

Note: This is a reference cited in AP 42, *Compilation of Air Pollutant Emission Factors, Volume I Stationary Point and Area Sources*. AP42 is located on the EPA web site at www.epa.gov/ttn/chief/ap42/

The file name refers to the reference number, the AP42 chapter and section. The file name "ref02_c01s02.pdf" would mean the reference is from AP42 chapter 1 section 2. The reference may be from a previous version of the section and no longer cited. The primary source should always be checked.

AP42 Section:	13.4
Background Chapter Reference:	4 1
Title:	Cooling Tower Test Report, Typical Drift Test, Kansas City, Missouri, January 12, 1990. Midwest Research Institute (1990).

Z

Cooling Tower Test Report

Typical Drift Test

**On a 4-Cell, Mechanical-Draft,
Counter-Flow Cooling Tower**

**For the MRI Cooling Tower Test Group
Internal Drift Research and Development Program**

MRI Project No. 9150

January 12, 1990

Cooling Tower Test Report

Typical Drift Test

**On a 4-Cell, Mechanical-Draft,
Counter-Flow Cooling Tower**

**For the MRI Cooling Tower Test Group
Internal Drift Research and Development Program**

MRI Project No. 9150

January 12, 1990

PREFACE

This report was prepared by the MRI Cooling Tower Test Group to document a cooling tower drift test conducted as a part of an internal research and development program. Any contractual questions should be directed to Mr. Dennis Barger, Senior Contract Administrator. Any technical questions regarding this test should be directed to Mr. Nicholas M. Stich, Test Engineer or Mr. Thomas E. Weast, Senior Test Engineer at MRI.

MIDWEST RESEARCH INSTITUTE

Nicholas M. Stich
Test Engineer
Cooling Tower Test Group

Approved:

Chatten Cowherd, Director
Environmental Systems Department

January 12, 1990

SUMMARY

The Midwest Research Institute (MRI) Cooling Tower Test Group conducted a research and development drift test on one cell of a 4-cell, mechanical-draft, counter-flow cooling tower located at a typical plant.

Cooling tower drift is defined as the percent of circulating water flow which exits from the tower in the form of fine water droplets and aerosols entrained in the exhaust air. The drift from the tower was determined by isokinetically sampling a representative fraction of the tower airflow. The amount of droplets and aerosol leaving the stack was measured by a sampling train consisting of four impingers and a backup filter. The collection media were analyzed for impurities that had been dissolved or suspended in the recirculating water. Drift droplets contain the same impurities as the circulating water.

Inductively coupled argon plasma spectroscopy (ICP), an extremely sensitive detection technique, was then used to measure the concentrations of 32 trace constituents in the basin water and in the sample collected from the airflow exiting the fan stack. Two of the trace elements (Na and Mg) were found to be sufficiently concentrated for selection as representatives of the tower emissions. The drift rate was calculated from the ratio of the selected trace constituent in the isokinetic sampling train to the same trace constituent in the basin water.

The calculated drift rates for the cooling tower cell sampled were 0.00204% and 0.00278%, respectively, for the two tracers selected. When the results are averaged for both tracers, a drift rate of 0.00241% is obtained. The average drift rate for the cell sampled should be representative of the drift rate of the tower, since tower cell geometry and operation parameters were identical.

SECTION 1

INTRODUCTION

The Midwest Research Institute (MRI) Cooling Tower Test Group conducted a research and development drift test using modified EPA Method 13A on a mechanical-draft, counter-flow cooling tower. Modified EPA Method 13A is a test procedure to isokinetically sample stack exhaust emissions.

The cooling tower is a 4-cell tower located at a typical plant. Mr. Nicholas M. Stich and Mr. Thomas E. Weast of MRI performed the work. Portions of the test were observed by representatives of the manufacturer and owner of the cooling tower.

SECTION 2

DESCRIPTION OF TEST SITE

The cooling tower that was tested provides cooling water to process steam condensers. The cooling tower is located in an unobstructed area adjacent to the plant.

The cooling tower consists of four mechanical-draft, counter-flow cells in a continuous straight line with a common cold water basin beneath the tower. Each cell is equipped with a 28-ft diameter fan driven by an electric motor. Each fan has a 96-in diameter hub seal. The fan stacks were 324 in. in diameter at the sample plane location and constructed of fiberglass.

An underground steel conduit returns hot water from the plant to the cooling tower. The main line then tees off to feed individual cell risers. Pitot taps for water flow measurement were located in the riser lines.

The cold water from the cooling tower basin is collected in the pump forebay adjacent to the tower where two pumps are used to return cold water to the plant. A tap with a temporary standpipe was used for the collection of basin water samples.

SECTION 3

SAMPLING SEQUENCE

The test sequence for the drift test was as follows:

1. Water flow and fan horsepower were measured and the tower operations monitored.
2. Drift sample and airflow measurement locations were calculated.
3. A basin water sample was collected.
4. Drift from the selected fan stack was isokinetically sampled.
5. A second basin water sample was collected during the middle of the drift test.
6. Isokinetic drift sampling of the fan was completed.
7. A third basin sample was collected at the conclusion of the test. The three basin samples were composited into one basin water sample.
8. The drift samples were recovered from the sample collection system.
9. The basin composite, a water blank, and the drift impinger samples were each acid stabilized and transported to the laboratory for analysis.

SECTION 4

DRIFT TEST EQUIPMENT

SAMPLE LOCATION

Since drift consists of droplets or aerosols exiting the tower, the drift tests were conducted at the top of the fan stack. The proximity of the sample locations to the fan required that the station locations be adjusted for the hub effect. Sample locations were determined for 10-point radial traverses using the equation for equal annular areas for fan discharge from Chapter 5 of the CTI Manual.¹

AIR PITOT-DRIFT PROBE

Since cyclonic flow can affect the drift results, the sampling technique was adjusted to eliminate this bias. A special air pitot-drift probe assembly was developed by MRI to allow unbiased sampling. Airflow, fan discharge temperature, and the angle of cyclonic flow were measured with this probe assembly.

The "alignment approach"² was used to ensure isokinetic sampling. If the sample nozzle is oriented in the direction of the stack axis, but is not aligned with the airflow, the effective velocity through the nozzle opening is reduced by the cosine of the angle between the airflow and the stack axis. If the sample nozzle is aligned with the airflow, but is not oriented in the direction of the stack axis, the sample proportionality will be compromised. Isokinetic and proportional sampling needs were satisfied by orienting the sample probe to the direction of the airflow and by adjusting the nominal base sampling time by the cosine of the cyclonic flow angle.

The air pitot-drift probe assembly was equipped with:

1. S-type primary pitot tips which were connected to a manometer to measure air velocity.

¹Cooling Tower Institute, Cooling Tower Manual, Houston, Texas, 1983.

²Peeler, J.W.; Phoenix, F. J.; and Grove, D. J.; "Characterization of Cyclonic Flow and Analysis of Particulate Sampling Approaches at Asphalt Plants;" Published in Selected Papers on Particulate Sampling in Cyclonic Flow, for USEPA, Research Triangle Park, NC; by Entropy Environmentalists, Inc.; March 1980

2. Secondary pitot tips which were positioned at 90° from the primary pitot tips. The secondary set of pitot tips was connected to a separate manometer to align the probe and compensate for any cyclonic flow effects.
3. A temperature sensor that was connected to a digital readout for measurement of the stack temperature.
4. A protractor that was attached to the probe assembly to determine the angle that the probe was rotated during the cyclonic flow determination.
5. A stainless steel sample nozzle and flexible Teflon sample probe, which were connected to the drift collection train.

DRIFT COLLECTION TRAIN

The drift collection train consisted of four high-capacity impingers and a filter assembly. The first two impingers contained distilled water and were used to scrub out the aerosols and water droplets. The third impinger was used to collect any water droplets that might have been carried over from the previous impingers. The final collection media was a filter placed between the third impinger which was dry and the fourth impinger which contained silica gel. The sampling train was kept iced during testing to help reduce the water vapor pressure and to further improve collection efficiency.

