

Box 50-1174

**Source Emissions Testing Report
ETC Canyon Pipeline, LLC**

**Four (4) TCI Enclosed Flares – NMOC Control Efficiencies
Various Sites
Western Colorado**

Test Dates: October 4 – 8, 2010

Report prepared for:
ETC Canyon Pipeline, LLC
1950 Highway 6 & 50
Fruita, Colorado 81521

Report prepared by:
Air Pollution Testing, Inc.
5530 Marshall Street
Arvada, Colorado 80002

APT Project: ETC0305

DENVER OFFICE
5530 Marshall Street
Arvada, CO 80002
(303) 420-5949
FAX (303) 420-5920
(800) 268-6213

AIR POLLUTION CONTROL DIVISION
Stack Test Memo

COUNTY NUMBER: 103 SOURCE NUMBER: 0020

Test Dates: October 6, 2010
Report Rec'd: December 6, 2010
Memo Date: February 1, 2011

COMPANY: ETC Canyon Pipeline
SITE LOCATION: Foundation Creek Gas Plant

INSPECTOR: Jeremy Murtaugh
COUNTY: Rio Blanco

CONTACT PERSON: Sam Duletsky
TELEPHONE No: 970-858-3425 Ext 80313

PERMIT No: 95RB0617-1 Mod 4, FA

SOURCE CLASS: Major [XX] Syn Minor [] Minor []
Full Compliance Evaluation [] Partial Compliance Evaluation [] Stack Test [XX]
HOURS – INSPECTION: 0.0 TRAVEL & PREP 1.0 REPORT: 2.0 TOTAL: 3.0

REASON FOR TEST: Conducted by ETC to address ongoing violations at Foundation Creek.

Compliance Status: [] In Compliance [XX] Out of Compliance *****Enforcement Recommended*****

On October 6, 2010, stack testing was conducted by Air Pollution Testing (APT) of Arvada Colorado at the ETC Canyon (ETC) Foundation Creek Gas Plant located in Rio Blanco County. Testing was conducted on the TCI flare at the facility to measure mass emission rates and to assess the destruction efficiency of VOC across the device(s). This summary will only discuss testing conducted at the Foundation Creek facility. This test was not observed by Division personnel.

This testing was conducted to assess VOC mass emissions and control efficiency across the flare in order to assess the compliance status of the unit with respect to violations alleged in Compliance Order on Consent (COC) 2009-129/130, signed by ETC on January 25, 2010. This testing was done for the sole purpose of determining the VOC mass emission rates from the device, and to determine the control efficiency of VOCs across the device. Testing for HAPs was not required by the Division, and was not included in the Division approved protocol.

Notwithstanding the issues in Paragraphs H, I, J, and K, this enforcement action is considered resolved with the signing of COC Case # 2009-129/130. ETC signed the COC on Jan 25, 2010, the enforcement case was considered closed on March 25, 2010.

Location	Construction Permit	AIRS ID	TCI Flare Model	Controls Emissions From
Foundation Creek	95RB617-1, Mod 4, FA issued 11/21/08	103-0020-015	1200	TEG still Vent, 1 EG Flash, Miscellaneous Process Vents

This facility is currently classified as a major source for Title V applicability, and is a synthetic minor source for MACT HH applicability.

Test Description:

EPA Reference Methods 1, 2, 3A, 4, 18 and 25A were conducted to determine the volumetric flow and mass emission rate of volatile organic compounds (VOC only) at the TCI flare stack. Method 18 was used for determination and

subsequent subtraction of methane and ethane, which are not classified as VOCs. Three (3) 60- minute runs were performed and the results averaged for the determination of compliance with applicable emission limits. It should be noted that due to the open configuration of the burner and flare stack, the sample ports do not meet Method 1 requirements for upstream/downstream distance to a flow disturbance. To determine uncontrolled emissions to the flare, Methods 1-4, 18 and 25A were used to quantify inlet VOC loading rate. Destruction/removal efficiency (DRE) was determined using measured outlet mass emission rates and inlet loading rates. Test results are shown below:

Foundation Creek

TCI Model 1200

		10/6/2010	3- Run Average	Permitted Limits
NGL Skid Deby	Gas Throughput Rate (MMscf/day)	Not Given ¹	30 MMscf/d	
	TEG Recirculation Rate (gpm)	2.65	6.0 gpm	
	Contactor Temp (°F)	17.11		
	Contactor Pressure (psi)	720		
	Gas Throughput Rate (MMscf/day)	Not Given ¹	30 MMscf/d	
	EG Recirculation Rate (gpm)	3.85	8.0 gpm	
	Contactor Temp (°F)	90		
	Contactor Pressure (psi)	260		
Flare Exhaust Results	Total Inlet Loading (lb/hr)	105.7		
	Flare Operating Temperature (°F)	1,654		
	Stack Flow (dscfm)	2,380		
	Oxygen (%)	18.4		
	Carbon Dioxide (%)	1.2		
	Moisture (%)	3.4		
	VOC (ppm as propane)	529.3		
	VOC as propane (lb/hr)	8.65		
VOC as propane (tpy) ²		37.8	2.5	
DRE (%)		91.8	90%	

1 This information was required to be recorded and reported with the test results in the Division approved test protocol.

2 Calculated by multiplying the lb/hr emission rate by the allowable annual operating hours (8,760)

Conclusions:

Based on test results that show VOC emissions of 37.8 tons per year, ETC has exceeded the annual VOC emission limit of 2.5 tons per year for this point as specified in Condition 4 of the Construction Permit.

Please note that because this testing was conducted while the flare was operating at a temperature in excess of 1,400 °F, this test is not informative of flare emissions or destruction efficiency while operating below 1,400 °F.

Recommendations:

Enforcement action is recommended to address the following ongoing violation:

- 1) Failure of this flare to comply with the annual VOC mass emission rate of 2.5 tons per year, as specified in Condition 4 of Construction Permit 95RB617-1, Mod 4, FA.

AIR POLLUTION CONTROL DIVISION
Stack Test Memo

COUNTY NUMBER: **045** SOURCE NUMBER: **0667**

Test Dates: **October 7, 2010**
Report Rec'd: **Dec 6, 2010**
Memo Date: **Feb 16, 2011**

COMPANY: **ETC Canyon Pipeline**
SITE LOCATION: **Rifle Bolton**

INSPECTOR: **Jeremy Murtaugh**
COUNTY: **Garfield**

CONTACT PERSON: **Sam Duletsky**
TELEPHONE No: **970-858-3425 Ext 80313**

PERMITS: **07GA1213, FA (TEG Dehy) Issued 9/28/08**
03GA0975, FA Mod 1 (Tank) Issued 9/28/08

SOURCE CLASS: Major Syn Minor Minor XX
Full Compliance Evaluation Partial Compliance Evaluation Stack Test XX
HOURS - INSPECTION: **0.0** TRAVEL & PREP **3.0** REPORT: **4.0** TOTAL: **11.0**

REASON FOR TEST: Subsequent compliance test after failed test on March 23, 2010

Compliance Status: ***Not a Valid Compliance Test, Representative Operation Not Established***

On October 7, 2010, compliance testing was conducted by Air Pollution Testing (APT) at the ETC Canyon (ETC) Rifle Boulton located in Garfield County. Testing was conducted on a TCI flare to measure mass emission rates and to assess the destruction efficiency of VOC across the device(s). This test was not observed by Division personnel.

During a meeting with ETC at the Division's offices on July 16, 2010, ETC agreed to conduct additional testing on selected TCI flares at selected facilities using more costly, but rigorous methods including the use of a calibrated flow meter at the flare inlet in order to more accurately determine inlet mass loading. Despite this agreement, ETC did not use the more rigorous method of using an inline flow meter to determine inlet flow rate to the flare, but instead utilized S-type pitot flow measurements and Method 18 to determine inlet mass loading. This approach is an improvement over past efforts to characterize inlet loading, which used only GlyCalc and Tanks modeling programs to estimate VOC loading to the flare and was approved in the Division approved protocol at ETC's request.

Enforcement Action Case # 2010-074 is currently pending for this facility.

Construction Permit	AIRS ID	TCI Flare Model	Controls Emissions From	Emission Limits
07GA1213, FA	045-0667-005	1200	20.0 MMscf/day TEG dehydrator	6.83 tpy, 95% DRE
03GA0975	045-0667-004		One (1) 300 bbl condensate tank	1.4 tpy, 95% DRE

The Rifle Boulton facility is classified as a true minor source for Title 5 and PSD applicability, and an area source for MACT HH applicability.

Equipment Operation During Test:

During the test, the plant (and dehy) were processing gas at a rate of 0.27 MMscf/day, with an plant inlet pressure of 792 psi. The dehy contactor was at 790 psi and 64°F; the flash tank at 38 psi and 134 °F. Glycol Re-circulation rate was 1.2 gallon/min

TCI Flare:

Actual: Dual 1st stage burners – Unknown
2nd stage burner – Unknown
3rd stage ring burner – Unknown
4th stage – Kimray Valve: Unknown

Supplemental Fuel Use: Unknown

The normal range of these values/settings during normal operation is not known. The manufacturer recommended settings are not known for this equipment either.

TEG Dehy:

The dehy gas processing rate was 0.27 MMscf/day, or approximately 1% of the unit's rated capacity of 20.0 MMscf/day.

Conclusions:

- 1) Although the test results show compliance with the permitted VOC annual mass emission rate and required destruction efficiency, compliance has not been demonstrated with the dehy operating at within 10% of its rated capacity of 20 MMscf/day
- 2) Because not operating parameters of the flare were included with the test results, representative operation of the TCI flare was not established during this test.

Recommendations:

Resolution of Enforcement Case # 2010-074 should include the following requirements:

- 1) Repeat testing to show compliance with applicable permitted VOC annual mass emission limits and required VOC destruction efficiencies while operating at the permitted capacity of the TEG dehy. The equipment must be operating at within 10% of the rated capacity of the equipment, and pertinent operating parameters sufficient to demonstrate equipment operation must be recorded during the test and reported with the test results. A complete description of the flare operation during the test must also be included with the test results.

Test Description:

EPA Reference Methods 1, 2, 3A, 4, 18 and 25A were conducted to determine the volumetric flow and mass emission rate of volatile organic compounds at the TCI flare stack. Method 18 was used for determination and subsequent subtraction of methane. Three (3) 60- minute runs were performed and the results averaged for the determination of compliance with applicable emission limits. It should be noted that due to the open configuration of the burner and flare stack, the sample ports do not meet Method 1 requirements for upstream/downstream distance to a flow disturbance. To determine uncontrolled emissions to the flare (inlet loading), EPA Reference Methods 1-4 and 18 were used. Due to the small diameter of the flare inlet piping (<12 inches), the inlet sampling port does not meet the requirements of Method 2. Test results are summarized in the table below.

Rifle Boulton

TCI Model 1200

10/7/2010	3- Run Average	Permitted Limits
Operating Temperature (°F)	Not Reported	
Stack Flow (dscfm)	2,446	
Oxygen (%)	20.2	
Carbon Dioxide (%)	0.1	
Methane (ppm)	206.9	
VOC (ppm as propane)	39.6	
VOC as propane (lb/hr)	0.7	
VOC as propane (tpy)¹	3.0	8.23²
Dehy Gas Throughput Rate (MMscf/day)	0.27	20 MMscf/d
Glycol Recirculation Rate (gpm)	1.2	
Contactor Temp (°F)	64	
Contactor Pressure (psi)	790	
Flash Tank Temp (°F)	134	
Flash Tank Pressure (psi)	38	
Reboiler Temp (°F)	Not Reported	
Reboiler Pressure (psi)	Not Reported	
Total Inlet Loading (lb/hr)	18.4	
DRE (%)	96.3	95%

1 Calculated using lb/hr emission rate and annual permitted operating hours (8,760)

2 Emission limits are for dehy and tanks together.

AIR POLLUTION CONTROL DIVISION
Stack Test Memo

COUNTY NUMBER: 077 SOURCE NUMBER: 0288

Test Dates: October 4, 2010
Report Rec'd: Dec 6, 2010
Memo Date: Feb 16, 2011

COMPANY: ETC Canyon Pipeline
SITE LOCATION: Premier Debeque Gas Plant

INSPECTOR: Jeremy Murtaugh
COUNTY: Mesa

CONTACT PERSON: Sam Duletsky
TELEPHONE No: 970-858-3425 Ext 80313

PERMIT No: 97ME0218, Mod 6, IA

SOURCE CLASS: Major [] Syn Minor [XX] Minor []
Full Compliance Evaluation [] Partial Compliance Evaluation [] Stack Test [XX]
HOURS – INSPECTION: 0.0 TRAVEL & PREP 1.0 REPORT: 2.0 TOTAL: 3.0

REASON FOR TEST: **Compliance Test conducted show compliance due to test on 3/24/10 that showed violations**

Compliance Status: **Representative Operation Not Established, Compliance Not Demonstrated**

On October 4, 2010, compliance testing was conducted by Air Pollution Testing (APT) at the ETC Canyon (ETC) Premier Debeque Gas Plant located in Mesa County, Colorado. Testing was conducted on a TCI flare to measure mass emission rates and to destruction efficiency of VOC across the device(s). This testing was not observed by Division personnel. Testing was previously conducted on this device on March 24, 2010.

During a meeting with ETC at the Division's offices on July 16, 2010, ETC agreed to conduct additional testing on selected TCI flares at selected facilities using more costly, but rigorous methods including the use of a calibrated flow meter at the flare inlet in order to more accurately determine inlet mass loading. Despite this agreement, ETC did not use the more rigorous method of using an inline flow meter to determine inlet flow rate to the flare, but instead utilized S-type pitot flow measurements and Method 18 to determine inlet mass loading. This approach is an improvement over past efforts to characterize inlet loading, which used only GlyCalc and Tanks modeling programs to estimate VOC loading to the flare. This was included in the Division approved protocol at ETC's request.

The source has submitted a permit application for a facility-wide Construction Permit. Permit Number 10ME1379 has been assigned, but has not been issued, pending the resolution of ongoing enforcement action (Case # 2010-076)

Location	Construction Permit	AIRS ID	TCI Flare Model	Controls Emissions From
Premier Debeque	97ME0218, Mod 6, IA issued 11/3/08	077-0288-001	1200	5.0 MMscf/day TEG dehy still vent, 5.0 MMscf/day EG dehy still vent, 300 bbl, 400 bbl condensate tanks (1 of each)

The Premier Debeque facility is classified as a synthetic minor source for Title 5 applicability for CO, VOC, NOx and formaldehyde. The facility is subject to the area source requirements of MACT HH.

Equipment Description:

The Debeque Gas Plant typically processes 2.5-3.0 MMscf/day through the plant, and 600-700 gallons of NGL per day. A TEG dehydrator is in use (no flash tank installed) with regenerator overhead sent to a 30 ft finned-pipe type condenser. EG is also used at the plant for NGL removal. The EG regenerator vents to a 40 foot finned-pipe type condenser, which

together dump to a slop tank. The slop tank serves as a primary liquid dropout after the condensers, with uncondensed gases routed to the flare for destruction.

Equipment Operation During Test:

Flare Operation:

Dual 1st stage burners – Unknown
2nd stage burner – Unknown
3rd stage ring burner – Unknown
4th stage – Kimray Valve – Unknown

Waste Gas Backpressure: Unknown

Supplemental fuel use: Unknown

The normal range of these values/settings during normal operation is not known. The manufacturer recommended settings for this equipment is not known.

TEG, EG Dehy Operation:

No operating parameters of the flare, TEG dehy or EG dehy were included with the test report. Please note that these operating parameters are considered pertinent to emissions of air pollutants from the unit and were required to be recorded and provided with the results, in the Division approved test protocol.

Conclusions:

Although the results of this test show the flare to be in compliance with the permitted annual VOC emission limits (1,984 lb/yr) and with the required VOC destruction efficiency (90%), this test cannot be considered a valid compliance demonstration because representative operation of the equipment was not established during the test.

Recommendations:

Resolution of enforcement case number 2010-076 should include the following requirements:

- 1) Repeat testing to show compliance with applicable permitted VOC annual mass emission limits and required VOC destruction efficiencies. The equipment must be operating at within 10% of the rated capacity of the equipment, and pertinent operating parameters sufficient to demonstrate equipment operation must be recorded during the test and reported with the test results. A complete description of the flare operation during the test must also be included with the test results.

Test Description:

EPA Reference Methods 1, 2, 3A, 4, 18 and 25A were conducted to determine the volumetric flow and mass emission rate of volatile organic compounds at the TCI flare stack. Method 18 was used for determination and subsequent subtraction of methane. Three (3) 60- minute runs were performed and the results averaged for the determination of compliance with applicable emission limits. It should be noted that due to the open configuration of the burner and flare stack, the sample ports do not meet Method 1 requirements for upstream/downstream distance to a flow disturbance. To determine uncontrolled emissions to the flare (inlet loading), Method 1-4 was used. Please note that due to the small diameter of the inlet piping (<12 inches) the sampling point at the flare inlet did not meet the requirements of Method 2. Destruction/removal efficiency (DRE) was determined using measured outlet mass emission rates and calculated inlet loading rates. Test results are shown below:

Premier Debeque

TCI Model 1200

10/4/2010

	3- Run Average	Emission Limits
Operating Temperature (°F)	Not Reported	
Stack Flow (dscfm)	1,693	
Oxygen (%)	20.2	
Carbon Dioxide (%)	0.3	
Methane (ppm)	66.9	
VOC (ppm as propane)	9.3	
VOC as propane (lb/hr)	0.11	
VOC as propane (tpy)¹	0.5	0.992
TEG Dehy Gas Throughput (MMscf/day)	Not Reported	
TEG Contactor Temperature (°F)	Not Reported	
TEG Contactor Pressure (psi)	Not Reported	
EG Dehy Gas Throughput (MMscf/day)	Not Reported	
EG Contactor Temperature (°F)	Not Reported	
EG Contactor Pressure (psi)	Not Reported	
Condenser Outlet Temp	Not Reported	
Total Inlet Loading (lb/hr)	17.6	
DRE (%)	99.4	90%

1 Calculated using lb/hr emission rate and annual permitted operating hours (8,760)

AIR POLLUTION CONTROL DIVISION
Stack Test Memo

COUNTY NUMBER: **103** SOURCE NUMBER: **0004**

Test Dates: **October 8, 2010**
Report Rec'd: **Dec 6, 2010**
Memo Date: **Feb 16, 2011**

COMPANY: **ETC Canyon Pipeline**
SITE LOCATION: **Greasewood Compressor Station**

INSPECTOR: **Jeremy Murtaugh**
COUNTY: **Rio Blanco**

CONTACT PERSON: **Sam Dultesky**
TELEPHONE No: **970-858-3425 Ext 80313**

PERMIT No: **07RB0550, Mod 1, IA (Tanks)**
08RB0594, FA (TEG dehy)

SOURCE CLASS: **Major** [**XX**] Syn Minor [] Minor []
Full Compliance Evaluation [] Partial Compliance Evaluation [] Stack Test [**XX**]
HOURS – INSPECTION: **0.0** TRAVEL & PREP **0.5** REPORT: **2.0** TOTAL: **2.5**

REASON FOR TEST: **To asses compliance status of a TCI flare after failed test on March 23, 2010**

Compliance Status: *** **Compliance Not Demonstrated at Full Operating Capacity*****

On October 8, 2010 compliance testing was conducted by Air Pollution Testing (ATP) at the ETC Canyon (ETC) Greasewood Compressor Station in Rio Blanco County. Testing was conducted on a TCI flare to measure mass emission rates and to assess the destruction efficiency of VOC across the device(s). This testing was not observed by Division personnel.

During a meeting with ETC at the Division's offices on July 16, 2010, ETC agreed to conduct additional testing on selected TCI flares at selected facilities using more costly, but rigorous methods including the use of a calibrated flow meter at the flare inlet in order to more accurately determine inlet mass loading. Despite this agreement, ETC did not use the more rigorous method of using an inline flow meter to determine inlet flow rate to the flare, but instead utilized S-type pitot flow measurements and Method 18 to determine inlet mass loading. This approach is an improvement over past efforts to characterize inlet loading, which used only GlyCalc and Tanks modeling programs to estimate VOC loading to the flare, and was approved in the Division approved protocol at ETC's request.

The source has submitted a permit application for a facility-wide Construction Permit. Permit Number 10RB1664 has been assigned, but has not been issued, pending the resolution of ongoing enforcement action (Case # 2010-073)

The equipment tested is permitted as follows:

Construction Permit	AIRS ID	TCI Flare Model	Controls Emissions From	Emission Limits
07RB0550, Mod 1, IA	103-0004-007	Unknown	One (1) 300 bbl condensate tank	15.0 tons/yr at 3,000 bbl/yr throughput
08RB0594, FA	103-004-004		10.0 MMscf/day TEG dehy still vent	14.2 tons/yr

The Greasewood Compressor Station is classified as a major source for Title 5 applicability with respect to NOx, CO and VOCs.

Equipment Operation During Test:

TCI Flare:

Dual 1st stage burners – Unknown
2nd stage burner – Unknown
3rd stage ring burner – Unknown
4th stage – Kimray Valve: Unknown

Supplemental Fuel Use: Unknown

The normal range of these values/settings during normal operation is not known. The manufacturer recommended settings are not known for this equipment either.

TEG Dehy:

The dehy gas processing rate was 1.8 MMscf/day, or approximately 18% of the unit's rated capacity of 10.0 MMscf/day.

Conclusions:

- 1) ETC has not demonstrated compliance with the VOC destruction efficiency of 90% required for the condensate tanks
- 2) Although the test results show VOC emission to be in compliance with the annual mass emission limits for the dehy and tanks together, compliance has not been demonstrated with the dehy operating at within 10% of its rated capacity.

Recommendations:

Resolution of Enforcement Case # 2010-073 should include the following requirements:

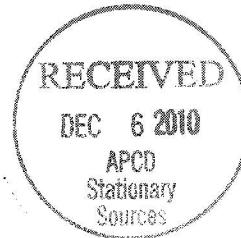
- 1) Repeat testing to show compliance with applicable permitted VOC annual mass emission limits and required VOC destruction efficiencies while operating at the permitted capacity of the TEG dehy. The equipment must be operating at within 10% of the rated capacity of the equipment, and pertinent operating parameters sufficient to demonstrate equipment operation must be recorded during the test and reported with the test results. A complete description of the flare operation during the test must also be included with the test results.

Test Description:

EPA Reference Methods 1, 2, 3A, 4, 18 and 25A were conducted to determine the volumetric flow and mass emission rate of volatile organic compounds at the TCI flare stack. Method 18 was used for determination and subsequent subtraction of methane. Three (3) 60- minute runs were performed and the results averaged for the determination of compliance with applicable emission limits. It should be noted that due to the open configuration of the burner and flare stack, the sample ports do not meet Method 1 requirements for upstream/downstream distance to a flow disturbance. To determine uncontrolled emissions to the flare (inlet loading), EPA Reference Methods 1-4 and 18 were used. Due to the small diameter of the flare inlet piping (<12 inches), the inlet sampling port does not meet the requirements of Method 2. Test results are summarized in the table below.

