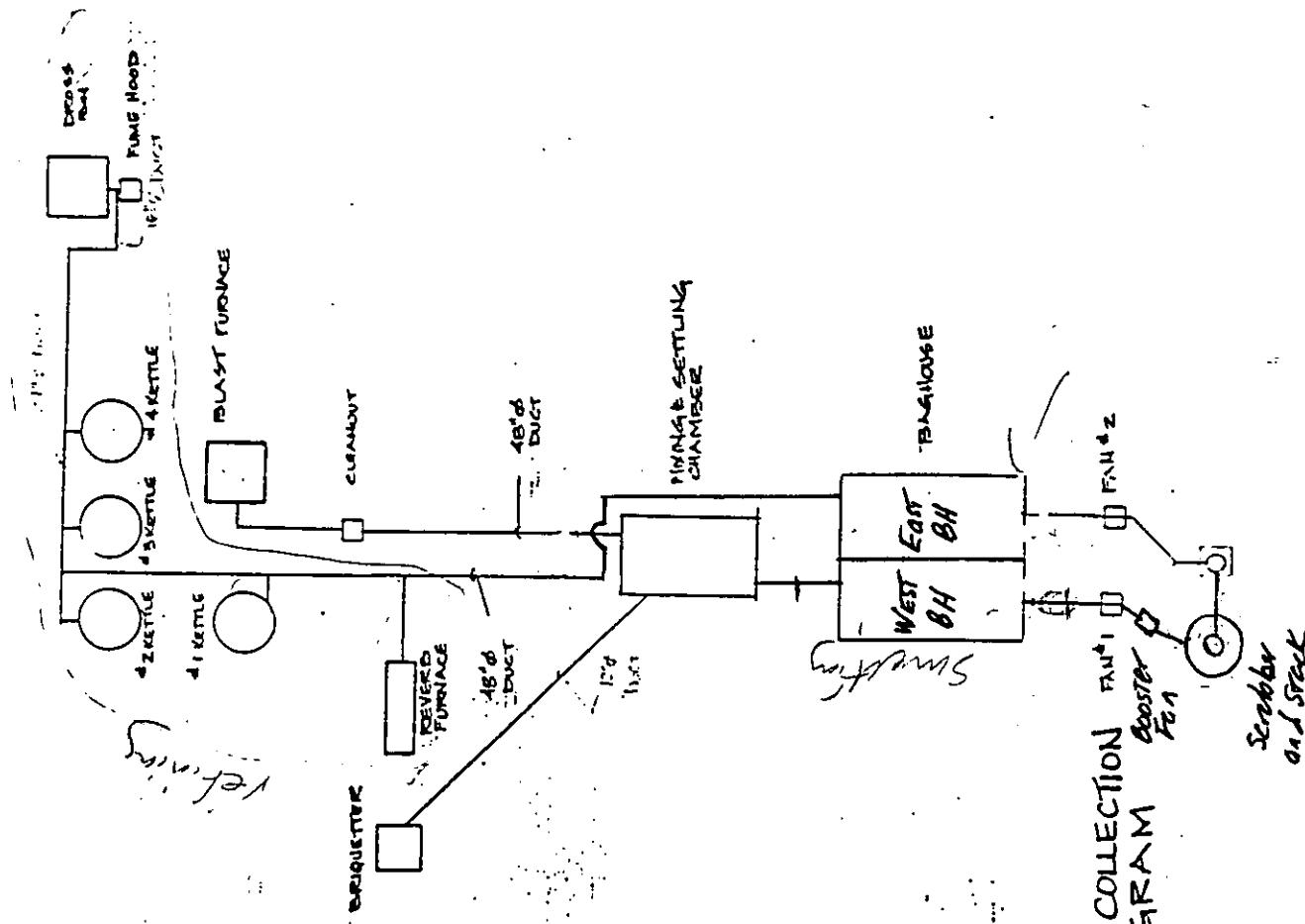
Yours truly,  
SCHUYLKILL METALS CORPORATION



Glen E. Hasse  
Vice President

GEH:ll-611-3

SO<sub>2</sub> Monitor Relative Accuracy Certification  
Particulate, Sulfur Dioxide, Lead,  
Arsenic, Antimony, Benzene,  
Toluene, Thiophene Emissions Test Report  
for  
SCHUYLKILL METALS CORPORATION  
at their  
Canon Hollow Facility  
Secondary Lead Smelter


lbs charged to Furnace

11/10/90 18588 lbs / Hr  
11/11/90 20530 lbs / Hr  
11/12/90 19480 lbs / Hr

## **I. Introduction**

## TABLE OF CONTENTS

- I. INTRODUCTION
- II. SUMMARY OF TEST RESULTS
- III. DESCRIPTION OF TESTED FACILITY
- IV. SAMPLING AND ANALYTICAL PROCEDURES
- V. APPENDICES
  - EPA Formulas
  - Test Data Sheets
  - Plant Data Sheets
  - Calibration of Testing Equipment
  - Laboratory Reports
  - Quality Assurance
  - Correspondence



BAGHOUSE COLLECTION FLOW DIAGRAM <sup>ESTATE</sup>

SCHUYLKILL METALS CORP.  
FOREST CITY, MO.  
CANON HOLLOW PLANT

Dec. neg.  
Drs. H.O. C.H. - 1938

۲۲۲

FIGURE 1

## I. Introduction

This report presents the results of the air emission tests performed for Schuylkill Metals Corporation at the Canon Hollow Secondary lead smelter facility located near Forest City, Missouri.

The purpose of these tests was to determine the emission rates of the following pollutants, which Schuylkill was notified to test for under Order No. 90-AP-008, by the Missouri Air Conservation Commission. The air emission testing consisted of testing for sulfur dioxide, total particulate matter, lead, arsenic, and antimony compounds. The organics, benzene, thiophene and toluene were also included in the order. Schuylkill's  $\text{SO}_2$  continuous monitor was also recertified by performing  $\text{SO}_2$  relative accuracy tests in accordance with the "order" and performance specifications 2 of Appendix B.

The results of the testing can be found in the summary section of the report. The emission testing was performed by Burns & McDonnell Engineering Company whose main office is located at 4800 East 63rd Street, Kansas City, Missouri.