CONTROL CONSOLE AND PUMP

The control console and pump were a High Volume Sampling System (HVSS) consistent with EPA Method 13A requirements. The impinger train was connected to the console via a sample line through the leak-free vacuum pump capable of up to 4 ft³/min. The modular vacuum pump has two control valves to adjust and maintain the desired sampling rate. The console contains a calibrated dry gas meter, digital temperature readout, manometers, and associated controls.

SECTION 5

DRIFT TEST METHODS

Testing was conducted during 1989. The tower circulating water flow was 101.5% of design, and the fan horsepower was 89.2% of design. The test data were acquired in accordance with applicable portions of the CTI ATC-105 (1982) test code and modified EPA Method 13A. The individual parameters were measured as follows:

- Total circulating water flow was measured with two 20-point traverses of the hot water return risers to the tower. A standard Simplex-Leopold type pitot tube was used to measure the velocity at each point. An air-over-water manometer was used for measuring the differential pressure between the impact and reference orifices of the pitot tube.
- Fan motor power was measured with a clamp-on digital-type kilowatt meter using the two-wattmeter method.
- Air velocity was measured with four 10-point radial traverses of the fan stack using the predetermined sampling locations. At each point, the MRI air pitot-drift probe assembly was rotated until the pressure difference across the secondary pitot tips was zero. When this zero differential was obtained, the primary probe was aligned with the flow and the protractor read to determine the cyclonic flow angle. The probe assembly was then used to measure the velocity pressure and temperature at the sample point.
- The isokinetic sampling rate and proportional sample test duration were determined from the previously determined velocity pressure, stack temperature, and cyclonic flow angle. A computer program calculated the required sample volume, isokinetic flow rate, and the adjusted base sample time.
- After the proper sampling rate was determined, sampling at each traverse location was commenced by turning on the sample pump and simultaneously activating the variable timer function of the Epson HX-20 computer. After each sample had been collected, the pump was shut off, the air pitot-probe assembly was relocated to the next sample location, and the above procedure repeated until all 40 points had been sampled.
- The impinger train was sealed and removed from the cooling tower to a sample recovery location where the sample recovery was performed.

The drift sample was recovered by using distilled deionized water to rinse the stainless steel nozzle and flexible Teflon probe into the contents of the first impinger. The impinger volumes and rinse volumes were measured and recorded. The impinger contents and all rinses were transferred to a sample bottle. A water blank was taken from the distilled deionized water supply used for the initial impinger volumes and rinses. Both the drift impinger samples and the water blank were nitric acid stabilized and then returned to MRI for further analysis.

- Basin water samples were taken at the beginning, the midpoint, and the conclusion of the drift sample test. The basin water samples were taken from a thermal well that was installed on the discharge side of the circulating water flow pump. The samples were collected after the thermal well line was purged. The three samples were collected and then combined into one composite basin water sample. The composite basin sample was stabilized with nitric acid in the same manner as the impinger and water blank samples. The composite basin water sample was returned to MRI for further analysis.

SECTION 6

SAMPLE ANALYSIS

The samples were returned to MRI where custody of the samples was transferred to the University of Missouri Environmental Trace Substances Research Center (ETSRC) for analysis. Quantitative analysis of selected trace elements in both the tower basin water samples and the collected drift samples was performed by using ICP. Method 3050 was used to prepare the drift and basin water samples for the analysis by Method 6010 as described below. The instrument used for the ICP analysis was a Jarrell-Ash Model 1100 Mark III with 40 analytical channels controlled by a Digital Equipment Company DEC 11/23+ computer system. The instrument was standardized with a series of seven standard solutions containing 36 elements. After the standardization, the detection limit was determined by taking 10 integrations of the zero standard. Three times the standard deviation of the mean was used as the final detection limit. The final detection limit for each element was further increased by 4% of the magnitude of the spectral interferences from the other elements present in the sample.

Instrument quality control samples were analyzed to check the ICP operation. If the values were acceptable, the samples were then analyzed. Standards were run every 10 to 15 samples to check for instrument drift. If the instrument drift was more than 5%, the instrument was restandardized. After the analyses were completed, the data were transferred to a Perkin-Elmer LMIS 2000 computer for calculation of the analytical results. The data were calculated using an ICP calculation program written by the ETSRC personnel to correct for blanks, standard drift, spectral interferences, sample weight, sample volume, and dilution. The data were then checked to correct for possible errors in sample number, weight, volumes, and dilution. After quality control was reviewed, the analysis report was delivered to MRI.

METHOD 3050

Method 3050 is an acid digestion procedure used to prepare sediments, sludges, and soil samples for analysis by flame or furnace atomic absorption spectroscopy (FLAA and GFAA, respectively) or by ICP.

A representative sample is digested in nitric acid and hydrogen peroxide. The digestate is then refluxed with either nitric acid or hydrochloric acid. Diluted hydrochloric acid is used as the final reflux acid for (1) the ICP analysis of As and Se and (2) the flame AA or ICP analysis of Al, Ba, Ca, Cd, Cr, Co, Cu, Fe, Mo, Pb, Ni, K, Na, Tl, V, and Zn. Diluted nitric acid is employed as the final dilution acid for the furnace AA analysis of As, Be, Cd, Cr, Co, Pb, Mo, Se, Tl, and V.

METHOD 6010

Method 6010 describes the procedures for ICP in determining elements including metals in solution. This method is applicable to a large number of metals and wastes. All matrices, including ground water, aqueous samples, EP extracts, industrial wastes, soils, sludges, sediments, and other solid wastes, require digestion prior to analysis.

ICP is used for the simultaneous or sequential, multielemental determination of elements by measuring the element-emitted light with optical spectrometry. Samples are nebulized, and the resulting emission spectra are produced by a radio-frequency inductively coupled plasma. The spectra are dispersed by a grating spectrometer, and the intensities of the lines are monitored by photomultiplier tubes. Background correction is required for trace element determination.

In direct aspiration atomic absorption spectroscopy, a sample is aspirated and atomized in a flame. A light beam from a hollow cathode lamp or an electrodeless discharge lamp is directed through the flame into a monochromator and onto a detector that measures the amount of absorbed light. Absorption depends upon the presence of free unexcited ground-state atoms in the flame. Because the wavelength of the light beam is characteristic of only the metal being determined, the light energy absorbed by the flame is a measure of the concentration of that metal in the sample. This principle is the basis of atomic absorption.

SECTION 7

RESULTS AND CONCLUSIONS

The following equation is used by the MRI drift computer program to calculate the drift results:

$$\% \text{ Drift} = 100 * (\text{NFA} / \text{NZA}) * [\text{NWT} / (\text{WFR} * \text{EQT} * \text{BTC})]$$

NFA = Net fan area (ft²)
NZA = Nozzle area (ft²)
NWT = Net weight of tracer in the sampling train (μg)
WFR = Water flow rate (g/min)
EQT = Equivalent sample time (240 min)
BTC = Basin tracer concentration (μg/g)

The table below summarizes the results of the laboratory analysis and drift calculations.

<u>Tracer analyzed</u>	<u>Tracer net wt. (μg)</u>	<u>Basin conc. (μg/g)</u>	<u>% Drift</u>
Mg	54.11	146.0	0.00204
Na	294.7	585.0	0.00278

The results of the research and development drift test conducted by the MRI Cooling Tower Test Group indicate that the cell tested had an average drift rate of 0.00241%. The drift rate of the cell tested should be representative of the average drift rate of the tower, since tower cell geometry and operation parameters were identical.