Greasewood

TCI Flare Model Unknown 10/8/2010	3- Run Average	Permitted Limits
Operating Temperature (°F)	Not Reported	
Stack Flow (dscfm)	1,505	
Oxygen (%)	20.4	
Carbon Dioxide (%)	0.0	
Methane (ppm)	182.6	
VOC (ppm as propane)	16.0	
VOC as propane (lb/hr)	0.2	
VOC as propane (tpy)¹	0.7	29.2²
Dehy Gas Throughput Rate (MMscf/day)	1.8	10 MMscf.d
Contactor Temp (°F)	68	
Contactor Pressure (psi)	710	
Flash Tank Temp (°F)	114	
Flash Tank Pressure (psi)	32	
Reboiler Temp (°F)	375	
Reboiler Pressure (psi)	3.5	
Total Inlet Loading (lb/hr)	0.01	
DRE (%)	0.0	90%


1 Calculated using lb/hr emission rate and annual permitted operating hours (8,760)

2 Emission limit for dehy and tanks together.

Certification

Team Leader Certification:

I certify that all of the sampling and analytical procedures and data presented in this report are authentic and accurate.

A handwritten signature in black ink that reads 'Dane C. Murray'.

Dane Murray
Field Team Leader, Project Manager

Reviewer Certification:

I certify that all of the testing details and conclusions are accurate and valid.

A handwritten signature in black ink that appears to be 'Matt McGregor' with a large, overexposed area where the signature is written.

Matt McGregor
Reviewer, Technical Writer

Table of Contents

1. Introduction.....	1
2. Methods.....	2
3. Test Program Summary.....	2
4. Test Results Summary.....	4
5. Test Method Details.....	6
6. Conclusions.....	7

Tables

Table 1.1 : Emissions Testing Program Contact Personnel.....	1
Table 1.2 : Source Identification Summary.....	2
Table 3.1 : Sampling and Analytical Methods.....	3
Table 4.1 : Test Results Summary, Debeque Flare.....	4
Table 4.2 : Test Results Summary, Foundation Creek Flare.....	5
Table 4.3 : Test Results Summary, Rifle Boulton Flare.....	5
Table 4.4 : Test Results Summary, Greasewood Flare.....	6

Appendices

Testing Parameters and Sample Calculations.....	Appendix 1
Field and Operating Data.....	Appendix 2
Calibration Data and Certificates.....	Appendix 3
Schematics.....	Appendix 4

1. Introduction

Air Pollution Testing, Inc. (APT) was contracted by ETC Canyon Pipeline, LLC (ETC) for emission testing services at four sites in Western Colorado.

The purpose of the testing program was to determine the mass emission rates of non-methane organic compounds (NMOC) from the exhaust stacks of TCI enclosed flares in service at the various facilities, and the flare NMOC control efficiencies, to determine the compliance status of the units with respect to emission limits imposed by applicable Colorado Department of Public Health and Environment (CDPHE) permits. The flares are all used to control hydrocarbon emissions from glycol dehydrators and condensate tanks.

Personnel involved in the project are shown in Table 1.1 below. The unit identification, permit number, and permitted emission limits are summarized in Table 1.2 on the following page.

**ETC Canyon Pipeline, LLC: TCI Flares, Western Colorado
Emissions Testing Program Contact Personnel**

Name, Title	Company, Affiliation Address	Phone, FAX
Mr. Sam Duletsky, Compliance Manager	ETC Canyon Pipeline, LLC 1950 Highway 6&50 Fruita, Colorado 81521	970-858-3425
Mr. Jeremy Murtaugh, Air Pollution Control Specialist	CDPHE, APCD-SS-B1 4300 Cherry Creek Drive South Denver, Colorado 80246	303-692-3130, 303-782-0278
Mr. Brad Ganong, Operations Director	Air Pollution Testing, Inc. 5530 Marshall Street Arvada, Colorado 80002	303-420-5949, ext. 36 303-420-5920

Table 1.1: Emissions Testing Program Contact Personnel

ETC Canyon Pipeline, LLC: TCI Flares, Western Colorado Unit Identification Summary		
<i>Facility</i>	<i>Permit No.</i>	<i>Emissions Limits</i>
Debeque Compressor Station, Mesa County	97ME0218 – TEG Dehy, TCI Flare	1984 lb/yr VOC
Rifle Boulton Station, Garfield County	03GA0975 – Condensate Tank and TCI Flare	1.4 tpy VOC
	07GA1213 – TEG Dehy and TCI Flare	6.83 tpy VOC
Greasewood Gas Plant, Rio Blanco County	08RB0594 – TEG Dehy 07RB0550 – Storage Tanks	95% VOC control on tanks ⁽¹⁾
Foundation Creek Gas Plant, Rio Blanco County	95RB617-1 – TEG Dehy, NGL Separator, TCI Flare	2.5 tpy VOC

⁽¹⁾ The 95% control requirement for tanks is a state regulation that is believed to apply to all of the units.

Table 1.2: Source Identification Summary

2. Methods

APT tested in accordance with the following United States Environmental Protection Agency (EPA) source emissions test methods (referenced in 40 CFR Part 60, Appendix A).

Method 1 – Sample and Velocity Traverses for Stationary Sources

Method 2 – Determination of Stack Gas Velocity and Volumetric Flow Rate

Method 3A – Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

Method 4 – Determination of Moisture Content in Stack Gases

Method 18 – Measurement of Gaseous Organic Compound Emissions by Gas Chromatography

Method 25A – Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer

3. Test Program Summary

APT provided all necessary equipment and labor for the determination of all emission parameters detailed in Table 3.1. All on-site gas analyzers were housed in a mobile, analytical trailer to provide a temperature-controlled environment for stable, accurate

analyzer response.

Triplicate 60-minute test runs were conducted. Flare exhaust NMOC emissions were determined using an on-site analyzer and exhaust flow measurements using a pitot tube. Flare inlet testing consisted of conducting pitot traverses out of a single port, along with collection of integrated Tedlar bag samples for off-site gas chromatography / flame ionization detection analysis to determine the methane and non-methane hydrocarbon content.

Pertinent unit operating and control equipment operating parameters were recorded by ETC personnel and can be found in *Appendix 2*.

ETC Canyon Pipeline, LLC: TCI Flares, Western Colorado Sampling and Analytical Methods			
Gas Parameter	EPA Method	Analytical Method	Laboratory
Enclosed Flare Exhaust Measurements			
gas flow	Methods 1, 2	draft gauge, thermocouple, pitot tube ⁽¹⁾	APT, on-site
O ₂ , CO ₂	Method 3A	paramagnetic and non-dispersive infrared analyzers	
H ₂ O	Method 4	gravimetric	
NMOC	Method 25A	flame ionization detector with methane separation – Thermo Model 55	
Flare Inlet Stream Measurements			
gas flow	Methods 1, 2	draft gauge, thermocouple, pitot tube ⁽²⁾	APT, on-site
VOC, NMOC	Method 18	Gas chromatography / flame ionization detector	Empact Analytical, Brighton, CO
<p>(1) The exhaust stacks on TCI flares consist of a series of concentric rings of increasing diameter, open at the base. Historically, compliance testing has been conducted using sample ports installed on one of the higher rings. This location generally does not meet the Method 1 upstream/downstream requirements, which likely results in a small positive bias in the measured emissions.</p> <p>(2) The inlet locations meet the upstream/downstream flow disturbance requirements of Method 1, but each only have one sample port. Inlet gas stream molecular weight was determined from the Method 18 analysis in lieu of Methods 3 and 4.</p>			

Table 3.1: Sampling and Analytical Methods

4. Test Results Summary

The results of the testing are summarized in Tables 4.1 – 4.4 on the following pages. Any emission parameters not found in the tables may be found in *Appendix 1 – Testing Parameters / Sample Calculations*. The following terms are used in the tables:

- %vd – diluent concentration, dry volume percent
- %vw – moisture content, wet volume percent
- dscfm – stack gas flow rate, dry standard (one atmosphere, 68°F) cubic feet per minute
- lb/hr – pollutant mass emission rate, pounds per hour
- lb/year – pollutant mass emission rate, pounds per year
- tons/year – pollutant mass emission rate, tons per year (assumes 8,760 operating hours per year)
- ppmvd – parts per million, dry basis
- NMOC – non-methane organic compounds
- % DRE – destruction removal efficiency
- as C₃H₈ – as propane

ETC Canyon Pipeline, LLC: Debeque Compressor Station TCI Flare Test Results Summary – October 4, 2010				
	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>	
Start Time	14:49	16:13	17:31	Average
Stop Time	15:49	17:13	18:31	
Stack Temp (°F)	432	419	405	
Stack Flow (dscfm)	1,741	1,597	1,742	
O ₂ (%vd)	20.5	20.6	19.7	
CO ₂ (%vd)	0.2	0.1	0.6	
H ₂ O (%vw)	2.8	1.3	1.8	
<i>Emission Data</i>				
Outlet NMOC (ppmvd as C ₃ H ₈)	11.3	9.4	7.3	9.3
Outlet NMOC (lb/hr as C ₃ H ₈)	0.1	0.1	0.1	0.1
Outlet NMOC (lb/year as C ₃ H ₈)	1,181	900	762	947
Outlet NMOC (tons/year as C ₃ H ₈)	0.6	0.5	0.4	0.5
Inlet NMOC (lb/hr)	22.0	16.1	14.7	17.6
DRE (%)	99.4	99.4	99.4	99.4
				≥ 95

Table 4.1: Test Results Summary, Debeque Flare

ETC Canyon Pipeline, LLC: Foundation Creek Gas Plant TCI Flare Test Results Summary – October 6, 2010					
	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>		
Start Time	14:11	15:32	17:20	Average	Permit Limits
Stop Time	15:11	16:32	18:20		
Stack Temp (°F)	909	909	912		
Stack Flow (dscfm)	2,511	2,279	2,349		
O ₂ (%vd)	18.9	17.4	18.9		
CO ₂ (%vd)	0.9	1.5	1.3		
H ₂ O (%vw)	3.4	4.3	2.7		
Emission Data					
Outlet NMOC (ppmvd as C ₃ H ₈)	525.4	548.7	513.9	529.3	2.5
Outlet NMOC (lb/hr as C ₃ H ₈)	9.1	8.6	8.3	8.6	
Outlet NMOC (tons/year as C ₃ H ₈)	39.6	37.6	36.3	37.8	
Inlet NMOC (lb/hr)	112.1	100.2	104.7	105.7	
DRE (%)	91.9	91.4	92.1	91.8	

Table 4.2: Test Results Summary, Foundation Creek Flare

ETC Canyon Pipeline, LLC: Rifle Boulton Station TCI Flare Test Results Summary – October 7, 2010					
	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>		
Start Time	12:17	13:39	14:57	Average	Permit Limits
Stop Time	13:17	14:39	15:57		
Stack Temp (°F)	86	108	109		
Stack Flow (dscfm)	2,602	2,424	2,313		
O ₂ (%vd)	20.1	20.2	20.3		
CO ₂ (%vd)	0.1	0.1	0.1		
H ₂ O (%vw)	0.9	0.7	0.8		
Emission Data					
Outlet NMOC (ppmvd as C ₃ H ₈)	50.5	42.8	26.5	40.0	1.4, 6.83*
Outlet NMOC (lb/hr as C ₃ H ₈)	0.9	0.7	0.4	0.7	
Outlet NMOC (tons/year as C ₃ H ₈)	4.0	3.1	1.8	3.0	
Inlet NMOC (lb/hr)	23.3	14.9	17.1	18.4	
DRE (%)	96.1	95.2	97.5	96.3	

*Limit of 1.4 tpy applies to the TCI Flare combined with the condensate storage tanks. The limit of 6.83 tpy applies to the TCI Flare combined with the Triethylene glycol (TEG) natural gas dehydration unit.

Table 4.3: Test Results Summary, Rifle Boulton Flare

ETC Canyon Pipeline, LLC: Greasewood Gas Plant TCI Flare Test Results Summary – October 8, 2010					
	<u>Run #1</u>	<u>Run #2</u>	<u>Run #3</u>		
Start Time	9:21	10:41	11:59	Average	Permit Limits
Stop Time	10:21	11:41	12:59		
Stack Temp (°F)	78	82	88		
Stack Flow (dscfm)	1,524	1,463	1,528		
O ₂ (%vd)	20.8	20.2	20.2		
CO ₂ (%vd)	0.0	0.0	0.0		
H ₂ O (%vw)	1.6	0.7	1.2		
<i>Emission Data</i>					
Outlet NMOC (ppmvd as C ₃ H ₈)	12.4	17.0	19.1	16.2	
Outlet NMOC (lb/hr as C ₃ H ₈)	0.1	0.2	0.2	0.2	
Outlet NMOC (tons/year as C ₃ H ₈)	0.6	0.7	0.9	0.7	
Inlet NMOC (lb/hr)	0.01	0.00	0.00	0.01	
DRE (%)	0.0	0.0	0.0	0.0	≥ 95

Table 4.4: Test Results Summary, Greasewood Flare

5. Test Method Details

5.1. Stack Gas Velocity, Volumetric Flow Rate and Moisture

Stack gas velocity, volumetric flow rate and moisture (H₂O) content were measured in accordance with EPA Methods 1, 2 and 4.

Each sampling period consisted of conducting a temperature and differential pressure traverse of the stack using a K-type thermocouple and an S-type pitot tube. Concurrent with the traverse, a sample of gas for moisture determination was extracted from the stack at a constant flow rate of no more than 0.75 cubic feet per minute (cfm). The gas sample passed through a stainless steel probe, through a series of four (4) chilled glass impingers, and through a calibrated dry gas meter. See Appendix 4 – Schematics for a diagram of the EPA Methods 1, 2 and 4 sampling train. In lieu of EPA Method 4 Section 8.1.1.1 requirements, a single sample point was used for moisture determination.

Prior to sampling, the first two impingers were each seeded with 100 milliliters of water. The third impinger was empty. The fourth impinger was seeded with 250 grams of dried silica gel. Following sampling, the moisture gain in the impingers was measured gravimetrically to determine the moisture content of the gas.

All of the above data were combined with concurrently collected diluent data to calculate the stack gas velocity and volumetric flow rate in units of feet per second (ft/sec), actual cubic feet per minute (acfm), dry standard (1 atmosphere and 68°F) cubic feet per minute (dscfm), and pounds per hour (lb/hr).

5.1.1. Exceptions to Methods

At the flare inlets, the pitot traverses were conducted from a single port. The molecular weight was determined from the off-site GC analysis.

The flare stacks do not meet the Method 1 upstream/downstream flow disturbance requirements, but have historically been accepted. Installation of a stack extension would be a significant engineering cost and would likely have no impact on the data as the velocity pressures typically encountered on these units are at or near the lower readability limit of a ¼" draft gauge.

5.2. Diluent (O₂ and CO₂) and Non-methane Hydrocarbons

O₂, CO₂ and NMOC emission concentrations were measured in accordance with EPA Methods 3A (O₂ and CO₂) and 25A (NMOC).

Each sampling period consisted of extracting a gas sample from the stack at a constant flow rate of approximately four liters per minute (lpm). The sample passed through a refrigeration-type gas conditioner to remove moisture and into the sampling port of a Servomex Series 1400 paramagnetic O₂ / non-dispersive infrared CO₂ analyzer and a Thermo Model 55 flame ionization analyzer equipped with a methane separator. The gas conditioner was bypassed for the NMOC analyzer.

The gas concentrations were displayed on the analyzer front panels in units of either parts per million, wet volume basis as propane (ppmvw as C₃H₈ – NMOC) or percent, dry volume basis (%vd – O₂ and CO₂) and logged to a computerized data acquisition system (CDAS). Please see *Appendix 4 – Schematics* for a diagram of the EPA Methods 3A and 25A sampling train.

Before and after each sampling period, the analyzers were challenged with EPA Protocol 1 calibration gases to calibrate the instrument, to verify linearity of response, and to quantify zero and span drift for the previous sampling period. To ensure no system bias, the analyzer calibrations were conducted by introducing all gases to the analyzer at the sampling probe at stack pressure. Following sampling, the CDAS data were averaged in one-minute increments, corrected for instrumental drift, and reported as average emission concentrations for each sampling period.

Sampling (diluent and NMOC) was conducted at the approximate area center of the stacks in accordance with EPA Method 25A requirements.

The above data were combined with concurrently collected flow data to calculate NMOC emissions and concentrations in units of pounds per hour (lb/hr), pounds per year (lb/year) and tons per year (tons/year).

5.3. Total Hydrocarbon / NMOC – Flare Inlets

Methane and NMOC concentrations were measured in accordance with EPA Method 18. Triplicate samples were collected from each inlet in Tedlar bags for off-site GCFID analysis for C1 – C6 hydrocarbons, oxygen, carbon dioxide and nitrogen.

The sample spiking procedures from Method 18 were not proposed as the samples (essentially fuel gas samples) were expected to be stable. Any analyte loss would be a bias against the source.

The Method 18 concentration data were combined with the pitot traverse data to calculate flare inlet NMOC mass flow to determine the control efficiency for NMOC.

6. Conclusions

The results of the testing conducted by APT demonstrate that the TCI Flares at Debeque Compressor Station and Rifle Boulton Station are operating in compliance with applicable emission limits. The test results for Greasewood Gas Plant indicate that no VOC destruction is occurring. This is not the case because the flare appears to be operating well. Thus, the results suggest that there is some unidentified factor that makes this particular flare difficult to test, such as possible difficulty with measuring the inlet loading to the flare. The TCI Flare at Foundation Creek Gas Plant exceeds all its applicable emission limits.

Appendix 1

Testing Parameters / Sample Calculations

Debeque Compressor Station Flare

ETC Canyon Pipeline, LLC
 Debeque Compressor Station
 Mesa County, CO
 Flare Inlet
 10/04/10

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	14:49	16:13	17:31	
	Stop Time	15:49	17:13	18:31	
	Sample Duration (minutes)	60	60	60	
D _S	Stack Diameter (inches)	4.0	4.0	4.0	4.0
$\sqrt{\Delta P}_{AVG}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.073	0.064	0.067	0.068
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	96	94	93	94
P _{bar}	Barometric Pressure (mbar)	847	847	847	847
P _{bar}	Barometric Pressure (" Hg)	25.01	25.01	25.01	25.01
P _s	Stack Pressure (" H ₂ O)	0.0	0.0	0.0	0.0
O ₂ %vd	O ₂ (%vd)	0.4	0.6	0.4	0.5
CO ₂ %vd	CO ₂ (%vd)	3.9	4.1	4.0	4.0
N ₂ %vd	N ₂ (%vd)	95.7	95.3	95.5	95.5

Laboratory Data					
MW	Run #	1	2	3	Average
30.07	C2 mole %	3.70	3.36	3.48	3.51
44.09	C3 mole %	1.76	1.45	1.50	1.57
58.12	C4 mole %	1.19	1.04	1.02	1.08
72.16	C5 mole %	0.98	0.75	0.8	0.84
86.19	C6 mole %	5.42	4.43	3.36	4.40

Reference Method Calculations					
	Run #	1	2	3	Average
B _{ws}	Saturated Moisture Content (%/100)	0.068	0.064	0.062	0.065
M _D	Molecular Weight Dry (lb/lb-mole)	28.64	28.68	28.66	28.66
M _A	Molecular Weight Wet (lb/lb-mole)	27.92	27.99	28.00	27.97
V _S	Gas Velocity (ft/sec)	4.6	4.0	4.2	4.2
F _{ACFM}	Gas Flow (acf m)	23.9	20.9	21.9	22.2
F _{DSCFM}	Gas Flow (dscfm)	17.7	15.6	16.4	16.6
lb/hr	Gas Flow (lb/hr)	83	73	76	77
lb/hr	NMOC (lb/hr)	22.0	16.1	14.7	17.6

DRE Calculations					
	Run #	1	2	3	Average
lb/hr	Outlet NMOC (lb/hr as C ₃ H ₈)	0.13	0.10	0.09	0.11
lb/hr	Inlet NMOC (lb/hr)	22.0	16.1	14.7	17.6
DRE (%)	VOC DRE (%)	99.4%	99.4%	99.4%	99.4%

ETC Canyon Pipeline, LLC
 Debeque Compressor Station
 Mesa County, CO
 Flare Outlet
 10/4/2010

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	14:49	16:13	17:31	
	Stop Time	15:49	17:13	18:31	
	Sample Duration (minutes)	60	60	60	
hrs	Hours of Operation / Year	8,760	8,760	8,760	8,760
D _S	Stack Diameter (inches)	36.5	36.5	36.5	36.5
$\sqrt{\Delta P}_{AVG}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.1060	0.0953	0.1036	0.1016
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	432	419	405	419
P _{bar}	Barometric Pressure (mbar)	847	847	847	847
P _{bar}	Barometric Pressure (" Hg)	25.01	25.01	25.01	25.01
P _s	Stack Pressure (" H ₂ O)	0.0	0.0	0.0	0.0
Y _d	Meter Y Factor (unitless)	0.980	0.980	0.980	0.980
T _m	Meter Temperature (°F)	81	78	81	80
V _m	Sample Volume (ft ³)	40.953	41.347	41.397	41.232
ΔH	Orifice Pressure Delta H (" H ₂ O)	1.0	1.0	1.0	1.0
V _{lc}	Moisture (g)	20.2	9.4	13.1	14.2
O ₂ %vd	O ₂ (%vd)	20.5	20.6	19.7	20.2
CO ₂ %vd	CO ₂ (%vd)	0.2	0.1	0.6	0.3
N ₂ %vd	N ₂ (%vd)	79.4	79.3	79.7	79.5
wet	CH ₄ (ppmvw)	74.5	62.1	64.2	66.9
wet	NMOC (ppmvw as C ₃ H ₈)	11.0	9.3	7.1	9.1

Reference Method Calculations					
	Run #	1	2	3	Average
V _{mstd}	Sample Volume (dscf)	32.799	33.328	33.176	33.101
V _{wstd}	Moisture Volume (scf)	0.95	0.44	0.62	0.67
B _{ws}	Moisture Content (%/100)	0.028	0.013	0.018	0.020
M _D	Molecular Weight Dry (lb/lb-mole)	28.84	28.84	28.88	28.86
M _A	Molecular Weight Wet (lb/lb-mole)	28.54	28.70	28.68	28.64
V _s	Gas Velocity (ft/sec)	8.3	7.4	8.0	7.9
F _{ACFM}	Gas Flow (acf m)	3,622	3,223	3,477	3,441
F _{DSCFM}	Gas Flow (dscfm)	1,741	1,597	1,742	1,693
lb/hr	Gas Flow (lb/hr)	7,964	7,233	7,924	7,707
dry	CH ₄ (ppmvd)	76.7	61.3	63.0	67.0
lb/hr	CH ₄ (lb/hr)	0.3	0.2	0.3	0.3
tpy	CH ₄ (tons/year)	1.5	1.1	1.2	1.2
dry	NMOC (ppmvd as C ₃ H ₈)	11.3	9.4	7.3	9.3
lb/hr	NMOC (lb/hr as C ₃ H ₈)	0.1	0.1	0.1	0.1
lb/year	NMOC (lb/year as C ₃ H ₈)	1,181	900	762	947
tpy	NMOC (tons/year as C ₃ H ₈)	0.6	0.5	0.4	0.5