The testing was performed on November 10, 11, & 12, 1990. The testing was performed in accordance with EPA Reference Methods 1, 2, 3, 4, 5, 6, and 12 as published in the 1990 Code of Federal Regulations, Title 40, Part 60, Subpart L and Appendix A. "Methodology for the Determination of Metals Emissions" in Appendix A was used to determine the arsenic and antimony compounds. Method 0030 Volatile Organic Sampling Train (VOST) was utilized to sample the organics, benzene, toluene, and thiophene. The  $\text{SO}_2$  monitor certifications tests were performed in accordance with Appendix B, Specification 2 in the 1990 Code of Federal Regulation, Title 40, Part 60.

The testing equipment, sampling procedures and analytical procedures are described in Section IV of the report. The raw field data, plant data, equipment calibration, correspondence lab, analysis reports, and equations determining the final results are presented in the Appendix.

The test crew consisted of Richard Howes, Luke Corkill and Gary Cline. Mr. Joe Areollo from the U.S. EPA, Region 7, and Mr. Doug Elley from the Missouri Department of Natural Resources, were present to observe the air emissions testing.

The following is a brief synopsis of the testing performed.

The SO<sub>2</sub> "high accretion" tests were performed prior to November 10, 1990. On November 8, 1990, two SO<sub>2</sub> samples (1 Run) was completed. This test was completed prior to the tube leak that occurred to the furnace. The SO<sub>2</sub> emission rates for the two samples averaged 3 ppm, during this "accretion" testing. The results are included in the summary section. When testing resumed on November 10, 1990, after the furnace had been repaired, the SO<sub>2</sub> compliance testing commenced. The SO<sub>2</sub> compliance testing originally was going to be performed in conjunction with the SO<sub>2</sub> monitor certification tests. Since the scrubber removal nearly all SO<sub>2</sub> emissions, the monitor certifications test could not be performed simultaneously with the SO<sub>2</sub> compliance tests. Therefore, the pH in the scrubber was lowered to raise the SO<sub>2</sub> emissions during the monitor certification tests. Sample numbers 1, 2, 6, 7, 8, & 9 were used as the 3 runs to determine SO<sub>2</sub> compliance. These 3 runs were taken when the scrubber was operating under "normal" pH conditions. The monitor certification tests for relative accuracy were made when the pH of the scrubber was lowered to allow higher SO<sub>2</sub> concentrations. This was done so that a real comparison of accuracy could be determined between the SO<sub>2</sub> monitor and the SO<sub>2</sub> reference method test. Sample numbers 3, 4, 5, 10, 11, 12, 13, 14, and 15 were made on November 10, 1990. Sample #3 was spilled during retrieving and washing out and therefore was void. Sample # 12, 14, and 15 were thrown out of the relative accuracy tests because of low correlation with the SO<sub>2</sub> monitor. Three additional SO<sub>2</sub> samples were taken on November 11, 1990, which is the maximum allowed in accordance with Appendix B, Performance Specification 2. The 3 additional SO<sub>2</sub> relative accuracy samples used to make up the 9 sets were samples 17, 18, and 19. The 9 sets consisted of samples 4, 5, 10, 11, 13, 16, 17, 18 and 19.

JES

On which process

On November 11, 3 test runs for particulate, lead, arsenic, and antimony compounds were also performed. These were performed prior to the 3 additional SO<sub>2</sub> relative accuracy tests. The metals and particulate tests were performed while the furnace was in normal operation.

On November 12, 1990, one additional run was made for particulate, lead, arsenic, and antimony. This run was made while the furnace was operating during a "high antimony" batch. At the completion of this test, VOST sampling for the organics, benzene, toluene and thiophene commenced. Two VOST trains were utilized simultaneously. Both samples were taken by Burns & McDonnell personnel. One set of samples were given to Joe Areollo of the USEPA for analyzing by the EPA. The other set of samples were analyzed by Triangle Laboratory. Three runs were made with each run consisting of 5 pairs of tenax, tenax/charcoal sorbent tube.

## **II. Summary of Test Results**

Summary of Test Results

The following chart shows the test results of the particulate, lead, arsenic, and antimony emissions tests performed at Schulykill Metals Corporation Canon Hollow Facility.

| <u>Emission Rates (grains/dscf)</u> |              |                    |             |                |                 |
|-------------------------------------|--------------|--------------------|-------------|----------------|-----------------|
| <u>Date</u>                         | <u>Run #</u> | <u>Particulate</u> | <u>Lead</u> | <u>Arsenic</u> | <u>Antimony</u> |
| 11/11                               | 1            | .0207233           | .00005408   | 0              | 0               |
| 11/11                               | 2            | .0233429           | .00005230   | 0              | 0               |
| 11/11                               | 3            | .0170635           | .00007401   | 0              | 0               |
| 11/12                               | *4           | .0102844           | .00005942   | 0              | 0               |
| (Average of 3)                      |              | .0203765           | .00006013   | 0              | 0               |
| (Average of 4)                      |              | .0178535           | .00005995   | 0              | 0               |

\* Indicates High Antimony Test Trial

Allowable for particulate = .022 grains/dscf

Allowable for lead = .00044 grains/dscf

There are no source standards for arsenic or antimony.  
Zero readings for arsenic and antimony indicate that they  
were not detected by the laboratory.

Summary of Test Results

The following is a summary of the SO<sub>2</sub> compliance testing performed at Schulykill Metals Corporation, Canon Hollow secondary Lead Smelter Facility. The SO<sub>2</sub> high accretions testing was performed on November 8, 1990. One run was completed prior to the furnace tube leak.

| <u>Date</u> | <u>Sample #</u> | <u>SO<sub>2</sub> ppm (dry)</u> |
|-------------|-----------------|---------------------------------|
| 11/8/90     | 1 HA            | 3                               |
|             | 2 HA            | 3                               |
|             | Average         | 3 ppm                           |

The following are the results of the 3 SO<sub>2</sub> Compliance Test runs.

| <u>Date</u> | <u>Run</u> | <u>Sample #</u> | <u>SO<sub>2</sub> ppm (dry)</u> |
|-------------|------------|-----------------|---------------------------------|
| 11/10/90    | 1          | 1               | 0                               |
|             |            | 2               | 1                               |
|             | 2          | 6               | 2                               |
|             |            | 7               | 2                               |
|             | 3          | 8               | 2                               |
|             |            | 9               | 5                               |
|             | Average    |                 | 2                               |
|             | Allowable  |                 | 500 ppm                         |

The computer printouts showing all the test data along with the calculations are on the following pages.