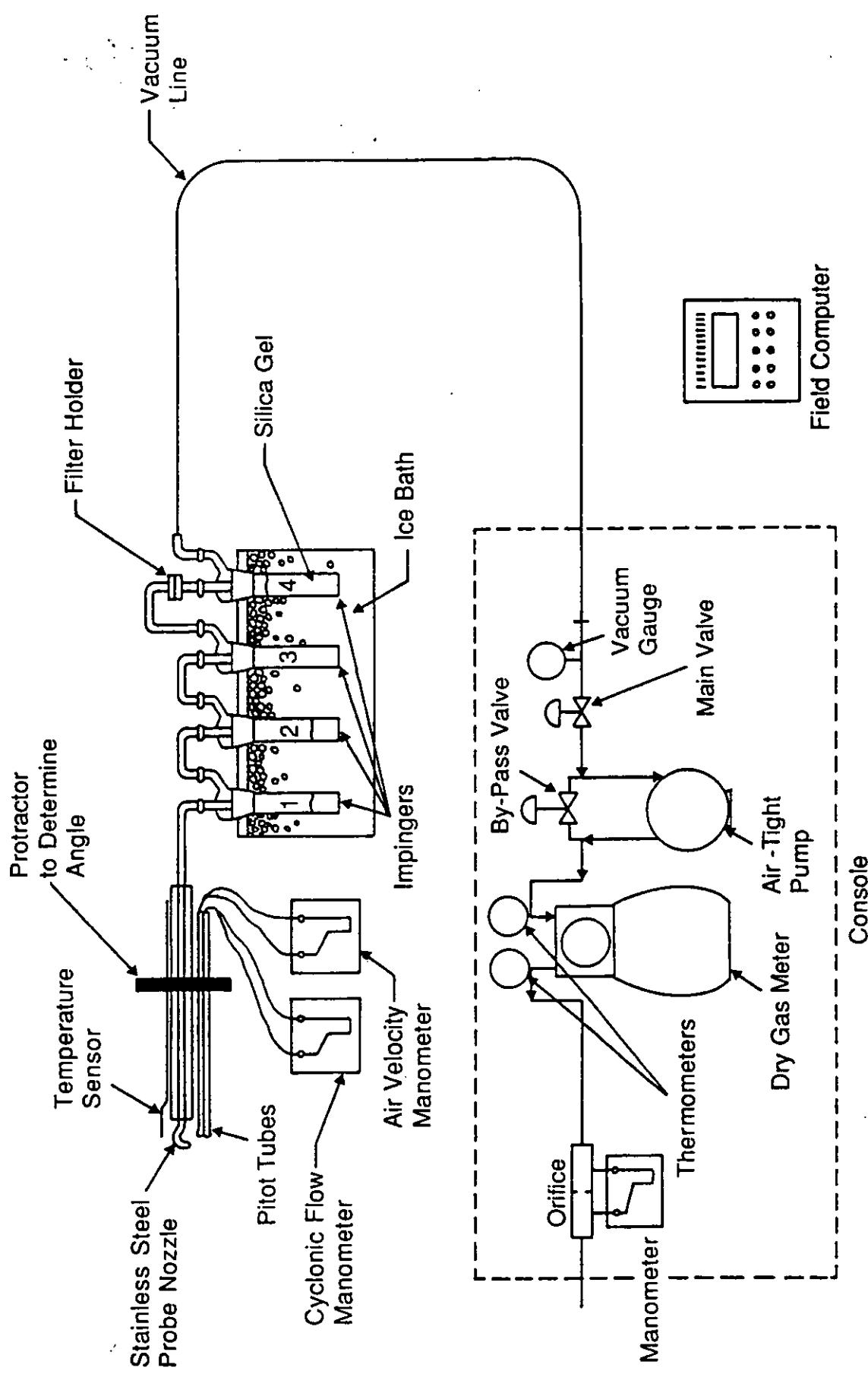


Figure 1. Typical draft collection train.

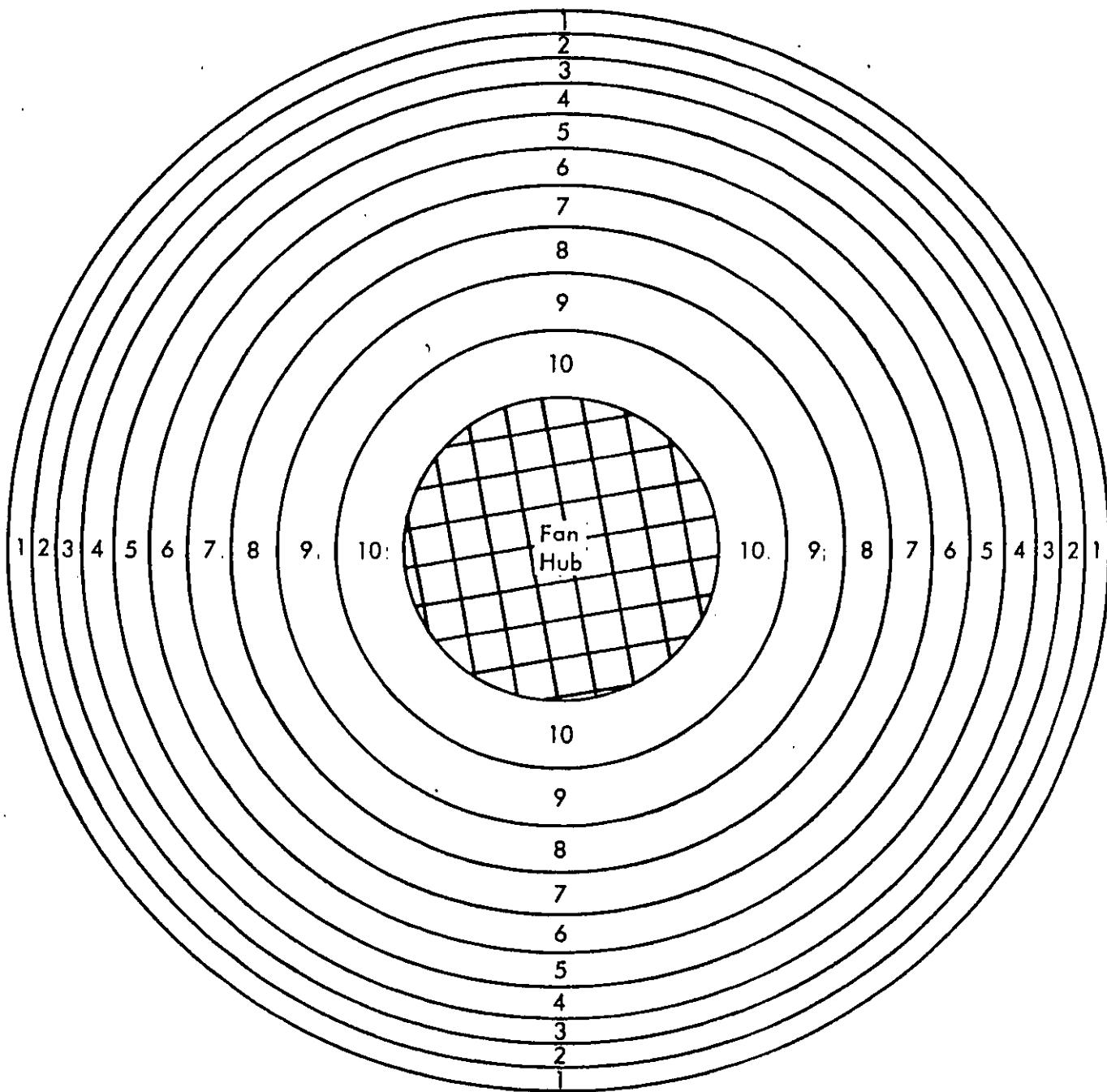


Figure 2 - Sampling Points were Located in the Center of Each of the Equal Area Zones. Numbers 1 to 10 indicate the distances from the fans inside wall to the respective sampling points.