ETC Canyon Pipeline, LLC
Debeque Compressor Station
Mesa County, CO
Flare Outlet
10/04/10

Linearity Information				
Gas	O ₂	CO ₂	CH ₄	NMOC
Span Gas Value/Range	21.1	19.7	1500.0	84.5
	10.00	10.10	310.0	30.0
	0.0	0.0	0.5	-0.4
	10.1	10.1	310.0	31.2
Linearity Bias (Zero)	0.0	0.0	0.0	0.0
Linearity Bias (Span)	10.1	10.1	311.4	30.2
Gas Concentration	%	%	(ppm)	(ppm)
1	0.0	0.0	0.0	0.0
2	10.0	10.1	310	30.0
3	21.1	19.7	759	50.1
4			1500	84.5
Response	0.0	0.0	0.0	0.0
	10.1	10.1	311.4	30.2
	21.1	19.7	766.5	50.9
			1500.6	84.9
Difference	0.0	0.0	0.0	0.0
	0.1	0.0	1.4	0.2
	0.0	0.0	7.5	0.8
	0.0	0.0	0.6	0.4
Results				
Zero Bias	0.00%	0.00%	0.03%	0.47%
Span Bias	0.00%	0.00%	0.09%	1.18%
Max Calibration Error	0.47%	0.00%	0.50%	0.95%

ETC Canyon Pipeline, LLC
 Debeque Compressor Station
 Mesa County, CO
 Flare Outlet
 10/04/10

Run 1

Start Time	10/4/10 14:49
Run Length	60
Stop Time	15:49

Calibration Information					
Calibration	Gas	O ₂	CO ₂	CH ₄	NMOC
	Instrument Range	21.1	19.7	1500	85
	Span Gas Value	10.00	10.10	310.0	30.0
	Pretest Calibration				
	Zero%	0.0	0.0	0.5	-0.4
	Span%	10.1	10.1	310.0	31.2
	Post Test Calibration				
	Zero%	0.0	0.0	1.1	1.0
	Span%	10.0	10.1	337.2	32.1
Results	Absolute Bias (Zero)	0.0%	0.0%	0.1%	1.2%
	Absolute Bias (Span)	0.5%	0.0%	1.7%	2.2%
	Absolute Drift (Zero)	0.0%	0.0%	0.0%	1.7%
	Absolute Drift (Span)	0.5%	0.0%	1.8%	1.1%
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		20.5	0.2	74.5	11.0
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		20.6	0.2	78.4	11.8
1	14:49	20.5	0.2	97.3	5.6
2	14:50	20.5	0.2	92.3	0.7
3	14:51	20.6	0.1	77.1	7.8
4	14:52	20.5	0.2	200.6	14.1
5	14:53	20.6	0.1	214.1	14.6
6	14:54	20.6	0.1	102.0	10.4
7	14:55	20.6	0.1	137.1	6.5
8	14:56	20.7	0.1	25.6	5.5
9	14:57	20.6	0.1	25.1	6.0
10	14:58	20.7	0.1	35.9	6.1
11	14:59	20.7	0.0	101.9	5.5
12	15:00	20.7	0.1	26.3	1.9
13	15:01	20.7	0.0	38.3	5.7
14	15:02	20.7	0.1	11.8	9.1
15	15:03	20.7	0.1	24.6	4.1
16	15:04	20.7	0.1	16.3	6.4
17	15:05	20.7	0.1	16.4	8.5
18	15:06	20.7	0.1	50.4	3.1
19	15:07	20.6	0.1	37.6	4.7
20	15:08	20.7	0.1	18.7	6.7
21	15:09	20.7	0.0	27.7	5.7
22	15:10	20.7	0.1	21.7	6.3
23	15:11	20.7	0.1	25.9	8.4
24	15:12	20.6	0.1	29.4	7.3
25	15:13	20.7	0.1	20.9	4.7
26	15:14	20.4	0.2	18.1	6.0
27	15:15	20.7	0.1	13.7	8.2
28	15:16	20.7	0.0	4.7	8.8
29	15:17	20.5	0.2	5.8	10.2
30	15:18	20.7	0.1	14.7	7.7
31	15:19	20.7	0.0	47.6	2.5
32	15:20	20.7	0.1	4.5	10.3
33	15:21	20.7	0.1	9.9	2.4
34	15:22	20.7	0.1	18.4	4.5
35	15:23	20.4	0.2	37.0	5.6
36	15:24	20.6	0.2	55.2	12.2
37	15:25	20.6	0.2	205.6	41.9
38	15:26	20.7	0.1	70.8	13.8
39	15:27	20.6	0.1	89.4	10.5
40	15:28	20.5	0.3	76.1	9.6
41	15:29	20.5	0.2	105.9	20.7
42	15:30	20.5	0.2	161.6	24.2
43	15:31	20.3	0.3	202.1	26.0
44	15:32	20.5	0.3	178.3	29.6
45	15:33	20.5	0.2	157.3	32.6
46	15:34	20.3	0.3	102.4	29.3
47	15:35	20.6	0.2	218.6	22.8
48	15:36	20.3	0.3	170.3	18.2
49	15:37	20.4	0.3	104.5	15.0
50	15:38	20.4	0.2	115.7	22.6
51	15:39	20.6	0.1	118.7	15.6
52	15:40	20.5	0.2	163.8	3.3
53	15:41	20.6	0.1	104.6	19.6
54	15:42	20.2	0.4	50.9	7.9
55	15:43	20.4	0.3	70.7	8.9
56	15:44	20.3	0.4	60.8	9.8
57	15:45	20.1	0.5	95.2	12.2
58	15:46	20.4	0.3	150.2	39.7
59	15:47	20.6	0.1	92.2	21.5
60	15:48	20.5	0.2	43.7	5.8

ETC Canyon Pipeline, LLC
 Debeque Compressor Station
 Mesa County, CO
 Flare Outlet
 10/04/10

Run 2

Start Time	10/04/10 16:13
Run Length	60
Stop Time	17:13

Calibration Information				
Gas	O ₂	CO ₂	CH ₄	NMOC
Instrument Range	21.1	19.7	1500	85
Span Gas Value	10.00	10.10	310.0	30.0
Calibration				
Pretest Calibration				
Zero%	0.0	0.0	1.1	1.0
Span%	10.0	10.1	337.2	32.1
Post Test Calibration				
Zero%	0.0	0.0	1.4	0.0
Span%	10.0	10.1	335.2	30.5
Results				
Absolute Bias (Zero)	0.0%	0.0%	0.1%	0.0%
Absolute Bias (Span)	0.5%	0.0%	1.6%	0.4%
Absolute Drift (Zero)	0.0%	0.0%	0.0%	1.2%
Absolute Drift (Span)	0.0%	0.0%	0.1%	1.9%
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw
		20.6	0.1	62.1
				Corrected NMOC ppm
				9.3
Run Length (Minutes)			Uncorrected O ₂ %	Uncorrected CO ₂ %
			20.6	0.1
			68.3	10.0
1	16:13	20.1	0.4	113.3
2	16:14	20.2	0.4	83.8
3	16:15	20.3	0.3	130.6
4	16:16	20.5	0.2	140.6
5	16:17	20.3	0.3	110.4
6	16:18	20.3	0.4	126.1
7	16:19	20.7	0.1	123.7
8	16:20	20.7	0.1	148.7
9	16:21	20.7	0.1	11.9
10	16:22	20.6	0.1	15.9
11	16:23	20.6	0.1	18.2
12	16:24	20.6	0.1	51.3
13	16:25	20.6	0.1	69.0
14	16:26	20.6	0.1	46.1
15	16:27	20.6	0.1	48.2
16	16:28	20.5	0.1	75.6
17	16:29	20.5	0.2	35.4
18	16:30	20.6	0.1	91.9
19	16:31	20.6	0.1	57.7
20	16:32	20.6	0.2	31.2
21	16:33	20.5	0.2	29.1
22	16:34	20.5	0.2	81.1
23	16:35	20.5	0.1	112.6
24	16:36	20.5	0.2	86.7
25	16:37	20.5	0.1	49.5
26	16:38	20.6	0.1	71.5
27	16:39	20.6	0.1	105.4
28	16:40	20.6	0.1	71.1
29	16:41	20.5	0.1	57.9
30	16:42	20.6	0.1	39.2
31	16:43	20.6	0.1	47.9
32	16:44	20.5	0.1	97.7
33	16:45	20.6	0.1	72.6
34	16:46	20.5	0.1	33.2
35	16:47	20.7	0.1	47.6
36	16:48	20.6	0.1	86.9
37	16:49	20.6	0.1	60.8
38	16:50	20.6	0.1	29.9
39	16:51	20.7	0.1	60.9
40	16:52	20.7	0.1	93.3
41	16:53	20.6	0.1	67.4
42	16:54	20.6	0.1	32.1
43	16:55	20.7	0.1	20.1
44	16:56	20.6	0.1	40.8
45	16:57	20.6	0.1	54.7
46	16:58	20.6	0.1	52.3
47	16:59	20.6	0.1	42.9
48	17:00	20.6	0.1	45.2
49	17:01	20.6	0.1	92.4
50	17:02	20.6	0.1	114.8
51	17:03	20.6	0.1	59.8
52	17:04	20.6	0.1	36.2
53	17:05	20.6	0.1	92.2
54	17:06	20.6	0.1	107.7
55	17:07	20.6	0.1	73.0
56	17:08	20.6	0.1	26.8
57	17:09	20.6	0.1	22.5
58	17:10	20.5	0.2	78.5
59	17:11	20.6	0.1	93.3
60	17:12	20.6	0.1	83.4

ETC Canyon Pipeline, LLC
 Debeque Compressor Station
 Mesa County, CO
 Flare Outlet
 10/04/10

Run 3

Start Time	10/4/10 17:31
Run Length	60
Stop Time	18:31

Calibration Information					
Gas	O ₂	CO ₂	CH ₄	NMOC	
Instrument Range	21.1	19.7	1500	85	
Span Gas Value	10.00	10.10	310.0	30.0	
Calibration					
Pretest Calibration					
Zero%	0.0	0.0	1.4	0.0	
Span%	10.0	10.1	335.2	30.5	
Post Test Calibration					
Zero%	0.0	0.0	2.0	0.9	
Span%	10.0	10.1	329.2	30.4	
Results					
Absolute Bias (Zero)	0.0%	0.0%	0.1%	1.1%	
Absolute Bias (Span)	0.5%	0.0%	1.2%	0.2%	
Absolute Drift (Zero)	0.0%	0.0%	0.0%	1.1%	
Absolute Drift (Span)	0.0%	0.0%	0.4%	0.1%	
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		19.7	0.6	64.2	7.1
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		19.7	0.6	70.2	7.6
1	17:31	20.5	0.1	18.9	1.2
2	17:32	20.6	0.1	10.5	0.2
3	17:33	20.6	0.1	64.4	7.6
4	17:34	20.6	0.1	42.9	2.6
5	17:35	20.6	0.0	19.3	0.4
6	17:36	20.6	0.0	33.2	2.3
7	17:37	20.6	0.0	21.2	1.2
8	17:38	20.6	0.0	35.8	4.5
9	17:39	20.3	0.3	30.9	5.0
10	17:40	20.0	0.4	2.8	0.3
11	17:41	20.3	0.2	5.6	-0.1
12	17:42	20.2	0.3	7.3	-0.4
13	17:43	19.9	0.5	7.1	0.0
14	17:44	19.6	0.7	7.0	0.0
15	17:45	19.2	0.9	18.2	2.5
16	17:46	19.8	0.5	90.6	16.4
17	17:47	20.5	0.1	230.1	42.2
18	17:48	19.8	0.6	85.0	14.9
19	17:49	20.5	0.2	5.9	-0.2
20	17:50	20.2	0.3	40.5	-0.1
21	17:51	20.1	0.4	47.1	1.7
22	17:52	19.9	0.5	91.1	16.2
23	17:53	20.1	0.4	65.7	1.7
24	17:54	20.4	0.2	30.7	2.8
25	17:55	19.8	0.6	55.3	8.5
26	17:56	20.1	0.4	77.6	11.4
27	17:57	20.0	0.4	70.1	3.7
28	17:58	20.0	0.5	56.3	4.9
29	17:59	19.3	0.8	75.3	14.4
30	18:00	19.9	0.5	117.0	19.8
31	18:01	19.1	0.9	124.4	15.9
32	18:02	19.4	0.8	74.2	5.7
33	18:03	19.9	0.5	94.8	11.5
34	18:04	19.8	0.5	188.2	27.6
35	18:05	19.3	0.8	135.6	17.3
36	18:06	19.3	0.8	92.5	2.6
37	18:07	19.4	0.8	155.1	11.2
38	18:08	19.2	0.8	93.0	11.5
39	18:09	19.5	0.7	55.5	7.1
40	18:10	19.7	0.6	96.1	8.9
41	18:11	19.4	0.8	113.1	4.8
42	18:12	19.4	0.8	126.5	19.1
43	18:13	19.4	0.8	109.5	19.2
44	18:14	19.2	0.9	56.6	2.6
45	18:15	19.1	0.9	40.9	-0.2
46	18:16	19.2	0.9	81.0	11.5
47	18:17	18.7	1.1	81.5	12.1
48	18:18	18.6	1.2	87.9	9.1
49	18:19	18.9	1.0	147.7	11.7
50	18:20	19.0	1.0	128.9	11.4
51	18:21	19.3	0.8	138.4	18.8
52	18:22	19.4	0.8	104.2	13.3
53	18:23	19.4	0.7	39.2	1.0
54	18:24	19.2	0.9	47.4	0.6
55	18:25	19.5	0.8	49.3	3.4
56	18:26	19.5	0.7	74.8	6.8
57	18:27	19.4	0.8	59.0	0.6
58	18:28	19.5	0.7	30.2	1.1
59	18:29	19.6	0.7	87.6	3.7
60	18:30	19.5	0.7	53.5	0.1

Foundation Creek Gas Plant Flare

ETC Canyon Pipeline, LLC
 Foundation Creek Gas Plant
 Rio Blanco County, CO
 Flare Inlet
 10/06/10

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	14:11	15:32	17:20	
	Stop Time	15:11	16:32	18:20	
	Sample Duration (minutes)	60	60	60	
D _S	Stack Diameter (inches)	4.0	4.0	4.0	4.0
ΔP _{Avg}	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.148	0.151	0.141	0.147
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	68	62	53	61
P _{bar}	Barometric Pressure (mbar)	794	794	794	794
P _{bar}	Barometric Pressure (" Hg)	23.45	23.45	23.45	23.45
P _S	Stack Pressure (" H ₂ O)	8.0	9.0	8.5	8.5
O ₂ %vd	O ₂ (%vd)	0.0	0.0	0.0	0.0
CO ₂ %vd	CO ₂ (%vd)	2.6	2.1	2.2	2.3
N ₂ %vd	N ₂ (%vd)	97.4	97.9	97.8	97.7

Laboratory Data					
MW	Run #	1	2	3	Average
30.07	C2 mole %	6.68	6.62	6.39	6.56
44.09	C3 mole %	6.52	6.33	6.15	6.33
58.12	C4 mole %	6.93	6.72	6.63	6.76
72.16	C5 mole %	5.25	5.07	5.24	5.19
86.19	C6 mole %	7.52	4.93	7.06	6.50

Reference Method Calculations					
	Run #	1	2	3	Average
B _{ws}	Saturated Moisture Content (%/100)	0.029	0.023	0.017	0.023
M _D	Molecular Weight Dry (lb/lb-mole)	28.41	28.34	28.35	28.37
M _A	Molecular Weight Wet (lb/lb-mole)	28.11	28.10	28.18	28.13
V _S	Gas Velocity (ft/sec)	9.2	9.3	8.6	9.0
F _{ACFM}	Gas Flow (acfmin)	48.1	48.7	45.0	47.3
F _{DSCFM}	Gas Flow (dscfm)	37.5 - 240 ⁰	38.8	36.6	37.6 - 240 ⁰
lb/hr	Gas Flow (lb/hr)	169	174	164	169
lb/hr	NMOC (lb/hr)	112.1	100.2	104.7	105.7

DRE Calculations					
	Run #	1	2	3	Average
lb/hr	Outlet NMOC (lb/hr as C ₃ H ₈)	9.1	8.6	8.3	8.6
lb/hr	Inlet NMOC (lb/hr)	112.1	100.2	104.7	105.7
DRE (%)	VOC DRE (%)	91.9%	91.4%	92.1%	91.8%

37.6 43
 60 37.6
 223.6 225.000
 240⁰

ETC Canyon Pipeline, LLC
 Foundation Creek Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/6/2010

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	14:11	15:32	17:20	
	Stop Time	15:11	16:32	18:20	
	Sample Duration (minutes)	60	60	60	
hrs	Hours of Operation / Year	8,760	8,760	8,760	8,760
D _s	Stack Diameter (inches)	36.5	36.5	36.5	36.5
$\sqrt{\Delta P}_{AVG}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.1967	0.1800	0.1833	0.1867
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	909	909	912	910
P _{bar}	Barometric Pressure (mbar)	794	794	794	794
P _{bar}	Barometric Pressure (" Hg)	23.45	23.45	23.45	23.45
P _s	Stack Pressure (" H ₂ O)	-0.02	-0.02	-0.02	-0.02
Y _d	Meter Y Factor (unitless)	0.980	0.980	0.980	0.980
T _m	Meter Temperature (°F)	75	81	59	72
V _m	Sample Volume (ft ³)	44.285	42.339	41.973	42.866
ΔH	Orifice Pressure Delta H (" H ₂ O)	1.0	1.0	1.0	1.0
V _{lc}	Moisture (g)	24.8	30.2	19.3	24.8
O ₂ %vd	O ₂ (%vd)	18.9	17.4	18.9	18.4
CO ₂ %vd	CO ₂ (%vd)	0.9	1.5	1.3	1.2
N ₂ %vd	N ₂ (%vd)	80.2	81.1	79.9	80.4
wet	CH ₄ (ppmvw)	759.6	800.7	745.4	768.6
wet	NMOC (ppmvw as C ₃ H ₈)	507.7	525.2	500.1	511.0

Reference Method Calculations					
	Run #	1	2	3	Average
V _{mstd}	Sample Volume (dscf)	33.638	31.836	32.889	32.788
V _{wstd}	Moisture Volume (scf)	1.17	1.42	0.91	1.17
B _{ws}	Moisture Content (%/100)	0.034	0.043	0.027	0.034
M _D	Molecular Weight Dry (lb/lb-mole)	28.90	28.94	28.96	28.93
M _A	Molecular Weight Wet (lb/lb-mole)	28.53	28.47	28.67	28.56
V _s	Gas Velocity (ft/sec)	19.7	18.1	18.4	18.7
F _{ACFM}	Gas Flow (acfpm)	8,601	7,878	8,004	8,161
F _{DSCFM}	Gas Flow (dscfm)	2,511	2,279	2,349	2,380
lb/hr	Gas Flow (lb/hr)	11,547	10,556	10,775	10,960
dry	CH ₄ (ppmvd)	786.0	766.5	725.4	759.3
lb/hr	CH ₄ (lb/hr)	4.9	4.4	4.3	4.5
tpy	CH ₄ (tons/year)	21.6	19.1	18.6	19.8
dry	NMOC (ppmvd as C ₃ H ₈)	525.4	548.7	513.9	529.3
lb/hr	NMOC (lb/hr as C ₃ H ₈)	9.1	8.6	8.3	8.6
tpy	NMOC (tons/year as C ₃ H ₈)	39.6	37.6	36.3	37.8

ETC Canyon Pipeline, LLC
Foundation Creek Gas Plant
Rio Blanco County, CO
Flare Outlet
10/06/10

Linearity Information				
Gas	O ₂	CO ₂	CH ₄	NMOC
Span Gas Value/Range	21.1	19.7	1500.0	847.0
	10.00	10.10	310.0	303.0
	0.1	0.0	1.6	0.6
	10.0	10.1	295.9	310.6
Linearity Bias (Zero)	0.0	0.0	3.8	1.1
Linearity Bias (Span)	10.0	10.1	310.9	305.2
Gas Concentration	%	%	(ppm)	(ppm)
1	0.0	0.0	0.0	0.0
2	10.0	10.1	310.0	303.0
3	21.1	19.7	759.0	493.0
4			1500.0	847.0
Response	0.0	0.0	3.8	1.1
	10.0	10.1	310.9	305.2
	21.1	19.7	760.1	491.0
			1507.1	845.2
Difference	0.0	0.0	3.8	1.1
	0.0	0.0	0.9	2.2
	0.0	0.0	1.1	2.0
	0.0	0.0	7.1	1.8
Results				
Zero Bias	0.47%	0.00%	0.15%	0.06%
Span Bias	0.00%	0.00%	1.00%	0.64%
Max Calibration Error	0.00%	0.00%	0.47%	0.26%

ETC Canyon Pipeline, LLC
 Foundation Creek Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/06/10