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMC-HA  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 HIGH ACCRETIONS TESTS

Page 1  
Date 01/15/91

| Sample Identification |                          |             | 1-HA      | 2-HA      |
|-----------------------|--------------------------|-------------|-----------|-----------|
|                       | Test Date                |             | 11/08/90  | 11/08/90  |
| VM                    | Volume Sampled           | (CF)        | 1.224     | 1.017     |
| MC                    | Meter Correction Factor  |             | 1.0129    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.20     | 29.20     |
| TM                    | Meter Temperature        | (F)         | 36.20     | 41.60     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.286983  | 1.054791  |
| VT                    | Volume Titrated          | (ml)        | 0.20      | 0.15      |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000005 | 0.0000005 |
| PPM                   | Parts/Million SO2        | (ppm)       | 3         | 3         |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      |

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMC  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 COMPLIANCE TEST RESULTS

Page 1  
Date 01/07/91

| Sample Identification |                          |             | 1         | 2         | 6         |
|-----------------------|--------------------------|-------------|-----------|-----------|-----------|
| Test Date             |                          |             | 11/10/90  | 11/10/90  | 11/10/90  |
| VM                    | Volume Sampled           | (CF)        | 1.120     | 1.137     | 1.126     |
| MC                    | Meter Correction Factor  |             | 1.0100    | 1.0100    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.15     | 29.15     | 29.15     |
| TM                    | Meter Temperature        | (F)         | 44.60     | 51.00     | 71.00     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.152734  | 1.155575  | 1.101292  |
| VT                    | Volume Titrated          | (ml)        | 0.01      | 0.05      | 0.10      |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     | 20.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000000 | 0.0000001 | 0.0000003 |
| PPM                   | Parts/Million SO2        | (ppm)       | 0         | 1         | 2         |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      | 0.00      |

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMC  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 COMPLIANCE TEST RESULTS

Page 2  
Date 01/07/91

| Sample Identification |                          |             | 7         | 8         | 9         |
|-----------------------|--------------------------|-------------|-----------|-----------|-----------|
| Test Date             |                          |             | 11/10/90  | 11/10/90  | 11/10/90  |
| VM                    | Volume Sampled           | (CF)        | 1.107     | 1.100     | 1.113     |
| MC                    | Meter Correction Factor  |             | 1.0100    | 1.0100    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.15     | 29.15     | 29.15     |
| TM                    | Meter Temperature        | (F)         | 71.20     | 74.20     | 73.60     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.082301  | 1.069418  | 1.083273  |
| VT                    | Volume Titrated          | (ml)        | 0.10      | 0.10      | 0.25      |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     | 20.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000003 | 0.0000003 | 0.0000008 |
| PPM                   | Parts/Million SO2        | (ppm)       | 2         | 2         | 5         |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      | 0.00      |

### Summary of Test Results

The following is a summary of the SO<sub>2</sub> monitor Recertification Relative Accuracy Tests. The nine samples used in calculating the relative accuracy tests were sample numbers 4, 5, 10, 11, 13, 16, 17, 18 & 19. Samples 12, 14, and 15 were thrown out due to lack of close correlation with the monitor. A moisture determination of 5 percent was made during the SO<sub>2</sub> testing to calculate the reference method to a wet basis to correspond to the monitor on a wet basis.

| <u>Parameter</u>        | <u>Specification</u> | <u>SO<sub>2</sub> Test Results</u> |
|-------------------------|----------------------|------------------------------------|
| Field Relative Accuracy | * 20%                | 13.56%                             |
| Field Relative Accuracy | * 10%                | 5.746%                             |

\* using mean reference method test value of 211.88 ppm.

\*\* using the applicable standard allowable of 500 ppm.

SO<sub>2</sub> Field Relative Accuracy

| Run # | Data Set | <u>di</u>         | <u>di<sup>2</sup></u>           |
|-------|----------|-------------------|---------------------------------|
| 4     | 1        | +14.75            | 216.83                          |
| 5     | 2        | -47.65            | 2270.52                         |
| 10    | 3        | -8.60             | 73.96                           |
| 11    | 4        | +35.25            | 1242.56                         |
| 13    | 5        | +30.15            | 909.03                          |
| 16    | 6        | -43.70            | 1909.69                         |
| 17    | 7        | -1.15             | .0225                           |
| 18    | 8        | -32.05            | 1027.20                         |
| 19    | 9        | +8.25             | 68.06                           |
|       |          | <u>di</u> = 43.75 | <u>di<sup>2</sup></u> = 7717.87 |

Arithmetic Mean

$$\bar{d} = \frac{1}{n} \sum_{di=1}^n di = \left( \frac{1}{9} \right) (43.75)$$

$$\bar{d} = 4.861$$

Standard Deviation

$$Sd = \sqrt{\frac{(43.75)^2}{9 - 1}}$$

$$Sd = 30.629$$

$$\text{Confidence Coefficient} = (2.306) \left( \frac{30.629}{\sqrt{9}} \right) = 23.5436$$

Relative Accuracy

$$*R.A. = \frac{4.861 + 23.5436}{211.88} \times 100 \quad **\frac{4.861 + 23.5436}{500} \times 100$$

$$R.A. = 13.56$$

$$R.A. = 5.746$$

\* Mean Reference Method Test Value = 211.88 ppm Allowable RA = 20%

\*\* Applicable Standard = 500 ppm Allowable RA = 10%

ACCURACY DETERMINATIONClient Schulykill Metals Corp. Made by Rick HoxesProject No. 90-356-3 Date  Checked by Sampling Location Canon Hollow Plant Stack outletMonitor SO<sub>2</sub> DuPont Analyzer model #460 Serial #5302