APPENDIX A

SUMMARY OF RESULTS

RESEARCH AND DEVELOPMENT
DRIFT TEST
ON ONE CELL OF A
4-CELL, MECHANICAL-DRAFT, COUNTER-FLOW
COOLING TOWER

1989

FILE NAME : 11-26-1989
RUN # :
LOCATION : PROGRAM VER.
DATE : 04/26/89 V3.3
PROJECT # :

EQUIVALENT SAMPLING TIME (MINUTES)= 240
NOZZLE DIAMETER (SQUARE FEET)= 0.00106
NET FREE STACK AREA (SQUARE FEET)= 522.29
WATERFLOW RATE PER CELL (GPM)= 9,818.0
AIRFLOW RATE (POUNDS DRY AIR/MIN)= 48,299

----- DRIFT TEST RESULTS -----

TRACER ANALYZED	BASIN CONC. (mcg/g)	TRACER NET WT. (mcg)	DRIFT RATE 1/min	DRIFT % OF GPM	DRIFT % OF DRY AIR
Mg	146.0	54.11	0.8	0.00204	0.00347
Na	585.0	294.70	1.0	0.00278	0.00471
AVERAGE DRIFT ALL OF TRACERS			0.9	0.00241	0.00409

MIDWEST RESEARCH INSTITUTE
DRIFT DATA REDUCTION

Sample Volume	733	Rinse Volume	169	Filter Sample Volume	50
Water Blank Volume	419	Initial Water Vol.	250		

DESCRIPTION	MG	NA								
Basin Water (mcg/g)	146	585	0	0	0	0	0	0	0	0
Impinger (mcg/g)	.073	.4	0	0	0	0	0	0	0	0
Filter (mcg/g)	.032	.03	0	0	0	0	0	0	0	0
===== Water Blank (mcg/g)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Filter Blank (mcg)	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
===== CALCULATED VALUES										
Impinger Catch (mcg)	53.51	293.20	.00	.00	.00	.00	.00	.00	.00	.00
Filter (mcg)	1.60	1.50	.00	.00	.00	.00	.00	.00	.00	.00
Water Blank (mcg)	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
Filter Blank (mcg)	1.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
===== Net Sample (mcg)	54.11	294.70	.00	.00	.00	.00	.00	.00	.00	.00
===== =====										

MIDWEST RESEARCH INSTITUTE
SUMMARY SHEET

File #:

Location: Counter-Flow

Date: 1989

ELM	DETECTION LIMIT basin impinger	BASIN CONC.	IMPG. CONC.	RATIO BASIN vs LIMIT	RATIO IMP vs LIMIT	RATIO IMP vs BASIN	ELEMENT SELECT
AG	.01	.01	NA	NA	NA	NA	NA
AL	.02	.02	.26	NA	13	NA	NA
AS	.05	.05	NA	NA	NA	NA	NA
B	.03	.03	1.1	NA	37	NA	NA
BA	.0005	.0005	.102	.0007	204	1	NA
BE	.0007	.0006	NA	NA	NA	NA	NA
BI	.04	.04	NA	NA	NA	NA	NA
CA	.4	.2	308	.3	770	2	NA
CD	.006	.006	NA	NA	NA	NA	NA
CO	.01	.01	NA	NA	NA	NA	NA
CR	.02	.02	NA	NA	NA	NA	NA
CU	.003	.002	.493	.006	164	3	NA
FE	.009	.009	.7	.2	78	22	28.57
K	.2	.2	47.1	NA	236	NA	NA
W	.3	.3	NA	NA	NA	NA	NA
LI	.002	.002	.21	.027	105	14	12.86
MG	.03	.001	146	.073	4867	73	.05
MN	.006	.006	.01	.032	2	5	NA
MO	.007	.007	.059	NA	8	NA	NA
NA	1	.01	585	.4	585	40	.07
NI	.02	.02	NA	.31	NA	16	NA
P	.3	.3	2.6	NA	9	NA	NA
PB	.04	.04	NA	NA	NA	NA	NA
SB	.05	.04	.1	NA	2	NA	NA
SE	.1	.1	NA	NA	NA	NA	NA
SI	.02	.02	.16	.17	8	9	NA
SN	.1	.1	NA	NA	NA	NA	NA
SR	.003	.003	3.25	.003	1083	1	NA
TI	.002	.002	.01	.006	5	3	NA
TL	.04	.04	NA	NA	NA	NA	NA
V	.01	.01	NA	NA	NA	NA	NA
ZN	.006	.006	.36	.53	60	88	NA
Elements Eliminated					COUNT	4	3
FE Data to date has shown these ZN elements to be inconsistent					SUM	41.55	12.98
					AVG	10.39	4.33
					STD	11.73	6.03
					U-BOUND	22.11	10.36
					L-BOUND	-1.34	-1.71

FILE NAME : 11-26-1989
 RUN # : PROGRAM VER.
 LOCATION : 04/26/89 V3.3
 DATE :
 PROJECT # :

INITIAL METER VOLUME (CUBIC FEET)= 372.000
 FINAL METER VOLUME (CUBIC FEET)= 740.200
 METER FACTOR= 0.9869
 FINAL LEAK RATE (CU FT/MIN)= 0.010

NET METER VOLUME (CUBIC FEET)= 363.377
 GAS VOLUME (DRY STANDARD CUBIC FEET)= 317.199

BAROMETRIC PRESSURE (IN. HG)= 28.25
 STATIC PRESSURE (INCHES H2O)= 0.00

PERCENT OXYGEN= 20.9
 PERCENT CARBON DIOXIDE= 0.0
 MOISTURE COLLECTED (ML)= 0.0
 PERCENT WATER= 5.8

DRY MOLECULAR WEIGHT= 28.84
 WET MOLECULAR WEIGHT= 28.20

AVERAGE METER TEMPERATURE (F.)= 113.2
 AVERAGE DELTA H (IN. H2O)= 1.57
 WEIGHTED SUM of SQR DELTA P (for % ISOKINETIC)= 0.4732

% ISOKINETIC= 101.0

AVERAGE STACK TEMPERATURE (F.)= 94.8
 AVG. SUM of COS ANGLE = 0.8576
 AVG. SUM of SQR DELTA P * COS of ANGLE (IN. H2O)= 0.4058
 PITOT COEFFICIENT= 0.84
 SAMPLING TIME (MINUTES)= 205.4
 NOZZLE DIAMETER (INCHES)= 0.4413

STACK AXIS (INCHES)= 324.0
 HUB AXIS (INCHES)= 96.0
 CIRCULAR STACK
 NET FREE STACK AREA (SQUARE FEET)= 522.29

STACK VELOCITY (ACTUAL, FEET/MIN)= 1,459
 FLOW RATE (ACTUAL, CUBIC FT/MIN)= 761,935
 FLOW RATE (STANDARD, WET, CUBIC FT/MIN)= 684,717
 FLOW RATE (STANDARD, DRY, CUBIC FT/MIN)= 644,776

SPECIFIC VOLUME @ STACK (CUBIC FT MIX/LB DRY AIR) 15.7752

AIRFLOW RATE (POUNDS DRY AIR/MIN)= 48,299

FILE NAME : 11-26-1989
 RUN # : PROGRAM VER.
 LOCATION : 04/26/89 V3.3
 DATE :
 PROJECT # :

* * METRIC UNITS * *

INITIAL METER VOLUME (CUBIC METERS)=	10.534
FINAL METER VOLUME (CUBIC METERS)=	20.960
METER FACTOR=	0.9869
FINAL LEAK RATE (CU M/MIN)=	0.0003
NET METER VOLUME (CUBIC METERS)=	10.289
GAS VOLUME (DRY STANDARD CUBIC METERS)=	8.982
BAROMETRIC PRESSURE (MM HG)=	718
STATIC PRESSURE (MM H2O)=	0
PERCENT OXYGEN=	20.9
PERCENT CARBON DIOXIDE=	0.0
MOISTURE COLLECTED (ML)=	0.0
PERCENT WATER=	5.8
DRY MOLECULAR WEIGHT=	28.84
WET MOLECULAR WEIGHT=	28.20
AVERAGE METER TEMPERATURE (C.)=	45.1
AVERAGE DELTA H (MM H2O)=	39.9
WEIGHTED SUM of SQR DELTA P (for % ISOKINETIC)=	2.38
% ISOKINETIC=	101.0
AVERAGE STACK TEMPERATURE (C.)=	34.9
AVG. SUM of SQR DELTA P * COS of ANGLE (MM H2O)=	2.05
PITOT COEFFICIENT=	0.84
SAMPLING TIME (MINUTES)=	205.4
NOZZLE DIAMETER (MM)=	11.21
STACK AXIS #1 (METERS)=	8.230
STACK AXIS #2 (METERS)=	2.438
CIRCULAR STACK	
STACK AREA (SQUARE METERS)=	48.522
STACK VELOCITY (ACTUAL, M/MIN)=	445
FLOW RATE (ACTUAL, CUBIC M/MIN)=	21,576
FLOW RATE (STANDARD, WET, CUBIC M/MIN)=	19,389
FLOW RATE (STANDARD, DRY, CUBIC M/MIN)=	18,258