Run 1

Start Time	10/06/10 14:11
Run Length	60
Stop Time	15:11

Calibration Information					
Gas	O ₂	CO ₂	CH ₄	NMOC	
Instrument Range	21.1	19.7	1500	847	
Span Gas Value	10.00	10.10	310.0	303.0	
Calibration	Zero%	0.1	1.6	0.6	
	Span%	10.0	295.9	310.6	
Results	Zero%	-0.1	3.3	1.9	
	Span%	9.9	301.4	309.6	
Absolute Bias (Zero)	0.5%	0.0%	0.0%	0.1%	
Absolute Bias (Span)	0.5%	0.5%	0.6%	0.5%	
Absolute Drift (Zero)	0.5%	0.0%	0.1%	0.2%	
Absolute Drift (Span)	0.5%	0.5%	0.4%	0.1%	
	Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm	
	18.9	0.9	739.6	507.7	
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		18.8	0.9	728.2	518.8
1	14:11	18.3	1.3	686.6	500.8
2	14:12	15.7	2.9	520.1	337.9
3	14:13	15.5	3.0	348.6	261.0
4	14:14	18.6	1.1	553.7	351.7
5	14:15	20.0	0.4	669.6	403.2
6	14:16	18.7	1.0	464.7	252.6
7	14:17	18.8	1.0	614.6	318.7
8	14:18	19.0	0.8	851.0	643.7
9	14:19	18.7	1.0	597.7	421.4
10	14:20	18.6	1.1	696.6	463.2
11	14:21	19.6	0.6	1060.4	614.7
12	14:22	19.9	0.4	384.3	254.7
13	14:23	17.9	1.4	649.3	458.2
14	14:24	17.1	1.9	456.7	341.7
15	14:25	17.1	1.9	732.2	539.9
16	14:26	18.2	1.3	677.8	615.7
17	14:27	19.1	0.7	869.3	599.9
18	14:28	18.7	1.0	646.0	450.5
19	14:29	18.4	1.1	683.3	484.2
20	14:30	19.3	0.7	860.3	591.8
21	14:31	18.2	1.3	655.1	414.4
22	14:32	18.9	0.8	759.4	493.3
23	14:33	19.0	0.8	991.6	689.1
24	14:34	16.3	2.3	676.0	482.8
25	14:35	17.9	1.4	548.3	358.5
26	14:36	19.2	0.7	738.3	514.0
27	14:37	18.2	1.2	1060.0	693.3
28	14:38	19.5	0.5	646.1	469.4
29	14:39	18.0	1.3	739.9	513.7
30	14:40	19.2	0.7	708.6	474.6
31	14:41	19.8	0.4	734.4	447.1
32	14:42	18.3	1.1	710.0	477.0
33	14:43	19.1	0.7	388.1	292.5
34	14:44	19.9	0.3	831.5	617.8
35	14:45	19.7	0.4	1320.5	951.4
36	14:46	19.2	0.6	832.1	627.8
37	14:47	19.6	0.5	482.9	388.9
38	14:48	19.2	0.6	660.6	527.5
39	14:49	20.0	0.2	540.2	431.0
40	14:50	19.6	0.4	721.2	542.7
41	14:51	18.9	0.8	1059.0	776.6
42	14:52	19.7	0.4	876.8	638.3
43	14:53	20.1	0.2	1006.1	755.4
44	14:54	20.0	0.2	934.7	729.6
45	14:55	19.8	0.3	393.9	321.5
46	14:56	19.0	0.7	301.5	239.5
47	14:57	20.0	0.2	532.9	428.5
48	14:58	19.6	0.4	1176.1	915.5
49	14:59	18.6	0.9	1005.4	751.3
50	15:00	18.2	1.1	614.8	529.8
51	15:01	17.9	1.4	465.1	398.4
52	15:02	18.6	0.9	453.2	340.4
53	15:03	18.9	0.8	990.6	731.1
54	15:04	19.5	0.5	930.2	660.9
55	15:05	17.6	1.5	1074.5	754.8
56	15:06	18.7	0.9	1082.9	765.6
57	15:07	19.5	0.4	652.1	472.7
58	15:08	18.4	1.0	794.3	573.2
59	15:09	19.3	0.6	753.4	557.1
60	15:10	18.7	0.9	627.2	475.0

ETC Canyon Pipeline, LLC
 Foundation Creek Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/06/10

Run 2

Start Time	10/06/10 15:32
Run Length	60
Stop Time	16:32

Calibration Information					
Calibration	Gas	O ₂	CO ₂	CH ₄	NMOC
	Instrument Range	21.1	19.7	1500	847
	Span Gas Value	10.00	10.10	310.0	303.0
Results	Pretest Calibration				
	Zero% Span%	-0.1 9.9	0.0 10.2	3.3 301.4	1.9 309.6
	Post Test Calibration				
	Zero% Span%	0.0 9.9	0.0 10.1	1.0 304.0	0.1 313.0
	Absolute Bias (Zero)	0.0%	0.0%	0.2%	0.1%
	Absolute Bias (Span)	0.5%	0.0%	0.5%	0.9%
	Absolute Drift (Zero)	0.5%	0.0%	0.2%	0.2%
	Absolute Drift (Span)	0.0%	0.5%	0.2%	0.4%
		Corrected O ₂ % 17.4	Corrected CO ₂ % 1.5	Corrected CH ₄ ppmvw 800.7	Corrected NMOC ppm 525.2
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
1	15:32	16.2	2.5	778.5	538.9
2	15:33	17.5	1.7	728.1	541.3
3	15:34	19.2	0.8	565.5	419.1
4	15:35	19.5	0.5	988.2	645.2
5	15:36	18.4	1.1	1206.2	779.4
6	15:37	18.7	0.9	973.4	681.9
7	15:38	18.6	0.9	858.4	561.9
8	15:39	17.4	1.7	1028.6	669.1
9	15:40	18.0	1.3	852.1	542.3
10	15:41	17.0	1.8	863.4	580.1
11	15:42	18.0	1.4	1180.2	762.5
12	15:43	19.8	0.4	740.8	509.1
13	15:44	19.3	0.6	698.8	481.5
14	15:45	18.5	1.0	710.3	496.5
15	15:46	20.0	0.2	787.8	606.6
16	15:47	16.9	1.8	701.6	493.0
17	15:48	13.4	3.9	955.6	688.8
18	15:49	17.1	1.8	971.4	685.2
19	15:50	17.1	1.7	774.0	486.8
20	15:51	16.3	2.2	713.5	428.8
21	15:52	13.9	3.4	892.6	581.9
22	15:53	16.6	1.9	1029.5	703.4
23	15:54	15.7	2.4	816.1	560.7
24	15:55	17.6	1.3	559.6	359.8
25	15:56	17.2	1.4	573.7	355.7
26	15:57	15.9	2.3	495.2	341.5
27	15:58	17.6	1.2	545.1	386.9
28	15:59	17.2	1.5	625.6	424.4
29	16:00	17.4	1.3	683.9	416.3
30	16:01	17.5	1.3	759.2	488.5
31	16:02	18.3	0.9	737.0	462.7
32	16:03	17.7	1.2	746.2	507.2
33	16:04	17.8	1.1	704.0	460.2
34	16:05	18.1	0.9	606.7	407.0
35	16:06	17.7	1.1	914.1	607.9
36	16:07	16.0	2.1	844.0	591.6
37	16:08	16.9	1.6	797.6	558.0
38	16:09	17.7	1.1	914.6	614.6
39	16:10	17.3	1.4	714.1	508.4
40	16:11	13.6	3.4	636.9	464.2
41	16:12	16.3	2.1	911.1	627.5
42	16:13	18.6	0.6	983.2	672.2
43	16:14	18.3	0.7	950.0	680.7
44	16:15	11.4	4.4	971.8	731.1
45	16:16	13.3	3.7	563.8	432.7
46	16:17	16.4	2.1	232.2	144.6
47	16:18	16.2	1.8	424.5	258.6
48	16:19	17.5	1.3	516.7	378.2
49	16:20	17.6	1.1	557.9	386.6
50	16:21	17.4	1.3	573.9	408.7
51	16:22	17.7	1.2	1124.2	804.4
52	16:23	18.7	0.6	892.5	634.2
53	16:24	14.8	2.8	854.8	624.9
54	16:25	17.1	1.7	1011.9	711.9
55	16:26	18.9	0.5	792.5	537.2
56	16:27	18.6	0.6	477.8	393.8
57	16:28	18.7	0.6	822.6	637.9
58	16:29	19.2	0.4	487.4	401.0
59	16:30	18.3	0.8	972.7	744.3
60	16:31	17.0	1.5	1174.8	901.8

ETC Canyon Pipeline, LLC
 Foundation Creek Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/06/10

Run 3

Start Time	10/06/10 17:20
Run Length	60
Stop Time	18:20

Calibration Information					
Gas	O ₂	CO ₂	CH ₄	NMOC	
Instrument Range	21.1	19.7	1500	847	
Span Gas Value	10.00	10.10	310.0	303.0	
Calibration					
Pretest Calibration					
Zero%	0.0	0.0	1.0	0.1	
Span%	9.9	10.1	304.0	313.0	
Post Test Calibration					
Zero%	0.0	0.0	1.4	0.1	
Span%	10.2	10.2	295.4	296.3	
Results					
Absolute Bias (Zero)	0.0%	0.0%	0.2%	0.1%	
Absolute Bias (Span)	0.9%	0.5%	1.0%	1.1%	
Absolute Drift (Zero)	0.0%	0.0%	0.0%	0.0%	
Absolute Drift (Span)	1.4%	0.5%	0.6%	2.0%	
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		18.9	1.3	745.4	500.1
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		19.0	1.3	719.0	502.8
1	17:20	10.8	5.1	251.4	186.0
2	17:21	15.1	3.1	341.0	218.0
3	17:22	19.0	0.1	242.8	137.8
4	17:23	19.8	0.1	544.4	364.4
5	17:24	16.9	1.7	526.1	331.1
6	17:25	12.9	4.0	466.3	316.6
7	17:26	18.3	1.5	366.0	247.9
8	17:27	18.3	2.9	741.2	488.8
9	17:28	13.1	4.9	1022.5	674.5
10	17:29	13.4	3.9	790.8	536.6
11	17:30	13.7	3.8	481.8	336.7
12	17:31	14.6	3.6	574.3	386.2
13	17:32	17.3	2.2	857.0	559.4
14	17:33	16.3	2.8	752.1	478.7
15	17:34	15.8	2.7	503.5	349.1
16	17:35	16.3	2.7	567.1	356.2
17	17:36	13.4	4.5	799.9	514.5
18	17:37	18.1	1.7	310.0	252.6
19	17:38	18.9	1.6	832.0	539.5
20	17:39	19.7	1.0	904.3	569.1
21	17:40	15.9	3.3	950.6	674.8
22	17:41	19.1	1.5	660.0	455.0
23	17:42	21.6	0.1	300.0	232.7
24	17:43	21.1	0.3	780.3	539.4
25	17:44	20.7	0.5	275.6	203.9
26	17:45	20.8	0.5	574.6	383.1
27	17:46	19.7	0.9	955.4	663.1
28	17:47	20.6	0.4	1169.7	812.1
29	17:48	19.9	0.7	1097.3	777.0
30	17:49	20.2	0.5	797.4	554.7
31	17:50	20.3	0.6	830.8	583.1
32	17:51	20.9	0.3	861.2	632.1
33	17:52	20.5	0.5	750.4	535.8
34	17:53	20.6	0.4	854.4	584.1
35	17:54	21.0	0.2	735.6	515.1
36	17:55	21.0	0.2	600.9	433.1
37	17:56	20.8	0.3	347.5	274.6
38	17:57	20.8	0.3	390.9	269.5
39	17:58	20.8	0.4	650.7	450.3
40	17:59	20.8	0.3	631.3	465.6
41	18:00	21.0	0.3	710.1	550.9
42	18:01	20.6	0.5	993.5	683.6
43	18:02	20.8	0.4	603.7	422.4
44	18:03	21.1	0.2	959.4	702.0
45	18:04	20.8	0.3	912.4	665.6
46	18:05	19.8	0.5	449.2	325.2
47	18:06	21.1	0.4	518.1	380.1
48	18:07	20.3	0.6	669.8	471.6
49	18:08	20.9	0.4	802.4	578.7
50	18:09	20.8	0.4	748.5	543.0
51	18:10	21.1	0.3	841.0	593.2
52	18:11	19.8	0.9	886.8	645.3
53	18:12	20.1	0.7	1089.7	780.4
54	18:13	19.9	0.8	1139.6	786.2
55	18:14	20.3	0.6	878.8	620.5
56	18:15	21.0	0.4	1125.3	793.8
57	18:16	19.3	1.4	902.8	653.1
58	18:17	19.9	0.9	1010.9	735.5
59	18:18	20.0	0.9	879.3	675.1
60	18:19	19.8	0.8	928.3	676.6

Rifle Boulton Station Flare

ETC Canyon Pipeline, LLC
 Rifle Boulton Station
 Garfield County, CO
 Flare Inlet
 10/07/10

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	12:17	13:39	14:57	
	Stop Time	13:17	14:39	15:57	
	Sample Duration (minutes)	60	60	60	
D _S	Stack Diameter (inches)	4.0	4.0	4.0	4.0
$\sqrt{\Delta P}_{AVG}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.094	0.080	0.085	0.086
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	86	90	93	90
P _{bar}	Barometric Pressure (mbar)	810	810	810	810
P _{bar}	Barometric Pressure (" Hg)	23.92	23.92	23.92	23.92
P _s	Stack Pressure (" H ₂ O)	0.0	0.0	0.0	0.0
O ₂ %vd	O ₂ (%vd)	0.7	1.7	1.5	1.3
CO ₂ %vd	CO ₂ (%vd)	3.4	4.8	4.6	4.3
N ₂ %vd	N ₂ (%vd)	95.9	93.5	94.0	94.5

Laboratory Data					
MW	Run #	1	2	3	Average
30.07	C2 mole %	7.75	2.53	2.15	4.14
44.09	C3 mole %	1.62	2.23	2.57	2.14
58.12	C4 mole %	1.58	1.50	1.43	1.50
72.16	C5 mole %	0.66	0.68	0.71	0.68
86.19	C6 mole %	2.44	2.17	2.64	2.42

Reference Method Calculations					
	Run #	1	2	3	Average
B _{ws}	Saturated Moisture Content (%/100)	0.052	0.059	0.065	0.059
M _D	Molecular Weight Dry (lb/lb-mole)	28.57	28.83	28.79	28.73
M _A	Molecular Weight Wet (lb/lb-mole)	28.02	28.19	28.08	28.10
V _S	Gas Velocity (ft/sec)	6.0	5.1	5.4	5.5
F _{ACFM}	Gas Flow (acf m)	31.2	26.6	28.4	28.7
F _{DSFCFM}	Gas Flow (dscfm)	22.8	19.2	20.3	20.8
lb/hr	Gas Flow (lb/hr)	105	89	95	97
lb/hr	NMOC (lb/hr)	23.3	14.9	17.1	18.4

DRE Calculations					
	Run #	1	2	3	Average
lb/hr	Outlet NMOC (lb/hr as C ₃ H ₈)	0.9	0.7	0.4	0.7
lb/hr	Inlet NMOC (lb/hr)	23.3	14.9	17.1	18.4
DRE (%)	VOC DRE (%)	96.1%	95.2%	97.5%	96.3%

ETC Canyon Pipeline, LLC

Rifle Boulton Station

Garfield County, CO

Flare Outlet

10/7/2010

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	12:17	13:39	14:57	
	Stop Time	13:17	14:39	15:57	
	Sample Duration (minutes)	60	60	60	
hrs	Hours of Operation / Year	8,760	8,760	8,760	8,760
D _S	Stack Diameter (inches)	40.5	40.5	40.5	40.5
$\sqrt{\Delta P}_{AVG}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.1011	0.0960	0.0917	0.0963
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	86	108	109	101
P _{bar}	Barometric Pressure (mbar)	810	810	810	810
P _{bar}	Barometric Pressure (" Hg)	23.92	23.92	23.92	23.92
P _S	Stack Pressure (" H ₂ O)	0.0	0.0	0.0	0.0
Y _d	Meter Y Factor (unitless)	0.980	0.980	0.980	0.980
T _m	Meter Temperature (°F)	78	81	84	81
V _m	Sample Volume (ft ³)	41.667	41.781	41.300	41.583
ΔH	Orifice Pressure Delta H (" H ₂ O)	1.0	1.0	1.0	1.0
V _{lc}	Moisture (g)	6.4	5.1	5.1	5.5
O ₂ %vd	O ₂ (%vd)	20.1	20.2	20.3	20.2
CO ₂ %vd	CO ₂ (%vd)	0.1	0.1	0.1	0.1
N ₂ %vd	N ₂ (%vd)	79.8	79.7	79.6	79.7
wet	CH ₄ (ppmvw)	214.6	248.7	157.5	206.9
wet	NMOC (ppmvw as C ₃ H ₈)	50.1	42.5	26.3	39.6

Reference Method Calculations					
	Run #	1	2	3	Average
V _{mstd}	Sample Volume (dscf)	32.111	32.057	31.513	31.894
V _{wstd}	Moisture Volume (scf)	0.30	0.24	0.24	0.26
B _{ws}	Moisture Content (%/100)	0.009	0.007	0.008	0.008
M _D	Molecular Weight Dry (lb/lb-mole)	28.82	28.82	28.82	28.82
M _A	Molecular Weight Wet (lb/lb-mole)	28.72	28.74	28.74	28.73
V _S	Gas Velocity (ft/sec)	6.3	6.1	5.9	6.1
F _{ACFM}	Gas Flow (acfpm)	3,395	3,289	3,143	3,275
F _{DSCFM}	Gas Flow (dscfm)	2,602	2,424	2,313	2,446
lb/hr	Gas Flow (lb/hr)	11,749	10,931	10,430	11,037
dry	CH ₄ (ppmvd)	216.6	246.8	156.3	206.6
lb/hr	CH ₄ (lb/hr)	1.4	1.5	0.9	1.3
tpy	CH ₄ (tons/year)	6.2	6.5	4.0	5.6
dry	NMOC (ppmvd as C ₃ H ₈)	50.5	42.8	26.5	40.0
lb/hr	NMOC (lb/hr as C ₃ H ₈)	0.9	0.7	0.4	0.7
tpy	NMOC (tons/year as C ₃ H ₈)	4.0	3.1	1.8	3.0

ETC Canyon Pipeline, LLC
 Rifle Boulton Station
 Garfield County, CO
 Flare Outlet
 10/07/10

Linearity Information				
Gas	O ₂	CO ₂	CH ₄	NMOC
Span Gas Value/Range	21.1	19.7	1500.0	84.5
	10.00	10.10	310.0	30.0
	0.0	0.1	1.2	1.7
	10.0	10.1	308.8	32.4
Linearity Bias (Zero)	0.0	0.0	2.4	0.1
Linearity Bias (Span)	10.0	10.0	311.3	30.9
Gas Concentration	%	%	(ppm)	(ppm)
	1	0.0	0.0	0.0
	2	10.0	10.1	310.0
	3	21.1	19.7	759.0
	4			1500.0
Response				84.5
	1	0.0	0.0	0.1
	2	10.0	10.0	311.3
	3	21.1	19.7	766.6
Difference	4			50.8
	1	0.0	0.0	1507.9
	2	0.0	0.1	85.1
	3	0.0	0.0	0.9
Results	4	0.0	0.0	0.7
				0.6
Zero Bias	0.00%	0.25%	0.08%	1.89%
Span Bias	0.00%	0.51%	0.17%	1.78%
Max Calibration Error	0.00%	0.51%	0.53%	1.07%

ETC Canyon Pipeline, LLC
 Rifle Botton Station
 Garfield County, CO
 Flare Outlet
 10/07/10

Run 1

Start Time	10/7/10 12:17
Run Length	60
Stop Time	13:17

Calibration Information					
Calibration	Gas	O ₂	CO ₂	CH ₄	NMOC
		Instrument Range	21.1	19.7	1500
Calibration	Span Gas Value	Span	10.00	10.10	85
				310.0	30.0
Results	Pretest Calibration	Zero%	0.0	0.1	1.2
		Span%	10.0	10.1	308.8
Results	Post Test Calibration	Zero%	0.0	0.0	0.8
		Span%	9.9	10.1	301.2
Results	Absolute Bias (Zero)	0.0%	0.0%	0.1%	0.6%
	Absolute Bias (Span)	0.5%	0.5%	0.7%	0.4%
	Absolute Drift (Zero)	0.0%	0.3%	0.0%	1.3%
	Absolute Drift (Span)	0.5%	0.0%	0.5%	2.1%
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		20.1	0.1	214.6	50.1
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
1	12:17	20.1	0.1	211.4	51.8
2	12:18	20.1	0.1	203.1	44.4
3	12:19	20.1	0.1	232.0	54.0
4	12:20	20.1	0.1	153.6	35.6
5	12:21	20.1	0.1	240.4	57.7
6	12:22	20.1	0.1	181.0	42.3
7	12:23	20.1	0.1	188.4	43.3
8	12:24	20.0	0.1	195.5	47.3
9	12:25	20.0	0.2	191.1	49.2
10	12:26	20.0	0.2	165.9	42.7
11	12:27	20.0	0.2	194.5	48.5
12	12:28	20.0	0.2	265.6	64.7
13	12:29	19.9	0.2	228.7	60.1
14	12:30	20.0	0.2	202.7	56.1
15	12:31	20.0	0.1	236.5	62.7
16	12:32	20.1	0.1	232.3	63.5
17	12:33	20.0	0.1	191.5	53.9
18	12:34	20.0	0.2	143.5	41.1
19	12:35	20.1	0.1	177.5	51.0
20	12:36	20.1	0.1	221.7	56.4
21	12:37	20.1	0.1	155.3	42.2
22	12:38	20.0	0.2	110.7	30.7
23	12:39	20.0	0.2	130.7	35.9
24	12:40	19.9	0.2	102.2	29.5
25	12:41	20.0	0.2	230.4	52.8
26	12:42	20.0	0.1	167.5	42.1
27	12:43	20.1	0.1	210.5	49.6
28	12:44	20.1	0.1	252.9	59.1
29	12:45	20.1	0.1	168.0	40.6
30	12:46	20.0	0.1	111.7	30.3
31	12:47	20.0	0.1	195.3	47.2
32	12:48	20.0	0.2	245.2	59.2
33	12:49	20.1	0.1	236.1	57.5
34	12:50	20.0	0.1	244.1	62.2
35	12:51	19.9	0.2	202.7	54.8
36	12:52	19.9	0.2	165.4	45.9
37	12:53	19.9	0.2	207.4	55.4
38	12:54	19.9	0.2	230.9	62.0
39	12:55	19.9	0.2	232.5	60.5
40	12:56	19.9	0.2	253.9	64.4
41	12:57	20.0	0.2	306.4	70.7
42	12:58	20.0	0.2	241.2	54.9
43	12:59	20.0	0.1	283.7	63.5
44	13:00	19.9	0.2	190.2	43.1
45	13:01	19.9	0.2	202.5	45.5
46	13:02	19.9	0.2	168.7	38.4
47	13:03	19.9	0.2	270.5	57.8
48	13:04	19.9	0.2	284.1	60.4
49	13:05	20.0	0.1	253.9	54.3
50	13:06	20.0	0.1	215.9	48.7
51	13:07	19.9	0.1	143.8	34.3
52	13:08	19.9	0.2	180.0	40.5
53	13:09	19.9	0.2	242.0	56.2
54	13:10	19.9	0.2	259.0	63.4
55	13:11	19.9	0.2	261.3	68.0
56	13:12	19.9	0.2	241.8	66.3
57	13:13	19.9	0.2	237.7	62.1
58	13:14	19.9	0.2	264.9	61.6
59	13:15	19.9	0.2	257.2	57.6
60	13:16	19.9	0.2	237.7	52.5
		20.0	0.2	245.6	52.9

ETC Canyon Pipeline, LLC
 Rifle Boulton Station
 Garfield County, CO
 Flare Outlet
 10/07/10