| Test No. | Date<br>*Time | Reference Method Samples   |            |                            | Monitor Avg. (ppm) | Difference (ppm)                   |                  |
|----------|---------------|----------------------------|------------|----------------------------|--------------------|------------------------------------|------------------|
|          |               | SO <sub>2</sub> ppm<br>Dry | % moisture | SO <sub>2</sub> ppm<br>Wet |                    | Account for<br>7 ppm offset<br>ppm | X <sub>1</sub>   |
| 4 1      | 11-10-90      | 205                        | 57%        | 194.75                     | 209.5              | 216.5                              | +14.75 216.83    |
| 5 2      | 11-10-90      | 307                        | 57%        | 291.65                     | 244                | 251                                | -47.65 2270.52   |
| 10 3     | 11-10-90      | 298                        | 57%        | 283.1                      | 274.5              | 281.5                              | -8.6 73.96       |
| 11 4     | 11-10-90      | 495                        | 57%        | 470.25                     | 505.5              | 512.5                              | +35.25 1242.56   |
| 13 5     | 11-10-90      | 303                        | 57%        | 287.85                     | 318                | 325                                | +30.15 909.03    |
| 16 6     | 11-10-90      | 166                        | 57%        | 157.7                      | 114                | 121                                | -43.7 1909.69    |
| 17 7     | 11-11-90      | 117                        | 57%        | 111.15                     | 111                | 118                                | -1.15 .0225      |
| 18 8     | 11-11-90      | 179                        | 57%        | 170.05                     | 138                | 145                                | -32.05 1027.20   |
| 19 9     | 11-11-90      | 211                        | 57%        | 200.45                     | 208.7              | 215.7                              | +8.25 68.06      |
| *10      | 11-10-90      | 179                        | 57%        | 170.05                     | 303                | 310                                | +132.95 17675.75 |
|          |               |                            |            |                            |                    |                                    |                  |
| *11      | 11-10-90      | 312                        | 57%        | 296.4                      | 399                | 406                                | +102.6 10526.76  |
| *12      | 11-10-90      | 192                        | 57%        | 182.4                      | 243                | 250                                | +60.6 3672.3     |

Mean ref. method  
test value 211.88 211.88 = AvgMean of the differences  $\frac{\sum x_i = 432.25}{9}$   $\bar{x} = 4.861$   $\sum x_i^2 = 7717.87$ 95% Confidence intervals = 23.8708

1 Mean of the differences + 95% confidence interval

Accuracies = Mean reference method value  $\times 100 =$  \_\_\_\_\_

Allowable RA = 20% - Relative Accuracy = 13.5% (using the mean reference method test value of 211.88 ppm)

Allowable RA = 10% - Relative Accuracy = 5.746% (using the applicable standard of 500 ppm)

Listed below are the values we obtained from the monitor strip charts. These were read from the strip chart recordings for each relative accuracy run number and time integrated over a 20-minute time period.

|       |                                                                                             |       |                                                                                                              |
|-------|---------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------|
| RA#4  | 175 x 4 min.<br>210 x 10 min.<br>255 x 2 min.<br><u>255 x 4 min.</u><br>$4330 + 20 = 216.5$ | RA#5  | 255 x 5 min.<br>300 x 2 min.<br>285 x 10 min.<br><u>100 x 3 min.</u><br>$5025 + 20 = 251$                    |
| RA#10 | 180 x 10 min.<br>320 x 1 min.<br><u>390 x 9 min.</u><br>$5630 + 20 = 281.5$                 | RA#11 | 445 x 1 min.<br>350 x 1 min.<br>370 x 10 min.<br>575 x 1 min.<br><u>740 x 7 min.</u><br>$10250 + 20 = 512.5$ |
| RA#13 | 350 x 10 min.<br><u>300 x 10 min.</u><br>$6500 + 20 = 325$                                  | RA#16 | 175 x 3 min.<br>110 x 10 min.<br>70 x 2 min.<br><u>130 x 5 min.</u><br>$2415 + 20 = 121$                     |
| RA#17 | 100 x 10 min.<br>140 x 2 min.<br><u>135 x 8 min.</u><br>$2360 + 20 = 118$                   | RA#18 | 125 x 10 min.<br>155 x 3 min.<br><u>170 x 7 min.</u><br>$2905 + 20 = 145$                                    |
| RA#19 | 200 x 10 min.<br>135 x 1 min.<br><u>242 x 9 min.</u><br>$4313 + 20 = 215.7$                 |       |                                                                                                              |

The monitor tracks for approximately 4-5 minutes and then goes into a holding period for approximately 10 minutes, and then came out of hold and begins to track again. Due to this type of monitor recording, some relative accuracy samples didn't correlate with the reference method samples. Three samples were thrown out and not included in the relative accuracy calculation. RA runs # 12, 14, & 15 were thrown out.

Listed below are the monitor strip chart values we obtained for these 3 RA samples.

|       |                                                           |       |                                                                           |
|-------|-----------------------------------------------------------|-------|---------------------------------------------------------------------------|
| RA#12 | 565 x 10 min.<br><u>55 x 10 min.</u><br>$6200 + 20 = 310$ | RA#14 | 490 x 10 min.<br>315 x 5 min.<br><u>330 x 5 min.</u><br>$8125 + 20 = 406$ |
|-------|-----------------------------------------------------------|-------|---------------------------------------------------------------------------|

RA#15      330 x 10 min.  
275 x 2 min.  
168 x 1 min.  
140 x 7 min.  
4998 + 20 = 250

It should also be noted that the scrubber was spoiled purposely to allow higher SO<sub>2</sub> concentrations in order to determine the SO<sub>2</sub> monitor certification tests. In doing this, the SO<sub>2</sub> varied greatly during the test runs.

The SO<sub>2</sub> values for the monitor were taken from the strip charts. We estimated that the strip chart was offset approximately +7 ppm. This value of 7 ppm was deducted in calculating the relative accuracy of the SO<sub>2</sub> monitor.

The strip charts were time integrated to obtain the SO<sub>2</sub> values. Listed below are the values that we obtained from the strip charts for the SO<sub>2</sub> R.A. runs. Seven ppm is deducted for the offset.

| <u>Data Set</u> | <u>RA Run#</u> | <u>SO<sub>2</sub> Monitor Strip Chart<br/>Value Obtained (wet basis)</u> |
|-----------------|----------------|--------------------------------------------------------------------------|
| 1               | 4              | 216.5 - 7 = 209.5                                                        |
| 2               | 5              | 251.0 - 7 = 244.0                                                        |
| 3               | 10             | 281.5 - 7 = 274.5                                                        |
| 4               | 11             | 512.5 - 7 = 505.5                                                        |
| 5               | 13             | 325.0 - 7 = 318.0                                                        |
| 6               | 16             | 121.0 - 7 = 114.0                                                        |
| 7               | 17             | 118.0 - 7 = 111.0                                                        |
| 8               | 18             | 145.0 - 7 = 138.0                                                        |
| 9               | 19             | 215.7 - 7 = 208.7                                                        |

Runs 12, 14, & 15 were not included in calculating the relative accuracy of the monitor.