FILE NAME :
RUN # :
LOCATION :
DATE :
PROJECT # :

11-26-1989
PROGRAM VER.
04/26/89 V3.3

POINT #	DELTA P (IN. H2O)	DELTA H (IN. H2O)	STACK T (F.)	METER T. IN(F.)	METER T. OUT(F.)	ANGLE (DEG)
1	0.021	0.150	90	111	111	55
2	0.050	0.350	90	112	111	50
3	0.100	0.700	84	112	111	25
4	0.090	0.650	79	113	112	10
5	0.150	1.000	78	112	111	7
6	0.230	1.600	78	112	111	22
7	0.210	1.500	78	111	110	18
8	0.240	1.700	79	110	109	20
9	0.200	1.400	81	109	107	25
10	0.140	1.000	83	108	106	40
11	0.140	1.000	96	104	103	40
12	0.150	1.000	97	104	104	32
13	0.180	1.200	97	104	104	25
14	0.230	1.600	97	105	104	15
15	0.300	2.000	96	105	104	7
16	0.310	2.100	98	101	101	10
17	0.420	2.900	99	114	114	10
18	0.390	2.700	99	116	115	22
19	0.260	1.800	100	117	116	32
20	0.210	1.700	99	117	116	60
21	0.140	1.000	99	115	115	50
22	0.180	1.200	100	117	116	32
23	0.120	0.800	100	119	117	30
24	0.210	1.500	99	118	117	15
25	0.350	2.400	100	120	118	10
26	0.360	2.500	100	122	120	10
27	0.390	2.700	98	123	121	10
28	0.370	2.600	99	127	123	22
29	0.250	1.800	100	129	125	28
30	0.240	1.700	101	129	126	40
31	0.050	0.350	105	114	113	65
32	0.150	1.000	101	113	114	40
33	0.160	1.100	102	112	113	35
34	0.240	1.600	100	112	112	30
35	0.280	1.900	99	112	112	23
36	0.260	1.800	99	113	112	25
37	0.380	2.600	97	114	112	25
38	0.370	2.500	98	114	112	20
39	0.310	2.100	97	116	114	28
40	0.240	1.700	98	115	114	45

APPENDIX B

FIELD DATA SHEETS

RESEARCH AND DEVELOPMENT
DRIFT TEST
ON ONE CELL OF A
4-CELL, MECHANICAL-DRAFT, COUNTER-FLOW
COOLING TOWER

1989

MIDWEST RESEARCH INSTITUTE

Run Number 1

Project Number

Date

Plant

Sampling
Location

FIELD CREW

Crew Chief T. West

Testing Engineer N. Stich

Assistant Testing
Engineer

Process Engineer

Other

DRIFT SAMPLE LOCATIONS

Station #	Distance (inches)
1	<u>3 3/4</u>
2	<u>11 1/2</u>
3	<u>19 5/8</u>
4	<u>28 3/8</u>
5	<u>37 5/8</u>
6	<u>47 5/8</u>
7	<u>58 5/8</u>
8	<u>71</u>
9	<u>85 1/4</u>
10	<u>102 7/8</u>

FIELD DATA

PROJECT NO. 1 PROBE NO. Drift NOZZLE DA. 4413
 PLANT RED PROBE LENGTH AND TYPE 12 ft. 0 in. ASSUMED MOISTURE % 5%
 DATE 10/14/86 METER AH @ 293
 METER BOX NO. Drift METER CORRECTION 0.9869
 SAMPLING LOCATION Drift PIOT NO. Drift
 SAMPLE TYPE Stitch / WEST PIOT COEFFICIENT 0.84
 FILTER NO. Drift THERMOCOUPLE I.D. NO. — BAROMETRIC PRESSURE 28.25
 RECORD DATA EVERY Var UMBILICAL CORD I.D. NO. — SITE TO BARO. ELEVATION (ft.) 0
 UMBILICAL SAMPLER HOOKUP Drift CORRECTED B.P. (0.1 h. / 100 ft.) 28.25
 NOZZLE NO. 7-1 STATIC PRESSURE —

PILOT LEAK CHECK $\geq 30^{\prime\prime}$ H₂O

INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL

TIME (24 hr)
PASS/FAIL

PILOT LEAK CHECK $\geq 30^{\prime\prime}$ H₂O

INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL

TIME (24 hr)
PASS/FAIL

SAMPLE TRAIN LEAK CHECKS

	INITIAL	FINAL	INITIAL	FINAL	INITIAL
TIME (24 hr)	10:00	19:35			
VACUUM, in. Hg.	$\geq 15^{\prime\prime}$	10 $^{\prime\prime}$	$\geq 15^{\prime\prime}$		$\geq 15^{\prime\prime}$
CFM					
VOLUMES					
FINAL					
INITIAL					
DIFFERENCE					

Background OG 11
Start. 1020.41
Stop. 1020.41
Total Sample Time 529.2 min
Start. 887.00 Stop. 1020.41

SAMPLE TRAIN LEAK CHECKS

	INITIAL	FINAL	INITIAL	FINAL	INITIAL
TIME (24 hr)					
VACUUM, in. Hg.		$\geq 15^{\prime\prime}$			$\geq 15^{\prime\prime}$
CFM					
VOLUMES					
FINAL					
INITIAL					
DIFFERENCE					

COMMENTS

INITIAL VOLUME _____
 FINAL VOLUME _____
 LEAK CHECK VOLUME _____
 ADJUSTED FINAL VOLUME _____

RUN NO.
DATE

SAMPLING LOCATION
PROJECT NO.

P. 1 of 2
OPERATOR STICK STUFF
R90

COMMENTS

✓ Roasted Compost 5652 Sample T128

RUN NO. / DATE / SAMPLING LOCATION / PROJECT NO.

P. 2 of 2
OPERATOR: Stanley L. Lewis

TRAVERSE POINT NUMBER	CLOCK TIME (24-hr.)	GAS METER READING (V _a), <u>1345.555</u>		VELOCITY HEAD (ΔP ₁₂), in H ₂ O	ORIFICE PRESSURE DIFFERENTIAL (ΔH), in H ₂ O	STACK TEMP. (T _s), °F	DRY GAS METER TEMPERATURE		PUMP VAC., in Hg	IMPIINGER TEMP., °F	SAMPLE TEMP., °F	PROBE BOX TEMP., °F	FILTER TEMP., °F	A 2945 L
		INITIAL	DESIRED				ACTUAL	DESIRED						
W-1 1402	16:38	550.99	551.05	.14	.96	1.0	99	115	11.5	5	—	—	—	—
W-2 1707		559.16	559.15	.18	1.2	1.2	100	117	11.6	5	—	—	—	—
W-3 305		565.84	565.91	.12	.682	.8	100	119	11.7	4	—	—	—	—
W-4 652		575.90	575.98	.21	1.44	1.5	99	118	11.7	6	—	—	—	—
W-5 1006		589.17	589.20	.035	.24	.24	100	120	11.8	7	—	—	—	—
W-6 1340		602.67	602.65	.036	2.5	2.5	100	122	12.0	8	—	—	—	—
W-7 1714		616.78	616.70	.39	2.7	2.7	98	123	12.1	9	—	—	—	—
W-8 2047		629.75	629.71	.37	2.6	2.6	99	127	12.3	9	—	—	—	—
W-9 2344		639.93	639.95	.25	1.76	1.8	100	129	12.5	6	—	—	—	—
W-10 2639	1748	648.95	648.65	.24	1.67	1.7	101	129	12.6	6	—	—	—	—
		PORT Change												
S-1 2791	18:17	650.71	650.72	.05	.34	.35	105	114	11.3	3	—	—	—	65
S-2 3066		652.39	652.38	.15	1.0	1.0	101	113	11.4	4	—	—	—	40
S-3 3360		664.74	664.78	.16	1.9	1.9	102	112	11.3	5	—	—	—	35
S-4 3671		674.28	674.31	.24	1.6	1.6	100	112	11.2	6	—	—	—	30
S-5 4002		685.35	685.21	.28	1.9	1.9	99	112	11.2	7	—	—	—	23
S-6 4338		695.68	695.68	.26	1.8	1.8	99	113	11.2	7	—	—	—	25
S-7 4654		708.31	708.33	.38	2.6	2.6	97	114	11.2	8	—	—	—	25
S-8 4992		721.23	721.19	.37	2.5	2.5	98	114	11.2	9	—	—	—	20
S-9 5309		732.35	732.31	.31	2.1	2.1	97	114	11.4	7	—	—	—	28
S-10 5563	19:20	740.20	740.10	.24	1.7	1.7	98	115	11.4	6	—	—	—	45