Run 2

Start Time	10/7/10 13:39
Run Length	60
Stop Time	14:39

Calibration Information					
Gas	O ₂	CO ₂	CH ₄	NMOC	
Instrument Range	21.1	19.7	1500	85	
Span Gas Value	10.00	10.10	310.0	30.0	
Calibration					
Prefest Calibration					
Zero%	0.0	0.0	0.8	0.6	
Span%	9.9	10.1	301.2	30.6	
Post Test Calibration					
Zero%	0.0	0.0	1.8	0.0	
Span%	9.9	10.0	302.4	30.0	
Results					
Absolute Bias (Zero)	0.0%	0.0%	0.0%	0.1%	
Absolute Bias (Span)	0.5%	0.0%	0.6%	1.1%	
Absolute Drift (Zero)	0.0%	0.0%	0.1%	0.7%	
Absolute Drift (Span)	0.0%	0.5%	0.1%	0.7%	
	Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm	
	20.2	0.1	248.7	42.5	
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		20.0	0.1	242.3	42.8
1	13:39	20.0	0.1	234.8	47.3
2	13:40	20.0	0.1	289.9	55.1
3	13:41	20.0	0.1	368.1	74.6
4	13:42	20.0	0.1	344.2	73.7
5	13:43	19.9	0.1	264.3	61.9
6	13:44	20.0	0.1	280.5	64.4
7	13:45	20.1	0.0	322.9	67.8
8	13:46	20.1	0.0	320.5	62.7
9	13:47	20.0	0.1	140.8	28.6
10	13:48	20.1	0.1	135.1	25.6
11	13:49	20.1	0.0	141.7	27.1
12	13:50	20.0	0.1	102.9	20.5
13	13:51	20.0	0.1	127.2	23.5
14	13:52	20.0	0.1	229.4	40.0
15	13:53	20.0	0.1	204.8	36.5
16	13:54	20.0	0.1	197.1	35.9
17	13:55	19.9	0.1	288.4	50.8
18	13:56	19.9	0.1	277.9	49.7
19	13:57	19.8	0.2	252.5	50.6
20	13:58	19.9	0.1	312.3	65.5
21	13:59	19.9	0.2	322.4	66.8
22	14:00	19.9	0.1	288.5	62.3
23	14:01	19.9	0.2	332.4	69.8
24	14:02	19.9	0.1	271.4	55.3
25	14:03	20.0	0.1	415.1	74.8
26	14:04	20.0	0.1	369.7	59.8
27	14:05	20.0	0.1	296.5	47.0
28	14:06	20.0	0.1	176.6	28.8
29	14:07	20.0	0.1	229.6	34.9
30	14:08	19.9	0.1	207.4	32.9
31	14:09	19.9	0.1	239.3	36.6
32	14:10	19.9	0.1	277.4	40.7
33	14:11	19.9	0.1	289.1	40.7
34	14:12	19.9	0.1	264.6	38.3
35	14:13	19.9	0.1	245.8	36.1
36	14:14	19.8	0.2	277.8	41.1
37	14:15	19.8	0.2	314.7	49.7
38	14:16	20.0	0.1	334.6	57.0
39	14:17	19.9	0.1	339.2	59.3
40	14:18	19.8	0.2	352.2	63.7
41	14:19	19.8	0.1	390.3	72.8
42	14:20	20.0	0.1	288.1	53.5
43	14:21	20.2	0.0	275.4	45.1
44	14:22	20.0	0.0	325.0	48.8
45	14:23	20.1	0.0	138.6	21.1
46	14:24	20.1	0.0	106.7	21.0
47	14:25	20.1	0.0	75.8	13.5
48	14:26	20.2	0.0	42.9	9.3
49	14:27	20.2	0.0	24.1	4.3
50	14:28	20.2	0.0	164.3	25.4
51	14:29	20.1	0.0	73.1	11.7
52	14:30	20.0	0.1	136.7	18.3
53	14:31	20.1	0.0	247.8	32.4
54	14:32	20.1	0.0	202.6	27.6
55	14:33	20.0	0.0	191.2	25.7
56	14:34	20.1	0.0	215.7	29.9
57	14:35	20.0	0.1	216.6	30.8
58	14:36	19.9	0.1	184.9	28.8
59	14:37	20.1	0.0	249.0	40.6
60	14:38	20.1	0.0	312.2	50.1

ETC Canyon Pipeline, LLC
 Rifle Boulton Station
 Garfield County, CO
 Flare Outlet
 10/07/10

Run 3

Start Time	10/7/10 14:57
Run Length	60
Stop Time	15:57

Calibration Information					
Gas	O ₂	CO ₂	CH ₄	NMOC	
	21.1	19.7	1500	85	
Calibration					
Instrument Range	10.00	10.10	310.0	30.0	
Span Gas Value					
Pretest Calibration					
Zero%	0.0	0.0	1.8	0.0	
	9.9	10.0	302.4	30.0	
Post Test Calibration					
Zero%	0.1	-0.1	0.9	0.6	
	10.0	9.8	304.1	30.1	
Results					
Absolute Bias (Zero)	0.5%	0.5%	0.1%	0.6%	
Absolute Bias (Span)	0.0%	0.9%	0.5%	0.9%	
Absolute Drift (Zero)	0.5%	0.5%	0.1%	0.7%	
Absolute Drift (Span)	0.5%	0.9%	0.1%	0.1%	
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		20.3	0.1	157.5	26.3
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		20.2	0.0	154.7	26.4
1	14:57	20.4	0.0	152.0	32.4
2	14:58	20.3	0.0	97.6	22.3
3	14:59	20.3	0.0	144.9	27.1
4	15:00	20.4	0.0	174.3	33.3
5	15:01	20.4	0.0	140.1	28.2
6	15:02	20.4	0.0	78.8	15.8
7	15:03	20.4	0.0	34.3	6.1
8	15:04	20.3	0.0	87.3	13.4
9	15:05	20.3	0.0	175.2	28.6
10	15:06	20.3	0.0	190.8	27.4
11	15:07	20.3	0.0	200.3	29.6
12	15:08	20.3	0.0	100.6	16.9
13	15:09	20.3	0.0	267.2	38.4
14	15:10	20.2	0.0	176.2	27.0
15	15:11	20.3	0.0	144.8	24.5
16	15:12	20.3	0.0	202.7	35.9
17	15:13	20.3	0.0	121.4	24.1
18	15:14	20.3	0.0	92.4	20.3
19	15:15	20.0	0.0	126.5	26.0
20	15:16	20.0	0.0	173.2	30.8
21	15:17	20.0	0.0	147.8	24.6
22	15:18	19.8	0.0	104.0	17.2
23	15:19	19.8	0.0	121.6	19.9
24	15:20	19.9	0.0	131.3	21.9
25	15:21	19.8	0.0	109.9	19.2
26	15:22	19.8	0.0	94.6	19.1
27	15:23	19.9	0.0	62.6	12.4
28	15:24	19.9	0.0	44.9	5.4
29	15:25	20.0	0.0	189.7	23.7
30	15:26	20.1	0.0	216.6	31.3
31	15:27	20.2	0.0	205.5	34.8
32	15:28	20.1	0.0	129.5	16.5
33	15:29	20.3	0.0	132.7	20.4
34	15:30	20.6	0.0	143.9	21.8
35	15:31	20.6	0.0	162.6	23.7
36	15:32	20.7	0.0	142.1	24.4
37	15:33	20.7	0.0	170.7	31.5
38	15:34	20.8	0.0	151.9	26.0
39	15:35	20.7	0.0	106.8	21.5
40	15:36	20.7	0.1	120.6	24.6
41	15:37	20.7	0.0	129.1	25.0
42	15:38	20.6	0.1	102.3	19.3
43	15:39	20.5	0.0	111.5	20.5
44	15:40	20.5	0.0	169.3	25.7
45	15:41	20.5	0.0	180.8	26.8
46	15:42	20.4	0.0	160.6	27.3
47	15:43	20.4	0.0	208.3	31.1
48	15:44	20.3	0.0	233.3	34.1
49	15:45	20.3	0.0	243.6	38.1
50	15:46	20.4	0.0	163.0	30.3
51	15:47	19.4	0.0	259.5	44.0
52	15:48	19.7	0.0	191.5	31.3
53	15:49	19.6	0.0	211.7	40.4
54	15:50	19.5	0.1	267.0	50.0
55	15:51	19.5	0.1	141.7	27.9
56	15:52	19.5	0.1	155.7	31.3
57	15:53	19.5	0.1	200.2	36.4
58	15:54	19.4	0.0	193.1	34.3
59	15:55	19.4	0.1	156.6	25.5
60	15:56	19.4	0.0	233.5	36.4

Greasewood Gas Plant Flare

ETC Canyon Pipeline, LLC

Greasewood Gas Plant

Rio Blanco County, CO

are Inlet

10/08/10

Field Reference Method Data

	Run #	1	2	3	Average
	Start Time	9:21	10:41	11:59	
	Stop Time	10:21	11:41	12:59	
	Sample Duration (minutes)	60	60	60	
D _s	Stack Diameter (inches)	4.0	4.0	4.0	4.0
$\sqrt{\Delta P_{AVG}}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.041	0.043	0.041	0.042
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	56	69	70	65
P _{bar}	Barometric Pressure (mbar)	779	779	779	779
P _{bar}	Barometric Pressure (" Hg)	23.00	23.00	23.00	23.00
P _s	Stack Pressure (" H ₂ O)	0.0	0.0	0.0	0.0
O ₂ %vd	O ₂ (%vd)	22.0	22.0	22.0	22.0
CO ₂ %vd	CO ₂ (%vd)	0.1	0.1	0.1	0.1
N ₂ %vd	N ₂ (%vd)	78.0	78.0	77.9	78.0

Laboratory Data

MW	Run #	1	2	3	Average
30.07	C2 mole %	0.01	0.00	0.01	0.01
44.09	C3 mole %	0.01	0.00	0.00	0.00
58.12	C4 mole %	0.00	0.00	0.00	0.00
72.16	C5 mole %	0.00	0.00	0.00	0.00
86.19	C6 mole %	0.00	0.00	0.00	0.00

Reference Method Calculations

	Run #	1	2	3	Average
B _{ws}	Saturated Moisture Content (%/100)	0.020	0.031	0.032	0.028
M _D	Molecular Weight Dry (lb/lb-mole)	28.89	28.89	28.89	28.89
M _A	Molecular Weight Wet (lb/lb-mole)	28.67	28.55	28.54	28.59
V _S	Gas Velocity (ft/sec)	2.5	2.7	2.6	2.6
F _{ACFM}	Gas Flow (acf m)	13.3	14.2	13.5	13.7
F _{DSCFM}	Gas Flow (dscfm)	10.3	10.5	10.0	10.3
lb/hr	Gas Flow (lb/hr)	47	48	46	47
lb/hr	NMOC (lb/hr)	0.01	0.00	0.00	0.01

DRE Calculations

	Run #	1	2	3	Average
lb/hr	Outlet NMOC (lb/hr as C ₃ H ₈)	0.1	0.2	0.2	0.2
lb/hr	Inlet NMOC (lb/hr)	0.01	0.00	0.00	0.01
DRE (%)	VOC DRE (%)	0.0%	0.0%	0.0%	0.0%

ETC Canyon Pipeline, LLC

Greasewood Gas Plant

Rio Blanco County, CO

Flare Outlet

10/8/2010

Field Reference Method Data					
	Run #	1	2	3	Average
	Start Time	9:21	10:41	11:59	
	Stop Time	10:21	11:41	12:59	
	Sample Duration (minutes)	60	60	60	
hrs	Hours of Operation / Year	8,760	8,760	8,760	8,760
D _s	Stack Diameter (inches)	40.5	40.5	40.5	40.5
$\sqrt{\Delta P_{AVG}}$	Average (Delta P) ^{1/2} (" H ₂ O) ^{1/2}	0.0603	0.0577	0.0608	0.0596
C _P	Pitot Tube Constant (unitless)	0.82	0.82	0.82	0.82
T _S	Stack Temperature (°F)	78	82	88	82
P _{bar}	Barometric Pressure (mbar)	779	779	779	779
P _{bar}	Barometric Pressure (" Hg)	23.00	23.00	23.00	23.00
P _S	Stack Pressure (" H ₂ O)	0.0	0.0	0.0	0.0
Y _d	Meter Y Factor (unitless)	0.980	0.980	0.980	0.980
T _m	Meter Temperature (°F)	54	53	60	55
V _m	Sample Volume (ft ³)	45.953	42.513	41.838	43.435
ΔH	Orifice Pressure Delta H (" H ₂ O)	1.0	1.0	1.0	1.0
V _{lc}	Moisture (g)	12.6	5.1	8.0	8.6
O ₂ %vd	O ₂ (%vd)	20.8	20.2	20.2	20.4
CO ₂ %vd	CO ₂ (%vd)	0.0	0.0	0.0	0.0
N ₂ %vd	N ₂ (%vd)	79.2	79.8	79.8	79.6
wet	CH ₄ (ppmvw)	144.6	187.7	215.3	182.6
wet	NMOC (ppmvw as C ₃ H ₈)	12.2	16.8	18.9	16.0

Reference Method Calculations					
	Run #	1	2	3	Average
V _{mstd}	Sample Volume (dscf)	35.681	33.091	32.107	33.626
V _{wstd}	Moisture Volume (scf)	0.59	0.24	0.38	0.40
B _{ws}	Moisture Content (%/100)	0.016	0.007	0.012	0.012
M _D	Molecular Weight Dry (lb/lb-mole)	28.83	28.81	28.81	28.82
M _A	Molecular Weight Wet (lb/lb-mole)	28.65	28.73	28.68	28.69
V _S	Gas Velocity (ft/sec)	3.8	3.7	3.9	3.8
F _{ACFM}	Gas Flow (acfmin)	2,051	1,967	2,087	2,035
F _{DSCFM}	Gas Flow (dscfm)	1,524	1,463	1,528	1,505
lb/hr	Gas Flow (lb/hr)	6,913	6,592	6,908	6,804
dry	CH ₄ (ppmvd)	147.0	186.4	212.8	182.1
lb/hr	CH ₄ (lb/hr)	0.6	0.7	0.8	0.7
tpy	CH ₄ (tons/year)	2.5	3.0	3.6	3.0
dry	NMOC (ppmvd as C ₃ H ₈)	12.4	17.0	19.1	16.2
lb/hr	NMOC (lb/hr as C ₃ H ₈)	0.1	0.2	0.2	0.2
tpy	NMOC (tons/year as C ₃ H ₈)	0.6	0.7	0.9	0.7

ETC Canyon Pipeline, LLC
Greasewood Gas Plant
Rio Blanco County, CO
Flare Outlet
10/08/10

Linearity Information				
Gas	O ₂	CO ₂	CH ₄	NMOC
Span Gas Value/Range	21.1	19.7	1500.0	84.5
	10.00	10.10	310.0	30.0
	0.0	0.0	1.3	0.6
	9.9	10.2	305.0	30.6
Linearity Bias (Zero)	0.0	0.0	0.8	0.0
Linearity Bias (Span)	10.0	10.1	306.5	30.6
Gas Concentration	%	%	(ppm)	(ppm)
1	0.0	0.0	0.0	0.0
2	10.0	10.1	310.0	30.0
3	21.1	19.7	759.0	50.1
4			1500.0	84.5
Response				
1	0.0	0.0	0.8	0.0
2	10.0	10.1	306.5	30.6
3	21.1	19.7	765.9	50.0
4			1507.5	84.5
Difference				
1	0.0	0.0	0.8	0.0
2	0.0	0.0	3.5	0.6
3	0.0	0.0	6.9	0.1
4	0.0	0.0	7.5	0.0
Results				
Zero Bias	0.00%	0.00%	0.03%	0.71%
Span Bias	0.47%	0.51%	0.10%	0.00%
Max Calibration Error	0.00%	0.00%	0.50%	0.71%

ETC Canyon Pipeline, LLC
 Greasewood Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/08/10

Run 1

Start Time	10/8/10 9:21
Run Length	60
Stop Time	10:21

Calibration Information				
Gas	O ₂	CO ₂	CH ₄	NMOC
Instrument Range	21.1	19.7	1500	85
Span Gas Value	10.00	10.10	310.0	30.0
Calibration				
Pretest Calibration				
Post Test Calibration	Zero%	0.0	1.3	0.6
	Span%	9.9	10.2	305.0
Results	Zero%	0.1	0.8	0.1
	Span%	10.0	10.1	311.0
Absolute Bias (Zero)	0.5%	0.0%	0.0%	0.1%
	0.0%	0.0%	0.3%	0.6%
	0.5%	0.0%	0.0%	0.6%
	0.5%	0.5%	0.4%	0.6%
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw
		20.8	0.0	144.6
				12.2
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw
		20.6	0.0	144.3
1	9:21	20.6	0.0	149.2
2	9:22	20.6	0.0	124.7
3	9:23	20.6	0.0	115.3
4	9:24	20.6	0.0	119.1
5	9:25	20.6	0.0	130.1
6	9:26	20.6	0.0	126.4
7	9:27	20.6	0.0	137.1
8	9:28	20.6	0.0	121.5
9	9:29	20.6	0.0	140.3
10	9:30	20.6	-0.1	168.6
11	9:31	20.6	0.0	165.9
12	9:32	20.6	0.0	96.4
13	9:33	20.6	0.0	145.5
14	9:34	20.5	0.0	120.0
15	9:35	20.6	0.0	121.7
16	9:36	20.6	-0.1	121.3
17	9:37	20.6	0.0	126.3
18	9:38	20.6	-0.1	100.6
19	9:39	20.6	0.0	119.6
20	9:40	20.6	0.0	111.3
21	9:41	20.6	0.0	141.0
22	9:42	20.6	0.0	150.0
23	9:43	20.6	0.0	134.5
24	9:44	20.6	0.0	142.2
25	9:45	20.6	0.0	129.1
26	9:46	20.6	0.0	95.8
27	9:47	20.6	0.0	92.1
28	9:48	20.6	0.0	130.5
29	9:49	20.6	0.0	142.4
30	9:50	20.6	0.0	99.6
31	9:51	20.6	0.0	155.3
32	9:52	20.6	0.0	108.9
33	9:53	20.6	0.0	107.7
34	9:54	20.6	0.0	164.3
35	9:55	20.6	0.0	237.3
36	9:56	20.6	0.0	158.0
37	9:57	20.6	0.0	161.3
38	9:58	20.6	0.0	236.7
39	9:59	20.6	0.0	156.4
40	10:00	20.6	0.0	159.3
41	10:01	20.6	0.0	125.3
42	10:02	20.6	0.0	118.3
43	10:03	20.6	0.0	116.7
44	10:04	20.6	0.0	94.6
45	10:05	20.6	-0.1	100.0
46	10:06	20.6	-0.1	147.5
47	10:07	20.6	0.0	216.8
48	10:08	20.6	0.0	235.8
49	10:09	20.6	0.0	240.6
50	10:10	20.6	0.0	201.3
51	10:11	20.6	0.0	147.2
52	10:12	20.6	0.0	161.8
53	10:13	20.6	0.0	117.7
54	10:14	20.6	0.0	135.8
55	10:15	20.6	0.0	117.3
56	10:16	20.7	0.0	165.9
57	10:17	20.6	0.0	165.0
58	10:18	20.6	0.0	210.5
59	10:19	20.6	0.0	228.0
60	10:20	20.7	-0.1	146.2

ETC Canyon Pipeline, LLC
 Greasewood Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/08/10

Run 2

Start Time	10/08/10 10:41
Run Length	60
Stop Time	11:41

Calibration Information					
Gas	O ₂		CO ₂	CH ₄	NMOC
	Instrument Range	21.1	19.7	1500	85
Calibration	Span Gas Value	10.00	10.10	310.0	30.0
	Pretest Calibration				
	Zero%	0.1	0.0	0.8	0.1
	Span%	10.0	10.1	311.0	31.1
	Post Test Calibration				
	Zero%	0.0	0.1	2.6	0.0
	Span%	10.0	10.0	311.8	30.6
Results	Absolute Bias (Zero)	0.0%	0.5%	0.1%	0.0%
	Absolute Bias (Span)	0.0%	0.5%	0.4%	0.0%
	Absolute Drift (Zero)	0.5%	0.5%	0.1%	0.1%
	Absolute Drift (Span)	0.0%	0.5%	0.1%	0.6%
		Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		20.2	0.1	187.7	16.8
Run Length (Minutes)	Time	Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		20.1	0.0	189.3	17.3
1	10:41	19.9	0.0	251.6	23.3
2	10:42	19.9	0.0	185.1	17.1
3	10:43	19.9	0.0	164.8	14.3
4	10:44	19.9	0.0	195.6	18.5
5	10:45	19.9	0.0	232.1	20.4
6	10:46	20.0	0.0	256.9	23.6
7	10:47	19.9	0.0	245.2	22.9
8	10:48	19.9	0.0	228.0	21.2
9	10:49	19.9	0.0	236.8	22.2
10	10:50	19.9	0.0	227.5	21.3
11	10:51	20.0	0.0	247.2	23.7
12	10:52	19.9	0.0	221.9	21.3
13	10:53	20.0	0.0	204.3	20.0
14	10:54	19.9	0.0	265.7	25.3
15	10:55	19.9	0.0	229.2	22.8
16	10:56	19.9	0.0	213.0	20.7
17	10:57	20.0	0.0	267.3	24.2
18	10:58	19.9	0.0	202.7	18.6
19	10:59	19.9	0.0	248.6	22.4
20	11:00	20.0	0.0	162.8	15.5
21	11:01	19.9	0.0	149.5	14.7
22	11:02	19.9	0.0	201.0	18.0
23	11:03	19.9	0.0	116.0	10.6
24	11:04	19.9	0.0	194.0	17.6
25	11:05	19.9	0.0	279.6	26.1
26	11:06	20.1	0.0	271.3	24.3
27	11:07	20.2	0.0	203.8	17.9
28	11:08	20.3	0.0	178.4	16.2
29	11:09	20.3	0.0	196.9	17.8
30	11:10	20.3	0.0	148.7	13.4
31	11:11	20.3	0.0	155.3	14.5
32	11:12	20.3	0.0	99.5	7.7
33	11:13	20.3	0.0	50.1	2.4
34	11:14	20.2	0.0	163.9	16.4
35	11:15	20.3	0.0	266.8	25.2
36	11:16	20.3	0.0	232.8	22.0
37	11:17	20.3	0.0	115.6	10.5
38	11:18	20.3	0.0	107.6	10.3
39	11:19	20.3	0.0	161.6	16.0
40	11:20	20.3	0.0	174.6	16.2
41	11:21	20.3	0.0	51.1	2.9
42	11:22	20.3	0.0	65.5	5.0
43	11:23	20.2	0.0	152.5	13.7
44	11:24	20.3	0.0	182.4	17.0
45	11:25	20.2	0.0	210.5	20.2
46	11:26	20.3	0.0	224.7	21.6
47	11:27	20.3	0.0	196.1	18.4
48	11:28	20.2	0.0	221.2	19.6
49	11:29	20.2	0.0	214.7	18.5
50	11:30	20.2	0.0	128.8	10.6
51	11:31	20.3	0.0	144.6	12.7
52	11:32	20.2	0.0	175.3	15.4
53	11:33	20.2	0.0	217.4	19.9
54	11:34	20.2	0.0	342.5	29.8
55	11:35	20.2	0.0	291.3	27.0
56	11:36	20.2	0.0	145.0	13.4
57	11:37	20.2	0.0	171.8	16.0
58	11:38	20.2	0.0	102.1	8.9
59	11:39	20.2	0.0	77.6	5.3
60	11:40	20.2	0.0	87.8	7.3