The reference test method was made on a dry basis, therefore, a moisture run was determined to obtain the moisture content of the flue gas. The moisture was determined to be 5 percent, therefore, the necessary calculations were made to compare the monitor results with the SO<sub>2</sub> reference method test samples.

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMCRA  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 RELATIVE ACCURACY MONITOR TESTS

Page 1  
Date 01/14/91

| Sample Identification |                          |             | 04        | 05        | 10        |
|-----------------------|--------------------------|-------------|-----------|-----------|-----------|
| Test Date             |                          |             | 11/10/90  | 11/10/90  | 11/10/90  |
| VM                    | Volume Sampled           | (CF)        | 1.099     | 1.120     | 1.095     |
| MC                    | Meter Correction Factor  |             | 1.0100    | 1.0100    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.15     | 29.15     | 29.15     |
| TM                    | Meter Temperature        | (F)         | 61.00     | 70.20     | 67.00     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.095515  | 1.097076  | 1.079101  |
| VT                    | Volume Titrated          | (ml)        | 10.70     | 16.00     | 7.65      |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     | 10.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000341 | 0.0000509 | 0.0000495 |
| PPM                   | Parts/Million SO2        | (ppm)       | 205       | 307       | 298       |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      | 0.00      |

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMCRA  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 RELATIVE ACCURACY MONITOR TESTS

Page 2  
Date 01/14/91

| Sample Identification |                          |             | 11        | 13        | 16        |
|-----------------------|--------------------------|-------------|-----------|-----------|-----------|
| Test Date             |                          |             | 11/10/90  | 11/10/90  | 11/10/90  |
| VM                    | Volume Sampled           | (CF)        | 1.104     | 1.116     | 1.078     |
| MC                    | Meter Correction Factor  |             | 1.0100    | 1.0100    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.15     | 29.15     | 29.15     |
| TM                    | Meter Temperature        | (F)         | 67.60     | 71.80     | 69.00     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.086733  | 1.089869  | 1.058331  |
| VT                    | Volume Titrated          | (ml)        | 25.55     | 15.65     | 8.35      |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     | 20.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000821 | 0.0000502 | 0.0000275 |
| PPM                   | Parts/Million SO2        | (ppm)       | 495       | 303       | 166       |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      | 0.00      |

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMCRA  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 RELATIVE ACCURACY MONITOR TESTS

Page 3  
Date 01/14/91

| Sample Identification |                          |             | 17        | 18        | 19        |
|-----------------------|--------------------------|-------------|-----------|-----------|-----------|
|                       | Test Date                |             | 11/11/90  | 11/11/90  | 11/11/90  |
| VM                    | Volume Sampled           | (CF)        | 1.112     | 1.111     | 1.114     |
| MC                    | Meter Correction Factor  |             | 1.0100    | 1.0100    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.15     | 29.15     | 29.15     |
| TM                    | Meter Temperature        | (F)         | 66.00     | 67.80     | 69.25     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.097937  | 1.093209  | 1.093158  |
| VT                    | Volume Titrated          | (ml)        | 6.10      | 9.30      | 10.95     |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     | 20.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000194 | 0.0000297 | 0.0000350 |
| PPM                   | Parts/Million SO2        | (ppm)       | 117       | 179       | 211       |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      | 0.00      |

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants

Test ID : SMCRA  
Client : SCHUYLKILL METALS  
Project : 90-356-3  
SO2 RELATIVE ACCURACY MONITOR TESTS

Page 4  
Date 01/14/91

| Sample Identification |                          |             | 12-OMIT   | 14-OMIT   | 15-OMIT   |
|-----------------------|--------------------------|-------------|-----------|-----------|-----------|
|                       | Test Date                |             | 11/10/90  | 11/10/90  | 11/10/90  |
| VM                    | Volume Sampled           | (CF)        | 1.111     | 1.079     | 1.073     |
| MC                    | Meter Correction Factor  |             | 1.0100    | 1.0100    | 1.0100    |
| PB                    | Barometric Pressure      | (in Hg)     | 29.15     | 29.15     | 29.15     |
| TM                    | Meter Temperature        | (F)         | 69.80     | 71.20     | 69.40     |
| VMS                   | Corrected Volume Sampled | (DSCF)      | 1.089082  | 1.054926  | 1.052626  |
| VT                    | Volume Titrated          | (ml)        | 9.25      | 15.65     | 9.60      |
| VTB                   | Blank Volume Titrated    | (ml)        | 0.01      | 0.01      | 0.01      |
| N                     | Normality of Ba(ClO4)    | (eq/l)      | 0.0099    | 0.0099    | 0.0099    |
| VS                    | Volume of Sample         | (ml)        | 100       | 100       | 100       |
| VA                    | Volume of Aliquote       | (ml)        | 20.00     | 20.00     | 20.00     |
| CSO2                  | Concentration of SO2     | (lbs/DSCF)  | 0.0000297 | 0.0000518 | 0.0000318 |
| PPM                   | Parts/Million SO2        | (ppm)       | 179       | 312       | 192       |
| F                     | F Factor                 | (DSCF/MBtu) | 0         | 0         | 0         |
| O2                    | Percent O2               | (%)         | 0.00      | 0.00      | 0.00      |
| ESO2                  | Emission of SO2 O2 Basis | (lbs/MBtu)  | 0.00      | 0.00      | 0.00      |

B U R N S & M C D O N N E L L  
 Engineers-Architects-Consultants  
 DUST - Particulate Emissions Program  
 Version 4.0 - 03/90