COMMENTS

* Restated Compt. T3711 Smudg. Thr. 5052 + 1707

Total Sample Time 5052 1707

5563

12322

SECONDS

on 205.37 minutes

0.4.04

MIDWEST RESEARCH INSTITUTE
 Cooling Tower Test Group
 Drift Recovery Sheet

Project #: _____ Date : _____

Location : _____ Run # : _____ / _____

	1st Imp.	2nd Imp.	3rd Imp.	Silica Gel
Initial Volume	<u>150</u>	<u>100</u>	<u>Dry</u>	<u>—</u>

Final Volume	<u>910.5</u>	<u>785.5</u>	<u>678.9</u>	<u>653.2</u>
Initial Volume	<u>745.0</u>	<u>689.5</u>	<u>626.4</u>	<u>627.9</u>
Difference	<u>165.5</u>	<u>96.0</u>	<u>52.5</u>	<u>25.3</u>

Liquid Weight Gain	<u>314</u>
Silica Gel Wt. Gain	<u>25.3</u>
Total Weight Gain	<u>339.3</u>

Total Sample Volume (including all rinses)	<u>733</u>
Initial Impinger Volume	<u>250</u>
Liquid Weight Gain	<u>314</u>
Sample Rinse Volume	<u>169</u>

MIDWEST RESEARCH INSTITUTE

FILE NO.: _____

DATA SHEET "C"

TEST DATE: _____

MEAS. OF								UNIT
FAN DRIVER INPUT HORSEPOWER								HP
INSTRUMENT IDENTIFICATION								DATE CALIBR.
TIME. START								END
FAN NO.	VOLTS	AMPS	P.F.	KW ₁	KW ₂	KWT	MOTOR EFF	HP
1-1	470	90.6		43.2	22.3	655	.95	83.41
	470	89.9						
1-2	470	85.9		41.6	20.9	62.5	.95	79.59
	470	87.6						
1-3	470	87.6		41.7	21.2	62.9	.95	80.10
	470	89.1						
1-4	471	85.9		41.6	20.6	62.2	.95	79.20
	471	86.8						
Ave		87.92				63.28	.95	80.58
Loss						,58		,74
TEST AVERAGE INPUT HP								79.84

MEAS. OF								UNIT
INSTRUMENT IDENTIFICATION								DATE CALIBR.
TIME								WIND, MPH
WIND DIREC.								
TEST AVERAGE:								

MEAS. OF:				UNIT
INSTRUMENT IDENTIFICATION				DATE CALIBR.
INSTRUMENT IDENTIFICATION				DATE CALIBR.
RUN	TIME		MAKEY STAB.	
1	12:00		OFF	
2	1405		ON	
3	1505		OFF	
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
TEST AVERAGE				

MEAS. OF:				UNIT
INSTRUMENT IDENTIFICATION				DATE CALIBR.
INSTRUMENT IDENTIFICATION				DATE CALIBR.
RUN	TIME			
1			WIRE SPZ 2/0	
2				
3			WIRE Length ≥ 300	
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
TEST AVERAGE:				

MIDWEST RESEARCH INSTITUTE

FILE NO.: _____

DATA SHEET "E" WATER FLOW MEASUREMENT

TEST DATE: _____

PITOT TUBE

PITOT TUBE MAKE, MODEL		SERIAL NO.	PIPE SIZE, INCHES
Simplex		MRI 8842	NOM = 30 I.D. = 29 1/4
DATE CALIBR. May 88	TUBE COEFFICIENT c = .7948	AREA = .00545 ID ² . SQ FT A = 4,6664	

PIPE I.D. RDG NO.	IN. DIA. X	LOCATION		STA. DESC. 29 1/2 E	TIME d. in.	STA. DESC. 29 1/2 S	TIME d. in.	STA. DESC. 29 1/2 E	TIME d. in.				
		RDG NO.	IN. DIA. X										
			DECIMAL INCHES 29.5	29 -									
1	.013			.373	3.67	21 -		20 1/2	.368 26 1/2 22 1/4				
2	.039			1.151	1.132	22 1/2		23 -	1.134 28 1/4 24 3/4				
3	.087			1.976	1.943	23 -		24 -	1.95 30 1/2 25 1/2				
4	.097			2.858	2.810	23 1/2		24 1/2	2.85 31 1/2 27 -				
5	.129			3.811	3.747	22 1/2		25 -	3.755 31 1/2 28 1/4				
6	.165	1	.028	4.855	4.773	23 -		25 -	4.783 32 - 29 1/4				
7	.204	2	.082	6.024	5.922	23 1/2		25 -	5.934 32 1/4 29 3/4				
8	.250	3	.146	7.375	7.250	23 -		25 -	7.266 32 - 30 -				
9	.306	4	.226	9.037	8.884	23 1/2		24 1/2	8.903 33 - 30 -				
10	.388	5	.342	11.452	11.258	24 -		24 1/2	11.282 32 1/2 30 -				
11	.612	6	.658	18.048	17.742	27 1/2		24 1/2	17.78 30 1/2 30 -				
12	.694	7	.774	20.463	20.116	28 1/2		26 -	20.159 29 1/4 29 -				
13	.750	8	.854	22.125	21.750	28 1/2		27 -	21.79 29 1/2 28 1/2				
14	.796	9	.918	23.476	23.078	28 1/2		27 -	23.118 28 - 27 1/2				
15	.835	10	.974	24.645	24.227	28 -		26 -	24.599 27 1/2 26 1/4				
16	.871			25.689	25.253	27 1/2		26 -	25.388 26 1/4 26 -				
17	.903			26.642	26.190	25 1/2		25 1/2	26.247 24 3/4 25 1/2				
18	.933			27.524	27.057	24 -		24 -	27.116 23 - 23 -				
19	.961			28.349	27.868	22 -		22 1/2	27.958 20 1/2 21 1/2				
20	.987			29.127	28.633	19 1/2		22 -	28.693 19 1/4 20 1/2				

RDG NO	TIME	d
A		
B	-	
C		

TOTAL	98.749	TOTAL	99.093	TOTAL	100.402	TOTAL	103.725
AVG	4,9375	AVG	4,9547	AVG	5,3201	AVG	5,1612
TRAVERSE AVG	4.9461	TRAVERSE AVG	4.9461	TRAVERSE AVG	5.2407	TRAVERSE AVG	5.2407

$$Q_{gpm} = \sqrt{d} (1040 \times C \times A) = \sqrt{d} (3857.2)$$

US GPM 19078 US GPM 20214

BASIS: AIR/WATER MANOMETER

$$Total = 392.92 \text{ gpm}$$

* CALCULATED VALUE DECREASED BY DISTANCE FROM END OF PITOT TUBE TO CENTER LINE OF IMPACT HOLE.