ETC Canyon Pipeline, LLC
 Greasewood Gas Plant
 Rio Blanco County, CO
 Flare Outlet
 10/08/10

Run 3

Start Time	10/08/10 11:59
Run Length	60
Stop Time	12:59

Calibration Information					
Gas	O ₂		CO ₂		NMOC
	Instrument Range	21.1	19.7	1500	85
Calibration					
Instrument Range	Span Gas Value	10.00	10.10	310.0	30.0
	Span%				
Pretest Calibration	Zero%	0.0	0.1	2.6	0.0
	Span%	10.0	10.0	311.8	30.6
Post Test Calibration	Zero%	0.1	0.0	1.1	0.5
	Span%	10.0	10.0	308.7	30.3
Results					
Absolute Bias (Zero)	Absolute Bias (%)	0.5%	0.0%	0.0%	0.6%
	Absolute Bias (Span)	0.0%	0.5%	0.1%	0.4%
Absolute Drift (Zero)	Absolute Drift (%)	0.5%	0.5%	0.1%	0.6%
	Absolute Drift (Span)	0.0%	0.0%	0.2%	0.4%
Run Length (Minutes)	Time	Corrected O ₂ %	Corrected CO ₂ %	Corrected CH ₄ ppmvw	Corrected NMOC ppm
		20.2	0.0	215.3	18.9
		Uncorrected O ₂ %	Uncorrected CO ₂ %	Uncorrected CH ₄ ppmvw	Uncorrected NMOC ppm
		20.2	0.0	216.0	19.3
1	11:59	20.3	0.0	187.9	16.4
2	12:00	20.2	0.0	231.3	20.8
3	12:01	20.2	0.0	216.3	19.3
4	12:02	20.2	0.0	297.4	25.3
5	12:03	20.2	0.0	312.8	26.5
6	12:04	20.2	0.0	242.1	19.6
7	12:05	20.3	0.0	181.7	15.2
8	12:06	20.2	0.0	207.3	17.1
9	12:07	20.3	0.0	229.3	20.7
10	12:08	20.3	0.0	237.5	21.4
11	12:09	20.3	0.0	231.1	21.0
12	12:10	20.3	0.0	193.6	17.5
13	12:11	20.2	0.0	172.6	14.6
14	12:12	20.3	0.0	225.5	19.6
15	12:13	20.3	0.0	218.7	18.9
16	12:14	20.3	0.0	98.4	8.5
17	12:15	20.2	0.0	244.2	21.2
18	12:16	20.3	0.0	363.1	31.0
19	12:17	20.3	0.0	269.1	23.3
20	12:18	20.3	0.0	154.7	13.0
21	12:19	20.3	0.0	251.3	23.0
22	12:20	20.2	0.0	155.5	14.8
23	12:21	20.3	0.0	60.0	5.1
24	12:22	20.3	0.0	273.2	22.2
25	12:23	20.3	0.0	166.9	15.2
26	12:24	20.2	0.0	222.8	19.0
27	12:25	20.2	0.0	234.7	21.5
28	12:26	20.3	0.0	235.6	21.6
29	12:27	20.2	0.0	235.7	21.5
30	12:28	20.2	0.0	298.2	27.5
31	12:29	20.3	0.0	304.9	26.4
32	12:30	20.2	0.0	244.9	20.2
33	12:31	20.2	0.0	169.2	14.6
34	12:32	20.3	0.0	130.9	12.1
35	12:33	20.3	0.0	147.3	13.5
36	12:34	20.3	0.0	172.1	15.5
37	12:35	20.2	0.0	196.6	17.9
38	12:36	20.3	0.0	165.6	14.6
39	12:37	20.3	0.0	247.6	21.3
40	12:38	20.2	0.0	232.4	21.5
41	12:39	20.2	0.1	237.4	21.4
42	12:40	20.2	0.1	235.6	20.9
43	12:41	20.1	0.1	142.1	11.9
44	12:42	20.1	0.1	250.0	21.3
45	12:43	20.1	0.1	268.9	22.3
46	12:44	20.1	0.1	217.2	19.5
47	12:45	20.1	0.1	237.5	20.6
48	12:46	20.2	0.1	195.9	17.4
49	12:47	20.2	0.1	219.3	20.0
50	12:48	20.1	0.1	197.8	17.7
51	12:49	20.1	0.2	204.2	18.6
52	12:50	20.1	0.2	220.6	21.2
53	12:51	20.0	0.2	220.7	21.8
54	12:52	20.0	0.2	214.5	20.8
55	12:53	20.0	0.2	214.1	20.6
56	12:54	20.1	0.1	218.8	21.0
57	12:55	20.0	0.2	209.2	20.4
58	12:56	20.0	0.2	205.3	19.9
59	12:57	20.1	0.2	204.1	20.0
60	12:58	20.1	0.2	188.9	19.3

Sample Calculations

EPA Methods 1 - 4 : Determination of Stack Gas Velocity and Volumetric Flow Rate
ETC Canyon Pipeline, LLC: Debeque Compressor Station - Flare Outlet, Run #1 (10/04/10)
Sample Calculations

$$\begin{aligned} \text{sample volume (scf)} &= \frac{(17.64) \cdot V_M \cdot Y_D \left(P_B + \frac{\Delta H}{13.6} \right)}{T_M + 460} \\ &= \frac{(17.64) \cdot (40.953) \cdot (0.980) \left[(25.01) + \frac{(1.0)}{13.6} \right]}{[(81) + 460]} \\ &= 32.799 \end{aligned}$$

$$\begin{aligned} \text{moisture volume (scf)} &= (0.04707) \cdot V_{LC} \\ &= (0.04707) \cdot (20.2) \\ &= 0.95 \end{aligned}$$

$$\begin{aligned} \text{moisture content (\%/100)} &= \frac{V_{W(STD)}}{(V_{M(STD)} + V_{W(STD)})} \\ &= \frac{(0.95)}{[(32.799) + (0.95)]} \\ &= 0.028 \end{aligned}$$

$$\begin{aligned} \text{molecular weight, dry (grams/mol)} &= (0.440) \cdot (\%CO_2) + (0.320) \cdot (\%O_2) + (0.280) \cdot (\%N_2 + \%CO) \\ &= (0.440) \cdot (0.2) + (0.320) \cdot (20.5) + (0.280) \cdot [(79.4) + (0.0)] \\ &= 28.84 \end{aligned}$$

$$\begin{aligned} \text{molecular weight, actual (grams/mol)} &= M_D \cdot (1 - B_{WS}) + (18.0) \cdot B_{WS} \\ &= (28.84) \cdot [1 - (0.028)] + (18.0) \cdot (0.028) \\ &= 28.84 \end{aligned}$$

$$\begin{aligned} \text{gas velocity (ft/sec)} &= (85.49) \cdot C_P \cdot \sqrt{\Delta P_{AVG}} \cdot \sqrt{\frac{T_S + 460}{\left[P_B + \frac{P_S}{(13.6)} \right] M_A}} \\ &= (85.49) \cdot (0.82) \cdot (0.1060) \cdot \sqrt{\frac{(432) + 460}{\left[(25.01) + \frac{(0.0)}{(13.6)} \right] \cdot (28.54)}} \\ &= 8.3 \end{aligned}$$

EPA Methods 1 - 4 : Determination of Stack Gas Velocity and Volumetric Flow Rate
ETC Canyon Pipeline, LLC: Debeque Compressor Station - Flare Outlet, Run #1 (10/04/10)
Sample Calculations (continued)

$$\text{gas flow (acf m)} = (60) \cdot \frac{\pi \cdot \left(\frac{D_s}{12}\right)^2}{4} \cdot V_s$$

$$= (60) \cdot \frac{\pi \cdot \left(\frac{(36.5)^2}{12}\right)}{4} \cdot (8.3)$$

$$= 3,622$$

$$\text{gas flow (dscfm)} = (60) \cdot V_s \cdot (1 - B_{ws}) \cdot \frac{\pi \cdot \left(\frac{D_s}{12}\right)^2}{4} \cdot \frac{T_{STD} \left[P_B + \frac{P_s}{(13.6)} \right]}{(T_s + 460) \cdot P_{STD}}$$

$$= (60) \cdot (8.3) \cdot (1 - 0.028) \cdot \frac{\pi \cdot \left(\frac{(36.5)^2}{12}\right)}{4} \cdot \frac{(528) \cdot \left[(25.01) + \frac{(0.0)}{(13.6)} \right]}{[(432) + 460] \cdot (29.92)}$$

$$= 1,741$$

Variables and Abbreviations

B_{ws} - moisture content of the gas (wet volume percent/100)

%CO - carbon monoxide content of the gas (dry volume percent)

%CO₂ - carbon dioxide content of the gas (dry volume percent)

C_p - pitot tube constant (unitless)

D_s - diameter of the stack (inches)

ΔH - pressure differential at dry gas meter exit orifice (inches water)

M_D - molecular weight of the dry gas (grams per mol)

M_A - molecular weight of the wet gas (grams per mol)

%N₂ - nitrogen content of the gas (dry volume percent)

%O₂ - oxygen content of the gas (dry volume percent)

$\sqrt{\Delta P_{AVG}}$ - average square root of the stack gas pitot differential pressure (inches water)

P_B - barometric pressure (inches mercury)

EPA Methods 1 - 4 : Determination of Stack Gas Velocity and Volumetric Flow Rate
ETC Canyon Pipeline, LLC: Debeque Compressor Station - Flare Outlet, Run #1 (10/04/10)
Variables and Abbreviations (continued)

P_s - stack pressure relative to barometric pressure (inches water)

P_{STD} - standard pressure (29.92 inches mercury)

T_m - average dry gas meter temperature (°F)

T_s - average stack temperature (°F)

T_{STD} - standard temperature (528 °R)

V_{LC} - volume of moisture collected as a liquid (milliliters)

V_m - volume indicated on dry gas meter (uncorrected actual cubic feet)

V_{MSTD} - volume of gas through dry gas meter (corrected dry standard cubic feet)

V_s - stack gas velocity (feet per second)

V_{WSTD} - volume of moisture collected as a gas at standard conditions (standard cubic feet)

Y_D - dry gas meter calibration factor (unitless)

EPA Method 3A - Determination of O₂ / CO₂ Concentrations in Emissions from Stationary Sources
ETC Canyon Pipeline, LLC: Debeque Compressor Station - Flare Outlet, Run #1 (10/04/10)
Sample Calculations

$$\begin{aligned}\text{CO}_2 \text{ conc, drift cal } (\% \text{vd}) &= \frac{(\% \text{FS}_{\text{STACK}} - \% \text{FS}_0) [\text{Span Gas Conc } (\% \text{vd})]}{(\% \text{FS}_{\text{SPAN}} - \% \text{FS}_0)} \\ &= \frac{[(0.2) - (0.0)](10.1)}{[(10.1) - (0.0)]} \\ &= 0.2\end{aligned}$$

$$\begin{aligned}\text{O}_2 \text{ conc, drift cal } (\% \text{vd}) &= \frac{(\% \text{FS}_{\text{STACK}} - \% \text{FS}_0) [\text{Span Gas Conc } (\% \text{vd})]}{(\% \text{FS}_{\text{SPAN}} - \% \text{FS}_0)} \\ &= \frac{[(20.6) - (0.0)](10.0)}{[(10.05) - (0.0)]} \\ &= 20.5\end{aligned}$$

Variables and Abbreviations

cal - calibrated

conc - concentration

CO₂ - Carbon Dioxide

O₂ - Oxygen

%FS_{SPAN} - average analyzer reading for span gas (percent of full scale)

%FS_{STACK} - average analyzer reading for stack gas (percent of full scale)

%FS₀ - average analyzer reading for zero gas (percent of full scale)

%vd- dry volume percent

EPA Method 25A - Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer
ETC Canyon Pipeline, LLC: Debeque Compressor Station - Flare Outlet, Run #1 (10/04/10)
Sample Calculations

$$\text{NMOC conc, drift cal (ppmvw as } C_3H_8) = \frac{(\%FS_{STACK} - \%FS_0)[\text{Span Gas Conc (ppmv)}]}{(\%FS_{SPAN} - \%FS_0)}$$

$$= \frac{[(11.8) - (0.3)][30.0]}{[(31.65) - (0.3)]}$$

$$= 11.0$$

$$\text{NMOC emissions (ppmv as } C_3H_8) = \frac{[\text{NMOC conc, drift cal (ppmvw)}]}{(1 - B_{ws})}$$

$$\approx \frac{(11.0)}{(1 - 0.028)}$$

$$= 11.3$$

$$\text{NMOC emissions (lb/hr as } C_3H_8) = \frac{\text{NMOC (ppmvw as } C_3H_8)}{(1 - B_{ws})} \cdot F_{dscfm} \cdot (6.866 \cdot 10^{-6})$$

$$= \frac{11.0}{(1 - 0.028)} \cdot (1,741) \cdot (6.862 \cdot 10^{-6})$$

$$= 0.1$$

$$\text{NMOC emissions (tn/yr as } C_3H_8) = [\text{NMOC emissions (lb/hr as } C_3H_8)] \left[\frac{8,760 \text{ (hrs/yr)}}{2,000 \text{ (lb/tn)}} \right]$$

$$= (0.1) \cdot (4.38)$$

$$= 0.6$$

$$\text{NMOC emissions (lb/year as } C_3H_8) = \text{NMOC (tn/year as } C_3H_8) \cdot \frac{2000 \text{ lbs}}{1 \text{ ton}}$$

$$= 0.6 \cdot (2,000)$$

$$= 1,181$$

$$\text{DRE (\%)} = \frac{\text{Inlet NMOC (lb/hr)} - \text{Outlet NMOC (lb/hr as } C_3H_8)}{\text{Inlet NMOC (lb/hr)}}$$

$$= \frac{(22.0) - (0.13)}{(22.0)}$$

$$= 99.4\%$$

Variables and Abbreviations

as C_3H_8 - as propane or C_3

B_{ws} - moisture content of the gas (wet volume percent/100)

cal - calibrated

conc - concentration

EPA Method 25A - Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer

ETC Canyon Pipeline, LLC: Debeque Compressor Station - Flare Outlet, Run #1 (10/04/10)

Variables and Abbreviations (continued)

F_{DSCFM} - gas flow (dry standard cubic feet per minute, where standard = 29.92 inches Hg and 68°F)

%FS_{SPAN} - average analyzer reading for span gas at probe tip (percent of full scale)

%FS_{STACK} - average analyzer reading for stack gas (percent of full scale)

%FS₀ - average analyzer reading for zero gas at probe tip (percent of full scale)

lb/hr - pounds per hour

ppmvw - parts per million, wet volume basis

DRE% - destruction removal efficiency

Appendix 2

Field and Operating Data

Debeque Compressor Station Flare

Air Pollution Testing, Inc. : Analyzer Calibration Datasheet

Facility:	Debeque Compressor Station	Date:	10-4-10
Location:	Debeque CO	APT Job #:	ETC0305
Unit:	Flare	Page #:	

Analyzer Information

Analyzer Type	O2	CO2	CH4	NH3		
Analyzer ID #	1420C-7	1415C-9	551	551		
Analyzer Scale	0-25	0- 10 20	0-5000	0-5000		
Calibration Range	0-21.1	0-19.7	0-1500	0-84.5		

Calibration Gas Cylinder Information
(Cylinder ID#/Expiration date and Concentration)

Analyzer Type	O2	CO2	CH4	NH3		
Zero	Max 31.7	0	0	0		
CC#	AL1032664					
Expiration date	11-11					
LOW			310 ✓	30.0 ✓		
CC#			AAL19994	AL1052218		
Expiration date			6-13	4-13		
Mid	10.0 ✓	10.1 ✓	759 ✓	50.1 ✓		
CC#	AL1017841	→	AL1061294	CC131241		
Expiration date	6-13	→	6-13	11-11		
High	21.1 ✓	19.7 ✓	1500 ✓	84.5 ✓		
CC#	AL1000245	→	AL103634	CC1098539		
Expiration date	4-13	→	6-13			

Calibration Error

Analyzer Type	O2	CO2	CH4	NH3		
Zero	0.0	0.0	0.5	0.0		
Low			311.4	30.2		
Mid	10.1	10.1	766.5	50.9		
High	21.1	19.7	1500.6	84.9		

Initial Bias Check

Analyzer Type	O2	CO2	CH4	NH3		
Zero	0.0	6.0	0.5	-0.4		
Low						
Mid	10.1	10.1	310	31.2		
High						

Air Pollution Testing, Inc. : Analyzer Calibration Data Sheet

Facility: DeBeau Compressor Station Date: 10-4-10
 Location: DeBeau Co APT Job #: ETL0305
 Unit: flare Page #:

Run #: 1 Start Time: 1448 Stop Time: 1549

Calibration Results

Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Zero	0.0	0.0	1.1	8.8	1.0	
Low						
Mid	10.0	10.1	337.2	32.1		
High						

Run #: 2 Start Time: 1613 Stop Time: 1713

Calibration Results

Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Zero	0.0	0.0	1.4	0		
Low						
Mid	10.0	10.1	335.2	32.5		
High						

Run #: 3 Start Time: 1731 Stop Time: 1831

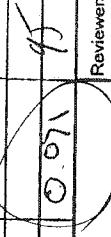
Calibration Results

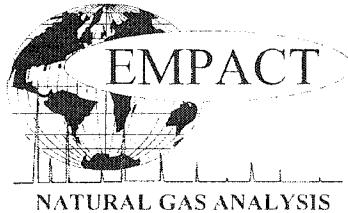
Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Zero	0.0	0.0	2.0	0.9		
Low						
Mid	10.0	10.1	329.2	30.4		
High						

Air Pollution Testing Inc. - EPA Method 3 - Pilot Traverse Data Sheet									
Job #:	ETC 0205		Operator:	Brendan Coven					
Facility:	De Beers C.C.		Site #:	Schematic of Sampling Location:					
Date:	10-2-15		Points:	Upstream Disturbance (inches): 36.5"					
Probe ID:	P-498		2	Stack Diameter (inches): 7"					
Pitot Constant:	821		3	Downstream Disturbance (inches): 36"					
Run #:	2-1 outlet		4	Schematic of Sampling Location:					
Run #:	2-2 outlet		5	Stack Diameter (inches): 36.5"					
O2%:	CO2%: C02s		6	Upstream Disturbance (inches): 7"					
H2O%:	C02s measured / estimate		7	Stack Diameter (inches): 36"					
Ps (mHg):	C02s		8	Schematic of Sampling Location:					
Start Time:	1615		9	Stack Diameter (inches): 36.5"					
Stop Time:	1623		10	Upstream Disturbance (inches): 7"					
Post Test Pilot Leak Check Good?	✓		11	Stack Diameter (inches): 36"					
Point #	Delta P	T _s	Notes	T _s	Notes	T _s	Notes	Point #	Delta P
1	.003	422		1-1	.006	424		1-1	.007
2	.007	423		1-2	.004	425		2	.007
3	.005	423		3	.01	425		3	.01
4	.004	422		4	.01	425		4	.01
5	.01	421		5	.015	425		5	.015
6	.012	421		6	.015	424		6	.015
7	.012	422		7	.010	424		7	.010
8	.015	422		8	.012	423		8	.012
9-1	.003	422		9-1	.01	423		9-1	.003
2	.008	423		2	.005	424		2	.005
3	.01	423		3	.005	423		3	.005
4	.015	422		4	.007	423		4	.007
5	.01	422		5	.007	424		5	.01
6	.015	421		6	.007	424		6	.01
7	.007	421		7	.01	425		7	.006
8	.007	422		8	.015	423		8	.022
Averages:				Averages: (0.096) 424				Averages: (0.089) 412	
								Reviewers Signature:	