Test ID: SMC  
 SCHUYLKILL METALS CORP.  
 90-356-3  
 PARTICULATE & METALS TESTS

Page 1  
 Date 01/07/91  
 Time 10:26:00

| Sample Identification |                          |          | 1         | 2         |
|-----------------------|--------------------------|----------|-----------|-----------|
| Test Date             |                          |          | 11/11/90  | 11/11/90  |
| PC                    | Pitot Coefficient        | (CF)     | 0.770     | 0.770     |
| AF                    | Flue Area                |          | 28.274    | 28.274    |
| PB                    | Barometric Pressure      | (in Hg)  | 29.300    | 29.300    |
| VL                    | Volume of Condensate     | (ml)     | 49.1000   | 44.6000   |
| TF                    | Flue Temperature         | (F)      | 99.410    | 106.400   |
| SDP                   | Square Root of Delta P   |          | 0.731     | 0.686     |
| PS                    | Static Pressure          | (in H2O) | -0.500    | -0.500    |
| DH                    | Orifice Pressure Diff.   | (in H2O) | 1.360     | 1.350     |
| TM                    | Meter Temperature        | (F)      | 55.600    | 68.250    |
| VM                    | Volume Sampled           | (CF)     | 46.721    | 46.372    |
| MC                    | Meter Correction Factor  |          | 1.008     | 1.008     |
| DN                    | Nozzle Diameter          | (in)     | 0.248     | 0.248     |
| T                     | Time Sampled             | (min)    | 72        | 72        |
| CO2                   | Percent CO2              | (%)      | 0.600     | 1.850     |
| O2                    | Percent O2               | (%)      | 20.200    | 18.950    |
| CO                    | Percent CO               | (%)      | 0.000     | 0.000     |
| N2                    | Percent N2               | (%)      | 79.20     | 79.20     |
| MW                    | Molecular Weight         | lb/lb-m  | 28.40     | 28.57     |
| Filter Number         |                          |          | 205       | 210       |
| Wash Number           |                          |          | 1A        | 2A        |
| WG                    | Total Particulate Matter | (G)      | 0.0636000 | 0.0694000 |
| PF                    | Absolute Flue Pressure   | (in Hg)  | 29.26     | 29.26     |
| VW                    | Volume of Water Vapor    | SCF      | 2.31      | 2.10      |
| VMS                   | Volume of Metered Gas    | DSCF     | 47.37     | 45.89     |
| M                     | Moisture in Flue Gas     | (%)      | 4.65      | 4.38      |
| VG                    | Velocity of Flue Gas     | FPS      | 39.48     | 37.16     |
| VO                    | Volume of Flue Gas       | ACFM     | 66970     | 63047     |
| VOS                   | Volume of Flue Gas       | DSCFH    | 3535437   | 3296680   |
| VT                    | Volume of Flue Gas       | ACF      | 53.84     | 52.66     |
| WD                    | Dust Concentration       | lb/DSCF  | 0.0000030 | 0.0000033 |
| WH                    | Dust Concentration       | lb/hr    | 10.47     | 10.99     |
| WA                    | Dust Concentration       | grs/acf  | 0.0182326 | 0.0203429 |
| WS                    | Dust Concentration       | grs/dscf | 0.0207233 | 0.0233429 |
| I                     | Isokinetic Sampling      | (%)      | 94.13     | 97.79     |

.88 lb<sub>5</sub> SO<sub>2</sub> / hr

B U R N S & M C D O N N E L L  
 Engineers-Architects-Consultants  
 DUST - Particulate Emissions Program  
 Version 4.0 - 03/90

Test ID: SMC  
 SCHUYLKILL METALS CORP.  
 90-356-3

Page 2  
 Date 01/07/91  
 Time 10:26:04

PARTICULATE & METALS TESTS

|                           |          |                     |
|---------------------------|----------|---------------------|
| Sample Identification     | 1        | 2                   |
| Test Date                 | 11/11/90 | 11/11/90            |
| Filter Number             | 205      | 210                 |
| Final Weight              | (G)      | 1.0832000 1.0912000 |
| Tare Weight               | (G)      | 1.0787000 1.0839000 |
| Wash Number               | 1A       | 2A                  |
| Wash Residue              |          | 59.1000 62.1000     |
| Wash Volume               |          | 185.0000 185.0000   |
| Blank Residue             |          | 0.0000 0.0000       |
| Blank Volume              |          | 100.0000 100.0000   |
| Total Particulate Matter  |          | 0.0636000 0.0694000 |
| Liquid Collected          |          | 40.0000 37.0000     |
| Initial Silica Gel Weight |          | 200.0000 200.0000   |
| Final Silica Gel Weight   |          | 209.1000 207.6000   |
| Total Condensate          |          | 49.1000 44.6000     |

B U R N S & M C D O N N E L L  
 Engineers-Architects-Consultants  
 DUST - Particulate Emissions Program  
 Version 4.0 - 03/90