981.8 gpm
AVG/CELL

APPENDIX C
LABORATORY ANALYSIS

RESEARCH AND DEVELOPMENT
DRIFT TEST
ON ONE CELL OF A
4-CELL, MECHANICAL-DRAFT, COUNTER-FLOW
COOLING TOWER

1989

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report
Project: MIDWEST RESEARCH INST. Units: MCG
Batch #:

Customer ID: BACKGROUND BLANK FILTER

Description: FILTER

ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.5	0.5
AL : 614.	1.
AS : 12.	2.
B : 1140.	1.
BA : 1620.	0.02
BE : <0.02	0.02
BI : <2.	2.
CA : 790.	8.
CD : <0.2	0.2
CO : <0.5	0.5
CR : 0.9	0.8
CU : 0.39	0.1
FE : 17.	0.5
K : 900.	10.
W : 140.	10.
LI : 0.59	0.03
MG : 121.	0.03
MN : 0.53	0.1
MO : 0.3	0.3
NA : 3320.	0.5
NI : <2.	2.
P : <7.	7.
PB : 5.	2.
SB : <2.	2.
SE : <3.	3.
SI : 18.	0.8
SN : <3.	3.
SR : 21.7	0.06
TI : 0.3	0.1
TL : <2.	2.
V : <0.5	0.5
ZN : 1100.	0.1

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report
Project: MIDWEST RESEARCH INST. Units: MCG
Batch #:

Customer ID: FILTER BLANK 13A
Description: FILTER
ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.5	0.5
AL : 2.	1.
AS : <2.	2.
B : 2.	1.
BA : 0.093	0.02
BE : <0.02	0.02
BI : <2.	2.
CA : <8.	8.
CD : <0.2	0.2
CO : <0.5	0.5
CR : <0.8	0.8
CU : <0.1	0.1
FE : <0.5	0.5
K : <10.	10.
W : <10.	10.
LI : <0.03	0.03
MG : 1.0	0.02
MN : <0.1	0.1
MO : <0.3	0.3
NA : <0.5	0.5
NI : <2.	2.
P : <7.	7.
PB : <2.	2.
SB : <2.	2.
SE : <3.	3.
SI : 7.5	0.8
SN : <3.	3.
SR : <0.06	0.06
TI : 0.2	0.1
TL : <2.	2.
V : <0.5	0.5
ZN : 0.3	0.1

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report
Project: MIDWEST RESEARCH INST. Units: MCG
Batch #:

Customer ID: TEST FILTER BACKGROUND
Description: FILTER
ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.5	0.5
AL : 602.	1.
AS : <2.	2.
B : 1110.	1.
BA : 1590.	0.02
BE : <0.02	0.02
BI : <2.	2.
CA : 760.	8.
CD : <0.2	0.2
CO : <0.5	0.5
CR : <0.8	0.8
CU : 0.73	0.1
FE : 15.	0.5
K : 850.	10.
W : 140.	10.
LI : 0.58	0.03
MG : 117.	0.02
MN : 0.47	0.1
MO : <0.3	0.3
NA : 3220.	0.5
NI : <2.	2.
P : <7.	7.
PB : <2.	2.
SB : <2.	2.
SE : <3.	3.
SI : 29.	0.8
SN : <3.	3.
SR : 21.3	0.06
TI : 0.2	0.1
TL : <2.	2.
V : <0.5	0.5
ZN : 1050.	0.1

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report
Project: MIDWEST RESEARCH INST. Units: MCG
Batch #:

Customer ID: TEST FILTER 13A

Description: FILTER

ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.5	0.5
AL : 2.	1.
AS : <2.	2.
B : 5.7	1.
BA : 0.21	0.02
BE : <0.02	0.02
BI : <2.	2.
CA : 9.	8.
CD : <0.2	0.2
CO : <0.5	0.5
CR : <0.8	0.8
CU : <0.1	0.1
FE : 1.	0.5
K : <10.	10.
W : <10.	10.
LI : <0.03	0.03
MG : 1.6	0.02
MN : <0.1	0.1
MO : <0.3	0.3
NA : 1.5	0.5
NI : <2.	2.
P : <7.	7.
PB : <2.	2.
SB : <2.	2.
SE : <3.	3.
SI : 6.0	0.8
SN : <3.	3.
SR : <0.06	0.06
TI : <0.1	0.1
TL : <2.	2.
V : <0.5	0.5
ZN : 1.2	0.1

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report

Project: MRI

Units: MCG/ML

Batch #:

Customer ID: MILL Q H20 BLANK CLARK

Description: WATER

ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.01	0.01
AL : <0.02	0.02
AS : <0.05	0.05
B : <0.03	0.03
BA : <0.0005	0.0005
BE : <0.0006	0.0006
BI : <0.04	0.04
CA : <0.2	0.2
CD : <0.006	0.006
CO : <0.01	0.01
CR : <0.02	0.02
CU : <0.002	0.002
FE : <0.009	0.009
K : <0.2	0.2
W : <0.3	0.3
LI : <0.002	0.002
MG : <0.001	0.001
MN : <0.006	0.006
MO : <0.007	0.007
NA : <0.01	0.01
NI : <0.02	0.02
P : <0.3	0.3
PB : <0.04	0.04
SB : <0.04	0.04
SE : <0.1	0.1
SI : 0.24	0.02
SN : <0.1	0.1
SR : <0.003	0.003
TI : <0.002	0.002
TL : <0.04	0.04
V : <0.01	0.01
ZN : <0.006	0.006

Quality Control Report
 Environmental Trace Substances Research Center
 ICP Scan - Blind QC Report

Project: MRI

Units: MCG/ML

Batch #:

Customer ID: ERA9911TM
 Description: WATER-TRACE METALS
 ETSRC ID:

Elm :	Result	Expected Value	+/- STD.DEV.	Estimated Sample Detection Limit
AG :	0.04	0.044	0.009	0.02
AL :	0.1	0.176	0.035	0.04
AS :	<0.1	0.026	0.005	0.1
B :	0.23	0.290	0.058	0.07
BA :	0.149	0.108	0.022	0.001
BE :	0.069	0.068	0.014	0.001
BI :	<0.09			0.09
CA :	10.			0.3
CD :	0.073	0.094	0.019	0.01
CO :	0.14	0.172	0.034	0.02
CR :	0.17	0.185	0.037	0.04
CU :	0.11	0.139	0.028	0.005
FE :	0.34	0.231	0.046	0.02
K :	0.7			0.5
W :	<0.7			0.7
LI :	0.17			0.004
MG :	2.25			0.002
MN :	0.25	0.130	0.026	0.01
MO :	0.18	0.202	0.040	0.01
NA :	6.52			0.02
NI :	0.30	0.343	0.069	0.03
P :	<0.7			0.7
PB :	0.1	0.139	0.028	0.08
SB :	<0.09	0.032	0.006	0.09
SE :	<0.2	0.042	0.008	0.2
SI :	0.32			0.03
SN :	<0.2			0.2
SR :	0.092			0.006
TI :	0.059	0.068	0.014	0.004
TL :	<0.08	0.046	0.009	0.08
V :	0.14	0.179	0.036	0.02
ZN :	0.13	0.175	0.035	0.01

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report

Project: MRI

Units: MCG/ML

Batch #:

Customer ID: CLARK 1 DRIFT BASIN SMPL

Description: WATER

ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.01	0.01
AL : 0.26	0.02
AS : <0.05	0.05
B : 1.1	0.03
BA : 0.102	0.0005
BE : <0.0007	0.0007
BI : <0.04	0.04
CA : 308.	0.4
CD : <0.006	0.006
CO : <0.01	0.01
CR : <0.02	0.02
CU : 0.493	0.003
FE : 0.70	0.009
K : 47.1	0.2
W : <0.3	0.3
LI : 0.210	0.002
MG : 146.	0.03
MN : 0.01	0.006
MO : 0.059	0.007
NA : 585.	1.
NI : <0.02	0.02
P : 2.6	0.3
PB : <0.04	0.04
SB : 0.1	0.05
SE : <0.1	0.1
SI : 0.16	0.02
SN : <0.1	0.1
SR : 3.25	0.003
TI : 0.010	0.002
TL : <0.04	0.04
V : <0.01	0.01
ZN : 0.36	0.006