Air Pollution Testing, Inc. - EPA Method 4 - Moisture Determination Data Sheet

Job No.:	10-4-10	Doc. No.:	CODS	Doc. (X):	COAG
Location:	Outer Beach Cen.	Atmospheric Pressure (inHg):	25	Atmospheric Pressure (inHg):	
Flu. 1 (Outlet)	Master Box ID: M5-10	Probe Length (in):	27	Moisture (grams):	20.2
980	Master DNO: 171	Static Pressure (H2O):		Start Time:	14:49
Point 1: Beach Cen.	0000010114	Master Test Pump Scale Check:	0.000@10 kg	Stop Time:	15:49
Point 2: Beach Cen.	0000010114	Master Test Pump Scale Check:	0.000@10 kg	Master Scale Check:	
Summ.:	Medium:	Master Temp. (in):	Conc. (ppm):	Master Volume (ml):	Notes:
5	0	1.0	84	577.55	
10	0	1.0	78	36	580.90
15	0	1.0	78	37	584.20
20	0	1.0	78	38	587.95
25	0	1.0	78	39	591.371
30	0	1.0	79	39	594.851
35	0	1.0	79	40	598.25
40	0	1.0	79	40	601.63
45	0	1.0	79	40	604.98
50	0	1.0	79	41	608.35
55	0	1.0	79	41	611.72
60	0	1.0	80	41	615.165
65	0	1.0	81	41	618.55
70	0	1.0	81.46	41	620.25
75	0	1.0	81.46	41	620.25
80	0	1.0	81.46	41	620.25
85	0	1.0	81.46	41	620.25
90	0	1.0	81.46	41	620.25
95	0	1.0	81.46	41	620.25
100	0	1.0	81.46	41	620.25
105	0	1.0	81.46	41	620.25
110	0	1.0	81.46	41	620.25
115	0	1.0	81.46	41	620.25
120	0	1.0	81.46	41	620.25
125	0	1.0	81.46	41	620.25
130	0	1.0	81.46	41	620.25
135	0	1.0	81.46	41	620.25
140	0	1.0	81.46	41	620.25
145	0	1.0	81.46	41	620.25
150	0	1.0	81.46	41	620.25
155	0	1.0	81.46	41	620.25
160	0	1.0	81.46	41	620.25
165	0	1.0	81.46	41	620.25
170	0	1.0	81.46	41	620.25
175	0	1.0	81.46	41	620.25
180	0	1.0	81.46	41	620.25
185	0	1.0	81.46	41	620.25
190	0	1.0	81.46	41	620.25
195	0	1.0	81.46	41	620.25
200	0	1.0	81.46	41	620.25
205	0	1.0	81.46	41	620.25
210	0	1.0	81.46	41	620.25
215	0	1.0	81.46	41	620.25
220	0	1.0	81.46	41	620.25
225	0	1.0	81.46	41	620.25
230	0	1.0	81.46	41	620.25
235	0	1.0	81.46	41	620.25
240	0	1.0	81.46	41	620.25
245	0	1.0	81.46	41	620.25
250	0	1.0	81.46	41	620.25
255	0	1.0	81.46	41	620.25
260	0	1.0	81.46	41	620.25
265	0	1.0	81.46	41	620.25
270	0	1.0	81.46	41	620.25
275	0	1.0	81.46	41	620.25
280	0	1.0	81.46	41	620.25
285	0	1.0	81.46	41	620.25
290	0	1.0	81.46	41	620.25
295	0	1.0	81.46	41	620.25
300	0	1.0	81.46	41	620.25
305	0	1.0	81.46	41	620.25
310	0	1.0	81.46	41	620.25
315	0	1.0	81.46	41	620.25
320	0	1.0	81.46	41	620.25
325	0	1.0	81.46	41	620.25
330	0	1.0	81.46	41	620.25
335	0	1.0	81.46	41	620.25
340	0	1.0	81.46	41	620.25
345	0	1.0	81.46	41	620.25
350	0	1.0	81.46	41	620.25
355	0	1.0	81.46	41	620.25
360	0	1.0	81.46	41	620.25
365	0	1.0	81.46	41	620.25
370	0	1.0	81.46	41	620.25
375	0	1.0	81.46	41	620.25
380	0	1.0	81.46	41	620.25
385	0	1.0	81.46	41	620.25
390	0	1.0	81.46	41	620.25
395	0	1.0	81.46	41	620.25
400	0	1.0	81.46	41	620.25
405	0	1.0	81.46	41	620.25
410	0	1.0	81.46	41	620.25
415	0	1.0	81.46	41	620.25
420	0	1.0	81.46	41	620.25
425	0	1.0	81.46	41	620.25
430	0	1.0	81.46	41	620.25
435	0	1.0	81.46	41	620.25
440	0	1.0	81.46	41	620.25
445	0	1.0	81.46	41	620.25
450	0	1.0	81.46	41	620.25
455	0	1.0	81.46	41	620.25
460	0	1.0	81.46	41	620.25
465	0	1.0	81.46	41	620.25
470	0	1.0	81.46	41	620.25
475	0	1.0	81.46	41	620.25
480	0	1.0	81.46	41	620.25
485	0	1.0	81.46	41	620.25
490	0	1.0	81.46	41	620.25
495	0	1.0	81.46	41	620.25
500	0	1.0	81.46	41	620.25
505	0	1.0	81.46	41	620.25
510	0	1.0	81.46	41	620.25
515	0	1.0	81.46	41	620.25
520	0	1.0	81.46	41	620.25
525	0	1.0	81.46	41	620.25
530	0	1.0	81.46	41	620.25
535	0	1.0	81.46	41	620.25
540	0	1.0	81.46	41	620.25
545	0	1.0	81.46	41	620.25
550	0	1.0	81.46	41	620.25
555	0	1.0	81.46	41	620.25
560	0	1.0	81.46	41	620.25
565	0	1.0	81.46	41	620.25
570	0	1.0	81.46	41	620.25
575	0	1.0	81.46	41	620.25
580	0	1.0	81.46	41	620.25
585	0	1.0	81.46	41	620.25
590	0	1.0	81.46	41	620.25
595	0	1.0	81.46	41	620.25
600	0	1.0	81.46	41	620.25
605	0	1.0	81.46	41	620.25
610	0	1.0	81.46	41	620.25
615	0	1.0	81.46	41	620.25
620	0	1.0	81.46	41	620.25
625	0	1.0	81.46	41	620.25
630	0	1.0	81.46	41	620.25
635	0	1.0	81.46	41	620.25
640	0	1.0	81.46	41	620.25
645	0	1.0	81.46	41	620.25
650	0	1.0	81.46	41	620.25
655	0	1.0	81.46	41	620.25
660	0	1.0	81.46	41	620.25
665	0	1.0	81.46	41	620.25
670	0	1.0	81.46	41	620.25
675	0	1.0	81.46	41	620.25
680	0	1.0	81.46	41	620.25
685	0	1.0	81.46	41	620.25
690	0	1.0	81.46	41	620.25
695	0	1.0	81.46	41	620.25
700	0	1.0	81.46	41	620.25
705	0	1.0	81.46	41	620.25
710	0	1.0	81.46	41	620.25
715	0	1.0	81.46	41	620.25
720	0	1.0	81.46	41	620.25
725	0	1.0	81.46	41	620.25
730	0	1.0	81.46	41	620.25
735	0	1.0	81.46	41	620.25
740	0	1.0	81.46	41	620.25
745	0	1.0	81.46	41	620.25
750	0	1.0	81.46	41	620.25
755	0	1.0	81.46	41	620.25
760	0	1.0	81.46	41	620.25
765	0	1.0	81.46	41	620.25
770	0	1.0	81.46	41	620.25
775	0	1.0	81.46	41	620.25
780	0	1.0	81.46	41	620.25
785	0	1.0	81.46	41	620.25
790	0	1.0	81.46	41	620.25
795	0	1.0	81.46	41	620.25
800	0	1.0	81.46	41	620.25
805	0	1.0	81.46	41	620.25
810	0	1.0	81.46	41	620.25
815	0	1.0	81.46	41	620.25
820	0	1.0	81.46	41	620.25
825	0	1.0	81.46	41	620.25
830	0	1.0	81.46	41	620.25
835	0	1.0	81.46	41	620.25
840	0	1.0	81.46	41	620.25
845	0	1.0	81.46	41	620.25
850	0	1.0	81.46	41	620.25
855	0	1.0	81.46	41	620.25
860	0	1.0	81.46	41	620.25
865	0	1.0	81.46	41	620.25
870	0	1.0	81.46	41	620.25
875	0	1.0	81.46	41	620.25
880	0	1.0	81.46	41	620.25
885	0	1.0	81.46	41	620.25
890	0	1.0	81.46	41	620.25
895	0	1.0	81.46	41	620.25
900	0	1.0	81.46	41	620.25
905	0	1.0	81.46	41	620.25
910	0	1.0	81.46	41	620.25
915	0	1.0	81.46	41	620.25
920	0	1.0	81.46	41	620.25
925	0	1.0	81.46	41	620.25
930	0	1.0	81.46	41	620.25
935	0	1.0	81.46	41	620.25
940	0	1.0	81.46	41	620.25
945	0	1.0	81.46	41	620.25
950	0	1.0	81.46	41	620.25
955	0	1.0	81.46	41	620.25
960	0	1.0	81.46	41	620.25
965	0	1.0	81.46	41	620.25
970	0	1.0	81.46	41	620.25
975	0	1.0	81.46	41	620.25
980	0	1.0	81.46	41	620.25
985	0	1.0	81.46	41	620.25
990	0	1.0	81.46	41	620.25
995	0	1.0	81.46		



Air Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Datasheet

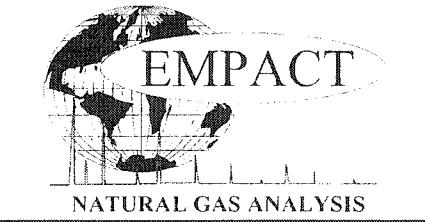
Job #:	ETC 0305			Stack Diameter (inches):	4		
Facility:	Debeque, CO			Upstream Disturbance (inches):	25		
Date:	10-21-05			Downstream Disturbance (inches):	35		
Probe ID:	P-498			Schematic of Sampling Location:			
Pilot Constant:	• 811.821 -			Points:	1 5 9 2 6 10 3 7 11 4 8 12		
Run #:	2-1 inlet			Run #:	2-3 inlet		
O2%:	CD8 CO2%: CD8			O2%:	CD8 CO2%: CD8		
H20%:	CD8 measured / estimate			H20%:	CD8 measured / estimate		
Ps (H2O):	.000 Pb (Hg): CD8			Ps (H2O):	CD8 Pb (Hg): .000		
Start Time:	1645 Stop Time:			Start Time:	1651 Stop Time:		
Post Test Pilot Leak Check Good? ✓							
Point #	Delta P	Ts	Notes	Point #	Delta P	Ts	Notes
1	.003	95		1	.003	94	
2	.003	95		2	.004	94	
3	.003	95		3	.005	94	
4	.005	95		4	.003	94	
5	.003	95		5	.005	94	
6	.003	93		6	.004	94	
Averages:	.0668			Averages:	.0669 94		
Averages:	.0669			Averages:	.0669 93		
Reviewers Signature:							

Air Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Datasheet											
Job #:	ETC 0305		Operator :	Brandi Cohen		Stack Diameter (inches) :	9				
Facility :	Debtoree, CO		Site :			Upstream Disturbance (inches) :	10				
Date :	10-4-05		Probe ID :	P-498		Downstream Disturbance (inches) :	20				
Pilot Constant:	811					Schematic of Sampling Location :					
Run #:	31unlet		Run #:	3-2-unlet		Run #:	3-3-unlet				
O2%:	CO2%: CDP		O2%:	CO2%: CDP		O2%:	CO2%: CDP				
H20%:	CO2% measured / estimate CDP		H20%:	CO2% measured / estimate CDP		H20%:	CO2% measured / estimate CDP				
Ps (°H2O):	(0.0)		Ps (°H2O):	(0.00)		Ps (°H2O):	(0.00)				
Start Time:	17:32		Stop Time:	17:38		Start Time:	17:47				
Post Test Pilot Leak Check Good? ✓											
Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes
1	.00002	95		1	.002	910		1	.002	95	
2	.0005	95		2	.005	90		2	.005	95	
3	.002	95		3	.005	90		3	.005	95	
4	.005	95		4	.002	90		4	.002	95	
5	.007	95		5	.003	90		5	.005	95	
6	.005	94		6	.005	90		6	.002	95	
Averages : 0.062 10										Averages : 0.071 45	
										Reviewers Signature :	
										Reviewers Signature :	

Inlet Gas Analysis

PROJECT NO. : 201010075 ANALYSIS NO. : 01
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 18, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 4, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 615
NAME/DESCRIP : ETC 0305.DCS.1A; 25A/18 @ 15:30

FIELD DATA


SAMPLED BY : SAMPLE TEMP.:
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.03	-	-
HYDROGEN	0.02	-	-
OXYGEN/ARGON	0.19	-	-
NITROGEN	1.56	-	-
CO2	3.72	-	-
METHANE	81.79	-	-
ETHANE	3.70	0.984	0.989
PROPANE	1.71	0.468	0.471
ISOBUTANE	0.44	0.143	0.144
N-BUTANE	0.69	0.216	0.217
ISOPENTANE	0.49	0.178	0.179
N-PENTANE	0.41	0.148	0.149
HEXANES+	<u>5.25</u>	<u>2.265</u>	<u>2.278</u>
TOTAL	100.00	4.402	4.427

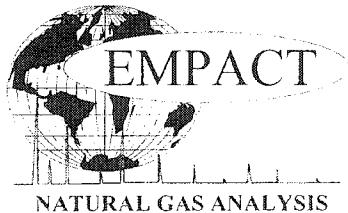
BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1278.5	1285.4
GROSS SATURATED REAL =	1256.1	1263.1

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.8082
COMPRESSIBILITY FACTOR : 0.99558

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 02
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 18, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 4, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 607
NAME/DESCRIP : ETC 0305.DCS.1B; M25A/18

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.02	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.55	-	-
NITROGEN	2.27	-	-
CO2	4.10	-	-
METHANE	79.70	-	-
ETHANE	3.70	0.984	0.989
PROPANE	1.80	0.493	0.496
ISOBUTANE	0.48	0.156	0.157
N-BUTANE	0.76	0.238	0.240
ISOPENTANE	0.56	0.204	0.205
N-PENTANE	0.48	0.173	0.174
HEXANES+	<u>5.58</u>	<u>2.408</u>	<u>2.421</u>
TOTAL	100.00	4.656	4.682

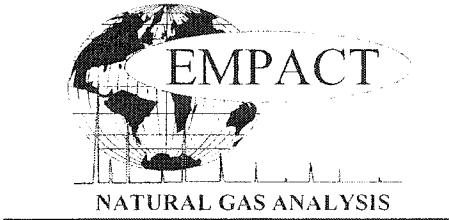
BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1285.9	1292.9
GROSS SATURATED REAL =	1263.4	1270.4

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.8316
COMPRESSIBILITY FACTOR : 0.99540

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **03**
COMPANY NAME : **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 18, 2010
ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 4, 2010
PRODUCER : **TO:**
LEASE NO. : **CYLINDER NO. : 664**
NAME/DESCRIP : **ETC 0305.DCS.2A; 25A/18**

FIELD DATA


SAMPLED BY : **SAMPLE TEMP.:**
SAMPLE PRES. : **AMBIENT TEMP.:**
COMMENTS : **AIR CAN**

COMPONENTS	NORM. MOLE%	GPM @	
		14.65	14.73
HELUM	0.03	-	-
HYDROGEN	0.03	-	-
OXYGEN/ARGON	0.47	-	-
NITROGEN	2.78	-	-
CO2	3.94	-	-
METHANE	81.44	-	-
ETHANE	3.41	0.907	0.912
PROPANE	1.48	0.405	0.408
ISOBUTANE	0.41	0.133	0.134
N-BUTANE	0.63	0.197	0.199
ISOPENTANE	0.40	0.145	0.146
N-PENTANE	0.33	0.119	0.120
HEXANES+	4.65	2.006	2.017
TOTAL	100.00	3.912	3.936

BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1223.0	1229.7
GROSS SATURATED REAL =	1201.6	1208.3

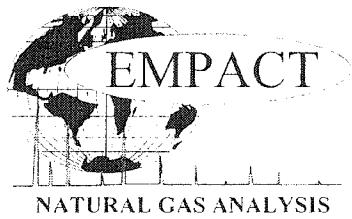
RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **0.7925**
COMPRESSIBILITY FACTOR : **0.99594**

NOTE: REFERENCE GPA 2261/ASTM D1945 & ASME-PTC, 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO.: 04
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 18, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 4, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 338
NAME/DESCRIP : ETC 0305 DCS.2B; 25A/18

FIELD DATA

SAMPLED BY : SAMPLE TEMP.:
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN


COMPONENTS	NORM.	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
	MOLE%		
HELUM	0.03	-	-
HYDROGEN	0.03	-	-
OXYGEN/ARGON	0.72	-	-
NITROGEN	4.32	-	-
CO2	4.24	-	-
METHANE	79.94	-	-
ETHANE	3.31	0.880	0.885
PROPANE	1.42	0.389	0.391
ISOBUTANE	0.40	0.130	0.131
N-BUTANE	0.63	0.197	0.199
ISOPENTANE	0.41	0.149	0.150
N-PENTANE	0.34	0.123	0.123
HEXANES+	4.21	1.816	1.826
TOTAL	100.00	3.684	3.705

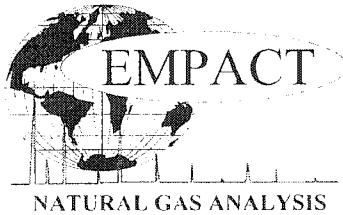
BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1182.2	1188.6
GROSS SATURATED REAL =	1161.5	1167.9

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.7905
COMPRESSIBILITY FACTOR : 0.99616

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC, 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 05
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 18, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 4, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 750
NAME/DESCRIP : ETC 0305.DCS.3A; M25A/18

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.03	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.37	-	-
NITROGEN	2.74	-	-
CO2	4.03	-	-
METHANE	82.67	-	-
ETHANE	3.46	0.920	0.925
PROPANE	1.47	0.403	0.405
ISOBUTANE	0.39	0.127	0.128
N-BUTANE	0.60	0.188	0.189
ISOPENTANE	0.43	0.156	0.157
N-PENTANE	0.35	0.126	0.127
HEXANES+	<u>3.46</u>	<u>1.493</u>	<u>1.501</u>
TOTAL	100.00	3.413	3.432

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1174.8	1181.2
GROSS SATURATED REAL =	1154.2	1160.7

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.7610
COMPRESSIBILITY FACTOR : 0.99635

NOTE: REFERENCE GPA 2261/ASTM D1945 & ASME-PTC, 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 06
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 18, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 4, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 1075
NAME/DESCRIP : ETC 0305.DCS.3B; 25A/18

FIELD DATA

SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.03	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.50	-	-
NITROGEN	2.21	-	-
CO2	4.03	-	-
METHANE	83.14	-	-
ETHANE	3.49	0.928	0.933
PROPANE	1.52	0.416	0.419
ISOBUTANE	0.40	0.130	0.131
N-BUTANE	0.63	0.197	0.199
ISOPENTANE	0.44	0.160	0.161
N-PENTANE	0.36	0.130	0.130
HEXANES+	3.25	<u>1.402</u>	<u>1.410</u>
TOTAL	100.00	3.363	3.383

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1172.6	1179.0
GROSS SATURATED REAL =	1152.1	1158.5

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.7555
COMPRESSIBILITY FACTOR : 0.99639

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

Operating Data

DAILY READINGS

DeBeque Compressor Station

For Month Of: OCTOBER, 2010

ETC Canyon Pipeline, LLC

AMINE UNIT

DATE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Time / Initials	08/1040	08/1030	08												
Hours On	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Water Tank Level	1/2-	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4	1/4
Amine Tank Level	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Contact Tower Temperature	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°	102.0°
Contact Tower Level	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fuel PSI	47.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18	44.18
Boost Pump PSI	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Amine In Temp EXCH	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°
Amine Out Temp EXCH	157°	157°	157°	157°	157°	157°	157°	157°	157°	157°	157°	157°	157°	157°	157°
Surge Tank Level	2/3	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Flash Tank Temperature	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°	100°
Flash Tank PSI	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0
Flash Tank Level	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
Regen Tower Temp	225°	230°	230°	230°	230°	230°	230°	230°	230°	230°	230°	230°	230°	230°	230°
Reflux Level	0	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-	1/2-
Reflux Temperature	84	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Reflux PSI	28	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Carbon Filter Diff	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P
Sock Filter Diff	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P	B/P
Reboiler PSI	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Reboiler Temperature	245°	245°	245°	245°	245°	245°	245°	245°	245°	245°	245°	245°	245°	245°	245°
Reboiler Level	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full	Full
Solution Pump In Temp	96	98	97	97	98	97	98	97	98	97	98	97	98	97	98
Amine Concentration	23.646	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639	23.639
CO2 In															
CO2 Out															
Fuel Use	37440	37697	37449	37210	37449	37210	37449	37210	37449	37210	37449	37210	37449	37210	37449
Comments:	2PM	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74	33.74

10'5"

DAIL. . . EADINGS
DeBeque Compressor Sta.

ETC Canyon Pipeline 115

Unit: Cat 3516 For Month Of: OCTOBER, 2010

Cat 3516

For Month Of: OCTOBER, 20

DAILY READINGS

PREMIER DE BEQUE
BLIZZARD NGL For Month Of: OCTOBER, 2001

DATE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Time/initials	08	08/10/00	08/10/00	08											
Suction Pressure	4	4	3	5											
Intertank Temp	72°	72°	72	72	72	72	72	72	72	72	72	72	72	72	72
Intertank Pressure	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50
Interstage Temp	140°	140°	140°	140°	140°	140°	140°	140°	140°	140°	140°	140°	140°	140°	140°
Discharge Pressure	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
Discharge Temp	180°	180°	180°	180°	180°	180°	180°	180°	180°	180°	180°	180°	180°	180°	180°
Compressor Oil Pressure	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
Compressor Oil Tank	72	72	72	72	72	72	72	72	72	72	72	72	72	72	72
Economizer Level	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Economizer Temp	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Economizer PSI	90	90	90	90	90	90	90	90	90	90	90	90	90	90	90
Accumulator Level %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Chiller Level %	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%
Chiller Temp.	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°	-20°
Chiller PSI	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Stabilizer PSI	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
Stabilizer Temp.	23°	23°	23°	23°	23°	23°	23°	23°	23°	23°	23°	23°	23°	23°	23°
Stabilizer Level	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Free Water KO PSI	540	520	510	500	500	500	500	500	500	500	500	500	500	500	500
Free Water KO PSI	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Free Water KO Temp	94°	94°	94°	94°	94°	94°	94°	94°	94°	94°	94°	94°	94°	94°	94°
Free Water KO Level	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
3 Phase PSI	340	310	310	310	310	310	310	310	310	310	310	310	310	310	310
3 Phase Temp	-12°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°	-14°
3 Phase Glycol Level	4.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
3 Phase Product Level	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Hours Since Last PM	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total Hours On	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
Comments															

DeBeque Comp,essor Station
Liquids Report
Month of OCTOBER 2010
ETC Canyon Pipeline, LLC

Foundation Creek Gas Plant Flare

Air Pollution Testing, Inc. : Analyzer Calibration Datasheet

Facility :	Foundation Creek	Date :	10-6-10
Location :	Rangley CO	APT Job # :	ETC0305
Unit :	Hare	Page # :	

Analyzer Information

Analyzer Type	O ₂	CO ₂	CH ₄	VR		
Analyzer ID #	14doc-7	1415C-9	55I	55I		
Analyzer Scale	0-25	0-20	0-5000	0-5000		
Calibration Range	0-21.1	0-19.7	0-1500	0-847		

Calibration Gas Cylinder Information (Cylinder ID#/Expiration date and Concentration)

Analyzer Type	O ₂	CO ₂	CH ₄	VR	VR	
Zero	0	0	0	0	0	
CC#						
Expiration date						
Low			310 /	30 /	303 ✓	
CC#			AAL19994		ALM023575	
Expiration date			6-13		4-13	
Mid	10.0 /	10.1 /	759 /	50.1 /	493 /	
CC#	ALM017884		ALM061294		ALM0218204	
Expiration date	6-13		6-13 /		8-13	
High	21.1 /	19.7 /	1500	84.5	847. ✓	5020
CC#	ALM02293		ALM03624		CC279553	CC118573
Expiration date	4-13		6-13		7-13	5-11

Calibration Error

Analyzer Type	O ₂	CO ₂	CH ₄	VR	VR	
Zero	0.0	0.0	3.8	0.3	1.1	
Low			310.9	30.4	305.2	
Mid	10.0	10.1	760.1	51.9	491	
High	21.1	19.7	1507.1	84.6	845.2	

4765

Initial Bias Check

Run #:	O ₂	CO ₂	CH ₄	VR	VR	
Analyzer Type	0.1	0.0	1.6	1.1	0.9	
Zero						
Low						
Mid	10.0	10.1	295.9	31.2	310.6	
High						

4766.9

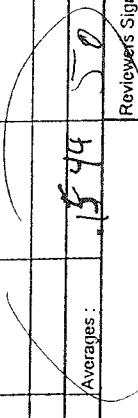
Air Pollution Testing, Inc. : Analyzer Calibration Data Sheet					
Facility :	Foundation Creek		Date :	10-6-10	
Location :	Bengley CO		APT Job # :	ETL 0305	
Unit :	flare		Page # :		
Run # :	1	Start Time :	1411	Stop Time :	1511
Calibration Results					
Analyzer Type	O2	CO2	CH4	NH3	
Zero	-0.1	0.0	3.3	1.9	
Low					
Mid	9.9	10.2	20.4	309.6	
High				4854	
Run # :	2	Start Time	1531	Stop Time :	1632
Calibration Results					
Analyzer Type	O2	CO2	CH4	NH3	
Zero	0.0	0.0	1.0	0.1	
Low					
Mid	9.9	10.1	204	313.0	
High				4849	
Run # :	3	Start Time :	1720	Stop Time :	1820
Calibration Results					
Analyzer Type	O2	CO2	CH4	NH3	
Zero	0.0	0.0	1.4	-0.8	
Low					
Mid	10.2	10.2	295.4	296.3	
High				4678	