Test ID: SMC  
 SCHUYLKILL METALS CORP.  
 90-356-3

Page 3  
 Date 01/07/91  
 Time 10:26:06

PARTICULATE & METALS TESTS

| Sample Identification |                          |          | 3         | 4         |
|-----------------------|--------------------------|----------|-----------|-----------|
| Test Date             |                          |          | 11/11/90  | 11/12/90  |
| PC                    | Pitot Coefficient        | (CF)     | 0.770     | 0.770     |
| AF                    | Flue Area                |          | 28.274    | 28.274    |
| PB                    | Barometric Pressure      | (in Hg)  | 29.300    | 29.500    |
| VL                    | Volume of Condensate     | (ml)     | 47.8000   | 44.2000   |
| TF                    | Flue Temperature         | (F)      | 106.600   | 97.080    |
| SDP                   | Square Root of Delta P   |          | 0.671     | 0.699     |
| PS                    | Static Pressure          | (in H2O) | -0.500    | -0.500    |
| DH                    | Orifice Pressure Diff.   | (in H2O) | 1.520     | 1.341     |
| TM                    | Meter Temperature        | (F)      | 73.400    | 48.060    |
| VM                    | Volume Sampled           | (CF)     | 49.359    | 46.652    |
| MC                    | Meter Correction Factor  |          | 1.008     | 1.008     |
| DN                    | Nozzle Diameter          | (in)     | 0.248     | 0.248     |
| T                     | Time Sampled             | (min)    | 72        | 72        |
| CO2                   | Percent CO2              | (%)      | 1.000     | 1.200     |
| O2                    | Percent O2               | (%)      | 19.800    | 19.600    |
| CO                    | Percent CO               | (%)      | 0.000     | 0.000     |
| N2                    | Percent N2               | (%)      | 79.20     | 79.20     |
| MW                    | Molecular Weight         | lb/lb-m  | 28.47     | 28.52     |
| Filter Number         |                          |          | 186       | 222       |
| Wash Number           |                          |          | 3A        | 4A        |
| WG                    | Total Particulate Matter | (G)      | 0.0535000 | 0.0322000 |
| PF                    | Absolute Flue Pressure   | (in Hg)  | 29.26     | 29.46     |
| VW                    | Volume of Water Vapor    | SCF      | 2.25      | 2.08      |
| VMS                   | Volume of Metered Gas    | DSCF     | 48.39     | 48.33     |
| M                     | Moisture in Flue Gas     | (%)      | 4.44      | 4.13      |
| VG                    | Velocity of Flue Gas     | FPS      | 36.42     | 37.46     |
| VO                    | Volume of Flue Gas       | ACFM     | 61792     | 63546     |
| VOS                   | Volume of Flue Gas       | DSCFH    | 3227704   | 3410381   |
| VT                    | Volume of Flue Gas       | ACF      | 55.59     | 54.03     |
| WD                    | Dust Concentration       | lb/DSCF  | 0.0000024 | 0.0000015 |
| WH                    | Dust Concentration       | lb/hr    | 7.87      | 5.01      |
| WA                    | Dust Concentration       | grs/acf  | 0.0148547 | 0.0091986 |
| WS                    | Dust Concentration       | grs/dscf | 0.0170635 | 0.0102844 |
| I                     | Isokinetic Sampling      | (%)      | 105.33    | 99.55     |

B U R N S & M C D O N N E L L  
Engineers-Architects-Consultants  
DUST - Particulate Emissions Program  
Version 4.0 - 03/90

Test ID: SMC  
SCHUYLKILL METALS CORP.  
90-356-3  
PARTICULATE & METALS TESTS

Page 4  
Date 01/07/91  
Time 10:26:09

| Sample Identification     | 3         | 4         |
|---------------------------|-----------|-----------|
| Test Date                 | 11/11/90  | 11/12/90  |
| Filter Number             | 186       | 222       |
| Final Weight (G)          | 1.1130000 | 1.0966000 |
| Tare Weight (G)           | 1.0939000 | 1.0814000 |
| Wash Number               | 3A        | 4A        |
| Wash Residue              | 34.4000   | 17.0000   |
| Wash Volume               | 234.0000  | 260.0000  |
| Blank Residue             | 0.0000    | 0.0000    |
| Blank Volume              | 100.0000  | 100.0000  |
| Total Particulate Matter  | 0.0535000 | 0.0322000 |
| Liquid Collected          | 40.0000   | 37.0000   |
| Initial Silica Gel Weight | 200.0000  | 200.0000  |
| Final Silica Gel Weight   | 207.8000  | 207.2000  |
| Total Condensate          | 47.8000   | 44.2000   |

### Laboratory Results

#### Liquid Samples

| MDL                 |           |       | Run Number |      |      |      |
|---------------------|-----------|-------|------------|------|------|------|
| ug/l                | Parameter | Blank | 1          | 2    | 3    | 4    |
| 50 ug/l             | Arsenic   | ND    | ND         | ND   | ND   | ND   |
| 20 ug/l             | Lead      | ND    | 0.28       | 0.27 | 0.34 | 0.24 |
| 30 ug/l             | Antimony  | ND    | ND         | ND   | ND   | ND   |
| Liquid volumes (ml) |           | 200   | 565        | 545  | 665  | 520  |

#### Filter Samples

| MDL   |           |    |     |     |     |    |
|-------|-----------|----|-----|-----|-----|----|
| ug/kg | Parameter | ND | ND  | ND  | ND  | ND |
| 50 ug | Arsenic   | ND | ND  | ND  | ND  | ND |
| 20 ug | Lead      | ND | 7.1 | 7.6 | 5.4 | 55 |
| 30 ug | Antimony  | ND | ND  | ND  | ND  | ND |

To calculate mg per sample for the liquid; take the actual liquid sample volumes divided by 1000 and multiply by the laboratory results quantities shown as mg/liter. Run #1 for lead is shown below as an example.

$$.28 \text{ mg/liter} \times 565 \text{ ml}/1000 \text{ ml} = .1582 \text{ mg}$$

The following chart shows the calculated mg/sample for the liquid sample.

Run # (mg/liquid sample)

| Parameter | 1      | 2       | 3      | 4      |
|-----------|--------|---------|--------|--------|
| Arsenic   | 0      | 0       | 0      | 0      |
| Lead      | 0.1582 | 0.14715 | 0.2261 | 0.1248 |
| Antimony  | 0      | 0       | 0      | 0      |

All 3 of the metals analyzed for in the liquid blank were not detectable, therefore, no blanks are deducted from the liquid samples.

The following equation was used to calculate the total mg/filter for the sample filters for each of the 3 metals analyzed.

$$\frac{1.10 + \text{sample weight gain}}{1000} \times \text{mg/kg} = \text{mg/filter}$$

The blank filter weighed weighed 1.10 grams.

| Run # | Filter Weight Gain |
|-------|--------------------|
| 1     | 0.0045 grams       |
| 2     | 0.0073 grams       |
| 3     | 0.0191 grams       |
| 4     | 0.0152 grams       |

The 3 metals analyzed for in the filter blank were all nondetectable, therefore, no blanks need to be deducted from the filter samples.

The following chart shows the calculated results of the metals analysis for the sample filters in mg/filter.

|          | <u>Filter Samples</u> |            |            |          |
|----------|-----------------------|------------|------------|----------|
|          | <u>Run Number</u>     |            |            |          |
|          | <u>1</u>              | <u>2</u>   | <u>3</u>   | <u>4</u> |
| Arsenic  | 0.0                   | 0.0        | 0.0        | 0.0      |
| Lead     | 0.00784195            | 0.00841548 | 0.00604314 | 0.061336 |
| Antimony | 0.0                   | 0.0        | 0.0        | 0.0      |

The following chart represents the total milligrams of each metal analyzed, by adding the liquids and filters together.

|          | <u>Total Milligrams</u> |            |            |          |
|----------|-------------------------|------------|------------|----------|
|          | <u>Run Number</u>       |            |            |          |
|          | <u>1</u>                | <u>2</u>   | <u>3</u>   | <u>4</u> |
| Arsenic  | 0.0                     | 0.0        | 0.0        | 0.0      |
| Lead     | 0.16604195              | 0.15556548 | 0.23214314 | 0.186136 |
| Antimony | 0.0                     | 0.0        | 0.0        | 0.0      |

To convert this data into lbs per hour, the following conversions and equations are used.