Environmental Trace Substances Research Center
ICP Scan - Sample Analysis Report

Project: MRI

Units: MCG/ML

Batch #:

Customer ID: DRIFT IMPINGERS & RINSES

Description: WATER

ETSRC ID:

Elm : Result	Estimated Sample Detection Limit
AG : <0.01	0.01
AL : <0.02	0.02
AS : <0.05	0.05
B : <0.03	0.03
BA : 0.0007	0.0005
BE : <0.0006	0.0006
BI : <0.04	0.04
CA : 0.3	0.2
CD : <0.006	0.006
CO : <0.01	0.01
CR : <0.02	0.02
CU : 0.006	0.002
FE : 0.20	0.009
K : <0.2	0.2
W : <0.3	0.3
LI : 0.027	0.002
MG : 0.073	0.001
MN : 0.032	0.006
MO : <0.007	0.007
NA : 0.40	0.01
NI : 0.31	0.02
P : <0.3	0.3
PB : <0.04	0.04
SB : <0.04	0.04
SE : <0.1	0.1
SI : 0.17	0.02
SN : <0.1	0.1
SR : 0.003	0.003
TI : 0.006	0.002
TL : <0.04	0.04
V : <0.01	0.01
ZN : 0.53	0.006

Quality Control Report
 Environmental Trace Substances Research Center
 ICP Scan - Duplicate Report

Project: MRI

Units: MCG/ML

Batch #:

Customer ID: MILL Q H20 BLANK CLARK

Description: WATER

ETSRC ID:

Elm	Result	Duplicate	% Deviation	Estimated Sample Detection Limit
AG	<0.01	<0.01	0.0	0.01
AL	<0.02	<0.02	0.0	0.02
AS	<0.05	<0.05	0.0	0.05
B	<0.03	<0.03	0.0	0.03
BA	<0.0005	<0.0005	0.0	0.0005
BE	<0.0006	<0.0006	0.0	0.0006
BI	<0.04	<0.04	0.0	0.04
CA	<0.2	<0.2	0.0	0.2
CD	<0.006	<0.006	0.0	0.006
CO	<0.01	<0.01	0.0	0.01
CR	<0.02	<0.02	0.0	0.02
CU	<0.002	<0.002	0.0	0.002
FE	<0.009	<0.009	0.0	0.009
K	<0.2	<0.2	0.0	0.2
W	<0.3	<0.3	0.0	0.3
LI	<0.002	<0.002	0.0	0.002
MG	<0.001	<0.001	0.0	0.001
MN	<0.006	<0.006	0.0	0.006
MO	<0.007	<0.007	0.0	0.007
NA	<0.01	<0.01	0.0	0.01
NI	<0.02	<0.02	0.0	0.02
P	<0.3	<0.3	0.0	0.3
PB	<0.04	<0.04	0.0	0.04
SB	<0.04	<0.04	0.0	0.04
SE	<0.1	<0.1	0.0	0.1
SI	0.35	0.14	85.7	0.02
SN	<0.1	<0.1	0.0	0.1
SR	<0.003	<0.003	0.0	0.003
TI	<0.002	<0.002	0.0	0.002
TL	<0.04	<0.04	0.0	0.04
V	<0.01	<0.01	0.0	0.01
ZN	<0.006	<0.006	0.0	0.006

Average % Deviation 2.7

Quality Control Report
 Environmental Trace Substances Research Center
 ICP Scan - Duplicate Report

Project: MRI

Units: MCG/ML

Batch #:

Customer ID: CLARK 1 DRIFT BASIN SMPL

Description: WATER

ETSRC ID:

Elm	Result	Duplicate	% Deviation	Estimated Sample Detection Limit
AG	<0.01	<0.01	0.0	0.01
AL	0.27	0.26	3.8	0.02
AS	<0.05	<0.05	0.0	0.05
B	1.1	1.2	8.7	0.03
BA	0.100	0.103	3.0	0.0005
BE	<0.0006	0.0009	***	0.0006
BI	<0.04	<0.04	0.0	0.04
CA	340.	276.	20.8	0.4
CD	<0.006	<0.006	0.0	0.006
CO	<0.01	<0.01	0.0	0.01
CR	<0.02	<0.02	0.0	0.02
CU	0.485	0.502	3.4	0.003
FE	0.69	0.71	2.9	0.009
K	46.4	47.8	3.0	0.2
W	<0.3	<0.3	0.0	0.3
LI	0.206	0.213	3.3	0.002
MG	144.	148.	2.7	0.03
MN	0.01	0.01	0.0	0.006
MO	0.058	0.061	5.0	0.007
NA	577.	594.	2.9	1.
NI	<0.02	0.02	***	0.02
P	2.5	2.8	11.3	0.3
PB	<0.04	<0.04	0.0	0.04
SB	0.1	0.1	0.0	0.05
SE	<0.1	<0.1	0.0	0.1
SI	0.079	0.24	100.9	0.02
SN	<0.1	<0.1	0.0	0.1
SR	3.45	3.04	12.6	0.003
TI	0.011	0.0087	23.4	0.002
TL	<0.04	<0.04	0.0	0.04
V	<0.01	<0.01	0.0	0.01
ZN	0.39	0.34	13.7	0.006

Average % Deviation 7.4

C-11

Quality Control Report
Environmental Trace Substances Research Center
ICP Scan - Spike Report
Batch #: Units: MCG/ML

Customer ID: DRIFT IMPINGERS & RINSES
Description: WATER
ETSRC ID:

Elm	Result	MCG Added	Spiked Sample	% Recovery	Estimated Sample Detection Limit
AG	<0.01	20.0	0.54	135.	0.01
AL	<0.02	100.0	2.17	109.	0.02
AS	<0.05	50.0	1.1	110.	0.05
B	<0.03	100.0	2.0	100.	0.03
BA	0.0007	10.0	0.214	107.	0.0005
BE	<0.0006	5.0	0.109	109.	0.0006
BI	<0.04	0.0	<0.04	-	0.04
CA	0.3	0.0	0.2	-	0.2
CD	<0.006	10.0	0.21	105.	0.006
CO	<0.01	0.0	0.01	-	0.01
CR	<0.02	50.0	1.0	100.	0.02
CU	0.006	100.0	1.98	99.	0.003
FE	0.20	1000.0	22.7	113.	0.009
K	<0.2	0.0	0.3	-	0.2
W	<0.3	0.0	0.9	-	0.3
LI	0.027	0.0	0.027	-	0.002
MG	0.073	500.0	9.87	98.	0.001
MN	0.032	50.0	1.04	101.	0.006
MO	<0.007	50.0	1.11	111.	0.008
NA	0.40	0.0	0.32	-	0.01
NI	0.31	50.0	1.4	109.	0.02
P	<0.3	0.0	<0.4	-	0.3
PB	<0.04	50.0	1.0	100.	0.04
SB	<0.04	0.0	<0.05	-	0.04
SE	<0.1	50.0	1.0	100.	0.1
SI	0.17	0.0	0.31	-	0.02
SN	<0.1	0.0	<0.1	-	0.1
SR	0.003	10.0	0.21	103.	0.003
TI	0.006	0.0	<0.002	-	0.002
TL	<0.04	50.0	1.1	110.	0.04
V	<0.01	10.0	0.21	105.	0.01
ZN	0.53	200.0	4.53	100.	0.007

Average % Recovery 106.

- Not Spiked

* Possibly Not Spiked - Not in Average

*** Spike Too Low

SEP - 1 - 89 FRI 12:56

P . 0 1

UNIVERSITY OF MISSOURI-COLUMBIA

Office of Telecommunications

6 Telecommunications Building
Columbia, Missouri 65211
(314)882-2177

SEP - 1 - 89 FRI 12:56

P . 0 2

ETSRC Sample Report

MIDWEST RESEARCH INST.
89080352

Submitter's ID Number	ETSRC ID	Test	Final Concen.	Units of Fin. Conc.	Description
BASIN SAMP		TDS	3840	MG/L	WATER