To convert mg to grams (divide by 1000).

To convert grams to pounds: 1 pound = 453.6 grams  $1/453.6 = .002205$ .

Thus far we have mg/1000 x .002205 = pounds.

To calculate pounds per dry standard cubic feet simply divide pounds by the number of dry standard cubic feet sampled (from computer printout listed).

To calculate pounds per hour simply multiply pounds per dry standard cubic feet by the volume of flue gas corrected to dry standard cubic feet per hour (from computer printouts listed).

Run 1 for lead is shown as an example calculation:

$$(.16604195/1000) \times (.002205) \times 3,535,437 = .0273 \text{ lbs/hour} \quad 5.408 \text{ E-05 gr/dscf}$$

47.37

|          | <u>Run Number (lbs/hour)</u> |          |          |          |
|----------|------------------------------|----------|----------|----------|
|          | <u>1</u>                     | <u>2</u> | <u>3</u> | <u>4</u> |
| Arsenic  | 0.0                          | 0.0      | 0.0      | 0.0      |
| Lead     | 0.0273                       | 0.0246   | 0.0341   | 0.0289   |
| Antimony | 0.0                          | 0.0      | 0.0      | 0.0      |

gr/dscf

|          |                 |                 |                 |                 |
|----------|-----------------|-----------------|-----------------|-----------------|
| Arsenic  | <u>1</u><br>0.0 | <u>2</u><br>0.0 | <u>3</u><br>0.0 | <u>4</u><br>0.0 |
| Lead     | 5.40808E-05     | 5.23027E-05     | 7.401667E-05    | 5.94214E-05     |
| Antimony | 0.0             | 0.0             | 0.0             | 0.0             |

#### Summary of Test Results

The chart on the following page is a summary of the organics, benzene, toluene, and thiophene. As mentioned in the introduction, 2 VOST trains were utilized. In one of the trains, the samples were taken and given to the Environmental Protection Agency for analysis. The other VOST train samples were analyzed by Triangle Laboratories, Inc. at Research Triangle Park, N.C. The laboratory reports indicated that the levels of benzene, toluene, and thiophene were found to be higher than the 0.1 to 1.0 microgram calibration range of the analysis. These quantitation amounts listed on the summary sheets should to be considered minimum estimated amounts only. The case narrative report from Triangle Laboratory can be found in the Laboratory Reports section of this report.

There were 4 pairs of the 15 paired sorbent traps that were held out from being analyzed because the samples exceeded the calibration range of the Gas Chromatograph/Mass Spectrophotometer detector. It may be possible to analyze these 4 pairs of traps by utilizing another method different from the Method 5040 and Method 8240. We are awaiting a decision from the Missouri Department of Natural Resources to determine if these 4 pairs of samples should be analyzed. An addendum to the report will be forthcoming if this is deemed necessary.

## SUMMARY OF VOST TRAIN RESULTS

|       |          |         |         |         |
|-------|----------|---------|---------|---------|
| Blank | 113, 114 | .001 ug | .003 ug | .001 ug |
|-------|----------|---------|---------|---------|

### **III. Description of Tested Facility**

### III. Description of Facility Tested

The Canon Hollow secondary lead smelter plant, located near Forest City in Holt County, Missouri, is owned and operated by the Schuylkill Metals Corporation of Baton Rouge, Louisiana. The Canon Hollow Plant recycles, primarily, used automobile battery plates and other miscellaneous lead scrap.

There are three types of smelter furnaces at the Canon Hollow Plant. All were designed and constructed by the Schuylkill Metals Corporation. The three furnace types are blast, reverberatory and pot. There are seven furnaces total at this plant; one of each of the blast and reverberatory type and five of the pot type. The reverberatory furnace has not been operating for several months. The scrubber pot type furnace is used as a drossing kettle. Natural gas is consumed as the fuel in the reverberatory (when operated) and pot furnaces, while coke is the fuel for the blast furnaces. At this plant, the average monthly fuel consumption is 6100 MCF of natural gas and 600,000 pounds of coke.

The furnaces have rated capacities as follows:

5 tons per hour for the blast furnace,  
100 tons per batch for the pot furnaces;

while the normal production rates are:

4 tons per hour for the blast furnace,  
25 tons per hour for the pot furnace.

The Canon Hollow Plant operates continuously throughout the year with maintenance performed periodically and as required.

The exhaust from the blast furnace is run through a spark arrester section and then into one of the six-compartment baghouses designed and manufactured by the Air Pollution Control Division of Wheelabrator-Frye, Inc. The exhaust from the pot furnace and hygiene work area is run directly into the other six compartment baghouse.

Each baghouse is equipped with its induced draft fan to draw the exhaust gases through the baghouses. The blast furnace baghouse is equipped with a booster fan to improve the pressure drop of the scrubber. The exhaust gas enters the bags through the bottom and the particulate is separated from the gas and collected on the inside surfaces of the cloth filter bags. A timer automatically cycles the shut-down of each compartment for cleanup, using a sonic horn shaker mechanism. The baghouse system is described by Wheelabrator-Frye as two, continuous automatic dustube dust collectors, each containing six modules (compartments), size 1224, Model 171, series 55, suction type, each module containing 5,530 square feet of cloth area.

Each baghouse is designed to handle 40,000 acfm of 250°F, lead-dust-laden air having a gross air-to-cloth ratio of 1.5 (with all modules on-line) and a net ac ratio of 1.8 (with one module off-line).

Baghouse maintenance is performed daily and as required.

Sulfur Dioxide Emissions are monitored by a DuPont Continuous Emission Monitor System (CEMS).

A Flakt Lime Slurry SO<sub>2</sub> scrubber is utilized to Control Sulfur Dioxide Emissions.

\* \* \* \* \*