Air Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Data Sheet																		
Job #:	ETC - 01205		Brendan Conner		Stack Diameter (inches):		Upstream Disturbance (inches):											
Facility:	123456789000		Foundation Creek		Downstream Disturbance (inches):		Schematic of Sampling Location:											
Date:	12-5-10																	
Probe ID:	0428		Points:	1	5	9												
Pilot Constant:	.821		2	6	10													
			3	7	11													
			4	8	12													
Run #:	2-1 outlet		2-2 outlet		Run #:		Run #:											
O2%:	CO2%:		CO2%:		CO2%:		CO2%:											
H20%:	CO2% measured / estimate		CO2% measured / estimate		CO2% measured / estimate		CO2% measured / estimate											
Ps (H2O):	CO2% Pb (Hg):		H20% measured / estimate		H20% measured / estimate		H20% measured / estimate											
Start Time:	1535		Stop Time:		Ps (H2O):		Ps (H2O):											
Post Test Pilot Leak Check Good?:	/		Start Time:		Pb (Hg):		Pb (Hg):											
Point #	Delta P		Ts		Point #		Point #											
1	.003		875		1-1		1-1											
2	.003		883		2		2											
3	.04		888		3		3											
4	.04		897		4		4											
5	.05		910		5		5											
6	.04		920		6		6											
7	.02		925		7		7											
8	.02		928		8		8											
2-1	.02		930		9/10		9/10											
2	.03		925		.02		.02											
3	.04		918		.02		.02											
4	.05		910		.04		.04											
5	.04		905		.045		.045											
6	.05		898		.05		.05											
7	.04		870		.05		.05											
8	.03		870		.05		.04											
Averages: 0.171 0.025																		
Averages: 0.173 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		
Averages: 0.175 0.025																		

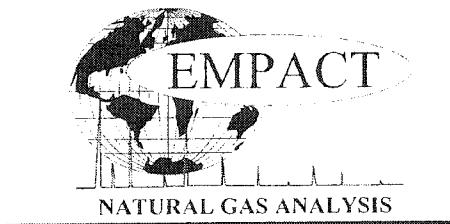
Site =

APT Job #		Air Pollution Testing, Inc. : EPA B		Moisture Determination Datasheet	
Location: 6	Fond du Creek	Operator: BRENCH Caren	coax#: C015	coax#: C015	COAS
Run #: 1	(cont'd)		Ambient Temperature (OF): 70	Ambient Pressure (inHg): 794	
Meter Box ID: 180	MS-10	Probe Length (in): 25+			
Meter Box Yd:	1.71	Static Pressure (H2O): 111		Moisture (percent):	
Flow Test Pump Leak Check:	0.00@81.7	Start Time: 14:11			
Flow Test Pump Leak Check:	1.00@101.6	Stop Time: 15:34			
Method:	A				
Schematic of Stack:					
Sampling Time (minutes)	Vacuum (in Hg)	Optics Setting (H2O)	Meter Temp. (OF)	Condenser Temp. (OF)	Meter Volume (in)
5	1.0	74	70	31	712.010
10	1.0	75	73	32	716.11
15	1.0	75	75	33	719.80
20	1.0	75	76	34	722.34
25	1.0	75	76	36	727.01
30	1.0	75	76	37	732.010
35	1.0	75	76	38	737.72
40	1.0	75	77	39	741.62
45	1.0	75	77	39	745.300
50	1.0	75	77	39	
55	1.0	75	77	39	
60	1.0	75	77	39	752.62
					756.295
Moisture Determination					
Imp. #	Tare	Final	Gain		
452.8	452.5	416.1	13.7		
399.2	396.2	352.7	43.9	A.2	
366.2	349.2	307.4	38.0	1.8	
459.5	402.8	456.8	465.0	5.5	
Total	367.3	367.3	367.3	Total (24.8)	
				Performance Signature	
					75.3

Run #		Location:		Date:		Method:		Notes:		Moisture Determination	
1	ETC-0305	10/6/00	6100	6100	6100	6100	6100	6100	6100	6100	6100
2	(outlet)	Bendix Chen									
3	985	Master Box Yt.	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71	1.71
4	0.0 8" Hg	Pre-Test Pump Leak Check	6.028" Hg	6.028" Hg	6.028" Hg	6.028" Hg	6.028" Hg	6.028" Hg	6.028" Hg	6.028" Hg	6.028" Hg
Sampling Time (minutes)		Vacuum	Orifice Setting (°F)	Meter Temp. (°F)	Inlet (°F)	Condenser Temp. (°F)	Meter Volume (ml)	Initial Volume	Notes	Moisture Determination	
5	1	1.0	78	79	36	159.91	780.366			Imp. #	Tare
10	1	1.0	79	80	37	763.43				1	416.1
15	1	1.0	80	82	38	765.95				2	405.4
20	1	1.0	80	83	38	770.48				3	308.0
25	1	1.0	80	83	38	774.055				4	465.0
30	1	1.0	86	83	38	777.52					
35	1	1.0	80	87	38	781.011					
40	1	1.0	88	82	37	884.805					
45	1	1.0	83	82	37	887.08					
50	1	1.0	80	82	37	891.05					
55	1	1.0	80	82	37	893.31					
60	1	1.0	79	81	37	798.700					
Upstream Disturbance (inches):		Downstream Disturbance (inches):		Upstream Disturbance (inches):		Downstream Disturbance (inches):		Upstream Disturbance (inches):		Downstream Disturbance (inches):	
60		1.0		60.75		67.3		62.339		62.339	
Total		30.2		30.2		30.2		30.2		30.2	


Front
Door
Open

Air Pollution Testing, Inc. : EPA 601 - Moisture Determination Datasheet																																																																																																																																											
APT Job #:	ETC 0303	Date:	10-6-10	Method:	CDAS	2200:	CDAS																																																																																																																																				
Location:	6000 block of 1st	Operator:	Renaldo Jones	Ambient Temperature (OF):																																																																																																																																							
Run #:	2 (21st)	Meter Box ID:	M5-10	Probe Length (in):	2 FT																																																																																																																																						
Meter Box Yr.:	080	Meter CH#:	1.71	Static Pressure (H2O):																																																																																																																																							
Flow Test Pump Leak Check:		Method:	1	Start Time:	1720																																																																																																																																						
Stop Time:		Stop Time:	180220	Schematic of Stack:																																																																																																																																							
<table border="1"> <thead> <tr> <th>Sampling Time (minutes)</th><th>Vacuum (in Hg)</th><th>Orifice Setting (in)</th><th>Meter Temp. (OF)</th><th>Inlet (OF)</th><th>Outlet (OF)</th><th>Condenser Temp. (OF)</th><th>Meter Volume (in3)</th><th>Initial Volume</th><th>Holes</th></tr> </thead> <tbody> <tr> <td>5</td><td>1.8</td><td>20</td><td>68</td><td>37</td><td>37</td><td>802.27</td><td></td><td></td><td></td></tr> <tr> <td>10</td><td>1.0</td><td>70</td><td>69</td><td>37</td><td>37</td><td>805.77</td><td></td><td></td><td></td></tr> <tr> <td>15</td><td>1.0</td><td>68</td><td>67</td><td>37</td><td>37</td><td>809.17</td><td></td><td></td><td></td></tr> <tr> <td>20</td><td>1.0</td><td>65</td><td>65</td><td>37</td><td>37</td><td>812.67</td><td></td><td></td><td></td></tr> <tr> <td>25</td><td>1.0</td><td>62</td><td>63</td><td>37</td><td>37</td><td>816.17</td><td></td><td></td><td></td></tr> <tr> <td>30</td><td>1.0</td><td>60</td><td>61</td><td>37</td><td>37</td><td>819.57</td><td></td><td></td><td></td></tr> <tr> <td>35</td><td>1.0</td><td>55</td><td>57</td><td>37</td><td>37</td><td>823.07</td><td></td><td></td><td></td></tr> <tr> <td>40</td><td>1.0</td><td>52</td><td>53</td><td>37</td><td>37</td><td>826.57</td><td></td><td></td><td></td></tr> <tr> <td>45</td><td>1.0</td><td>52</td><td>53</td><td>37</td><td>37</td><td>829.97</td><td></td><td></td><td></td></tr> <tr> <td>50</td><td>1.0</td><td>50</td><td>51</td><td>37</td><td>37</td><td>833.96</td><td></td><td></td><td></td></tr> <tr> <td>55</td><td>1.0</td><td>50</td><td>51</td><td>37</td><td>37</td><td>836.96</td><td></td><td></td><td></td></tr> <tr> <td>60</td><td>1.0</td><td>50</td><td>51</td><td>37</td><td>37</td><td>840.750</td><td></td><td></td><td></td></tr> </tbody> </table>										Sampling Time (minutes)	Vacuum (in Hg)	Orifice Setting (in)	Meter Temp. (OF)	Inlet (OF)	Outlet (OF)	Condenser Temp. (OF)	Meter Volume (in3)	Initial Volume	Holes	5	1.8	20	68	37	37	802.27				10	1.0	70	69	37	37	805.77				15	1.0	68	67	37	37	809.17				20	1.0	65	65	37	37	812.67				25	1.0	62	63	37	37	816.17				30	1.0	60	61	37	37	819.57				35	1.0	55	57	37	37	823.07				40	1.0	52	53	37	37	826.57				45	1.0	52	53	37	37	829.97				50	1.0	50	51	37	37	833.96				55	1.0	50	51	37	37	836.96				60	1.0	50	51	37	37	840.750			
Sampling Time (minutes)	Vacuum (in Hg)	Orifice Setting (in)	Meter Temp. (OF)	Inlet (OF)	Outlet (OF)	Condenser Temp. (OF)	Meter Volume (in3)	Initial Volume	Holes																																																																																																																																		
5	1.8	20	68	37	37	802.27																																																																																																																																					
10	1.0	70	69	37	37	805.77																																																																																																																																					
15	1.0	68	67	37	37	809.17																																																																																																																																					
20	1.0	65	65	37	37	812.67																																																																																																																																					
25	1.0	62	63	37	37	816.17																																																																																																																																					
30	1.0	60	61	37	37	819.57																																																																																																																																					
35	1.0	55	57	37	37	823.07																																																																																																																																					
40	1.0	52	53	37	37	826.57																																																																																																																																					
45	1.0	52	53	37	37	829.97																																																																																																																																					
50	1.0	50	51	37	37	833.96																																																																																																																																					
55	1.0	50	51	37	37	836.96																																																																																																																																					
60	1.0	50	51	37	37	840.750																																																																																																																																					
Moisture Determination																																																																																																																																											
Imp. #	Tare	Final	Gain																																																																																																																																								
1	42.9	6	36.0	1.4																																																																																																																																							
2	407.5	419.1	11.8																																																																																																																																								
3	309.2	312.7	3.5																																																																																																																																								
4	471.6	474.6	3.0																																																																																																																																								
Total			19.7																																																																																																																																								
Run-Down Summary																																																																																																																																											
Total	1	1.0	58.91	35	41.973																																																																																																																																						


Location
6000 block of 1st

Job #:		Air Pollution Testing Inc. - EPA Method 2 - Pilot Traverse Datasheet		Stack Diameter (inches):		Upstream Disturbance (inches):	
Facility:	ETC 0305 0000 0000 0000 0000 0000 0000 Creek	Site:	Brendan Coker				
Date:	10-5-10	Points:	1 5 9				
Probe ID:	P-408	2 6 10					
Pilot Constant:	821	3 7 11					
Run #:	1-1 Left	4 8 12					
O2%:	CO2%: <u>0.05</u>	CO2%: <u>0.05</u>	Run #:	1-2 Right	Run #:	CO2%: <u>0.05</u>	
H20%:	CO2%: measured / estimate <u>0.05</u>	CO2%: measured / estimate <u>0.05</u>	O2%:	CO2%: <u>0.05</u>	O2%:	CO2%: <u>0.05</u>	
Ps (Hg):	Pb (Hg): <u>794</u>	Ps (Hg): <u>794</u>	H20%:	CO2%: <u>0.05</u>	H20%:	CO2%: <u>0.05</u>	
Start Time:	1448	Start Time: <u>1453</u>	Ps (Hg):	Pb (Hg): <u>8.0</u>	Ps (Hg):	Pb (Hg): <u>8.0</u>	
Post Test Pilot Leak Check Good?:	✓	Stop Time: <u>1453</u>	Start Time:	1502	Start Time:	1509	
Point #	Delta P	Notes	Point #	Delta P	Notes	Point #	Delta P
1	.015	67	1	.015	68	1	.015
2	.02	67	2	.02	68	2	.02
3	.025	68	3	.025	68	3	.025
4	.025	68	4	.025	68	4	.02
5	.021	68	5	.023	68	5	.03
6	.023	68	6	.025	68	6	.02
Averages:	0.147	67.7	Averages:	0.157	68	Averages:	0.146
Reviewers Signature:							
6/16/08							

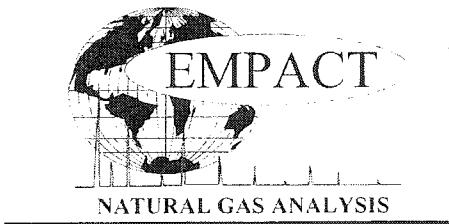
Air Pollution Testing Inc. - EPA Method 7 - Pilot Traverse Datasheet									
Job #:	Brenton Cenro			Stack Diameter (inches):	4				
Facility:	Foundsation Center			Upstream Disturbance (inches):					
Date:	10-5-10			Downstream Disturbance (inches):					
Probe ID:	P 408			Schematic of Sampling Location:					
Pilot Constant:	Sett. 821								
Run #:	2-1 inlet			Run #:	2-3 inlet				
O2%:	20%			O2%:	20%				
H20%:	20%			H20%:	20%				
Ps (H2O):	9.0			Ps (H2O):	9.0				
Start Time:	1605			Pb (Hg):	794				
Stop Time:	1611			Start Time:	1614				
Post Test Pilot Leak Check Good?:	Yes			Stop Time:	1618				
Point #	1			Post Test Pilot Leak Check Good?:	Yes				
Point #	1			Point #	1				
Delta P	0.15			Notes	Notes				
1	0.15			1	0.15				
2	0.2			2	0.2				
3	0.3			3	0.25				
4	0.35			4	0.3				
5	0.3			5	0.25				
6	0.15			6	0.15				
7	0.0								
8	0.0								
9	0.0								
10	0.0								
11	0.0								
12	0.0								
13	0.0								
14	0.0								
15	0.0								
16	0.0								
17	0.0								
18	0.0								
19	0.0								
20	0.0								
21	0.0								
22	0.0								
23	0.0								
24	0.0								
25	0.0								
26	0.0								
27	0.0								
28	0.0								
29	0.0								
30	0.0								
31	0.0								
32	0.0								
33	0.0								
34	0.0								
35	0.0								
36	0.0								
37	0.0								
38	0.0								
39	0.0								
40	0.0								
41	0.0								
42	0.0								
43	0.0								
44	0.0								
45	0.0								
46	0.0								
47	0.0								
48	0.0								
49	0.0								
50	0.0								
51	0.0								
52	0.0								
53	0.0								
54	0.0								
55	0.0								
56	0.0								
57	0.0								
58	0.0								
59	0.0								
60	0.0								
61	0.0								
62	0.0								
63	0.0								
64	0.0								
65	0.0								
66	0.0								
67	0.0								
68	0.0								
69	0.0								
70	0.0								
71	0.0								
72	0.0								
73	0.0								
74	0.0								
75	0.0								
76	0.0								
77	0.0								
78	0.0								
79	0.0								
80	0.0								
81	0.0								
82	0.0								
83	0.0								
84	0.0								
85	0.0								
86	0.0								
87	0.0								
88	0.0								
89	0.0								
90	0.0								
91	0.0								
92	0.0								
93	0.0								
94	0.0								
95	0.0								
96	0.0								
97	0.0								
98	0.0								
99	0.0								

Air Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Datasheet											
Job #:	ETL 0305		Facility:	Foundation Creek		Operator:	Upstream Disturbance (inches):				
Date:	10-6-10		Probe ID:	P-498		Point #:	1	5	9		
Pilot Constant:	1.811		Start Time:	17:55		Point #:	2	6	10		
			Stop Time:			Point #:	3	7	11		
			Post Test Pilot Leak Check Good?			Point #:	4	8	12		
Run #:	3-1		Run #:	3-2		Run #:	3-3				
O2%:	CO2%: 0.9		O2%:	CO2%: 0.91		O2%:	CO2%: 0.915		CO2%:		
CO2%:	CO2%: 0.9		CO2%:	CO2%: 0.915		CO2%:	CO2%: 0.915		CO2%:		
H2O%:	measured / estimate 7.94		H2O%:	measured / estimate 7.94		H2O%:	measured / estimate 7.94		measured / estimate		
Ps (H2O):	8.5		Ps (Hg):	8.5		Ps (Hg):	8.5		Pb (Hg):		
Start Time:	18:11		Start Time:	18:11		Start Time:	18:11		Stop Time:		
Post Test Pilot Leak Check Good?			Post Test Pilot Leak Check Good?			Post Test Pilot Leak Check Good?			Post Test Pilot Leak Check Good?		
Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes
1	.01	56		1	.01	54		1	.015	50	
2	.015	56		2	.02	54		2	.03	50	
3	.025	56		3	.025	54		3	.025	50	
4	.025	56		4	.025	54		4	.025	50	
5	.02	56		5	.02	54		5	.02	50	
6	.015	56		6	.015	54		6	.02	50	
Averages:	.151		56	Averages:	.137		54	Averages:	.1544		50
	Reviewers Signature:										
	Reviewers Signature:										

Inlet Gas Analysis

PROJECT NO. : 201010075 ANALYSIS NO. : 07
COMPANY NAME: AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 6, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 501
NAME/DESCRIP: ETC 0305.FC.1A; 25A/18

FIELD DATA


SAMPLED BY : SAMPLE TEMP.:
SAMPLE PRES.: AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @	
		14.65	14.73
HELUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.02	-	-
NITROGEN	0.44	-	-
CO2	2.59	-	-
METHANE	64.13	-	-
ETHANE	6.68	1.776	1.786
PROPANE	6.52	1.786	1.796
ISOBUTANE	2.17	0.706	0.710
N-BUTANE	4.75	1.489	1.497
ISOPENTANE	2.68	0.975	0.980
N-PENTANE	2.55	0.919	0.924
HEXANES+	7.46	3.219	3.236
TOTAL	100.00	10.870	10.929

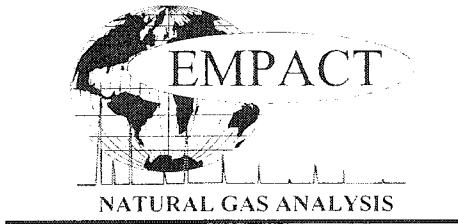
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1757.7	1767.3
GROSS SATURATED REAL =	1726.9	1736.6

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 1.0861
COMPRESSIBILITY FACTOR : 0.99115

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **08**
COMPANY NAME : **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 6, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : **873**
NAME/DESCRIP : **ETC 0305.FC.1B; 25A/18**

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP. :
COMMENTS : **AIR CAN**

COMPONENTS	NORM. MOLE%	GPM @	
		14.65	14.73
HELUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.02	-	-
NITROGEN	0.38	-	-
CO2	2.52	-	-
METHANE	64.11	-	-
ETHANE	6.68	1.776	1.786
PROPANE	6.52	1.786	1.796
ISOBUTANE	2.17	0.706	0.710
N-BUTANE	4.77	1.495	1.503
ISOPENTANE	2.69	0.978	0.984
N-PENTANE	2.56	0.923	0.928
HEXANES+	7.57	3.266	3.284
TOTAL	100.00	10.930	10.991

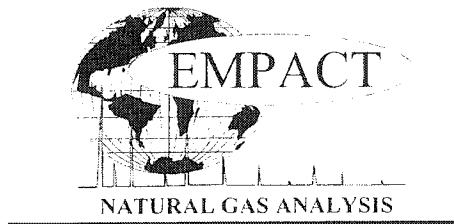
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1764.7	1774.4
GROSS SATURATED REAL =	1733.8	1743.5

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **1.0889**
COMPRESSIBILITY FACTOR : **0.99108**

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC. 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **09**
COMPANY NAME: **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 6, 2010
PRODUCER :
LEASE NO. :
NAME/DESCRIP : **ETC 0305.FC.2A; 25A/18**

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : **AIR CAN**

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.01	-	-
NITROGEN	0.38	-	-
CO2	2.15	-	-
METHANE	68.32	-	-
ETHANE	6.66	1.771	1.781
PROPANE	6.37	1.745	1.754
ISOBUTANE	2.13	0.693	0.697
N-BUTANE	4.60	1.442	1.450
ISOPENTANE	2.59	0.942	0.947
N-PENTANE	2.41	0.869	0.873
HEXANES+	<u>4.37</u>	<u>1.886</u>	<u>1.896</u>
TOTAL	100.00	9.348	9.398

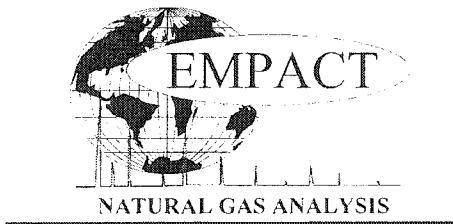
BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1618.3	1627.2
GROSS SATURATED REAL =	1590.0	1598.9

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **0.9877**
COMPRESSIBILITY FACTOR : **0.99290**

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 10
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 6, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 403
NAME/DESCRIP : ETC 0305.FC.2B; 25A/18

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @	
		14.65	14.73
HELIUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.01	-	-
NITROGEN	0.41	-	-
CO2	2.11	-	-
METHANE	67.30	-	-
ETHANE	6.57	1.747	1.757
PROPANE	6.29	1.723	1.732
ISOBUTANE	2.11	0.687	0.690
N-BUTANE	4.59	1.439	1.447
ISOPENTANE	2.64	0.960	0.965
N-PENTANE	2.48	0.894	0.899
HEXANES+	5.48	2.364	2.377
TOTAL	100.00	9.814	9.867

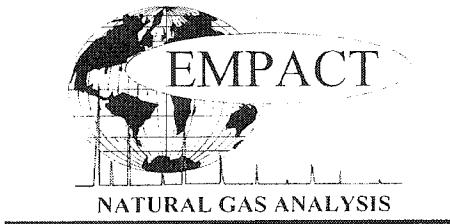
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1666.3	1675.4
GROSS SATURATED REAL =	1637.1	1646.3

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 1.0187
COMPRESSIBILITY FACTOR : 0.99234

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **11**
 COMPANY NAME : **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 20, 2010
 ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 6, 2010
 PRODUCER :
 LEASE NO. :
 NAME/DESCRIP : **ETC 0305.FC.3A; 25A/18** CYLINDER NO. : **332**

*****FIELD DATA*****


SAMPLED BY :
 SAMPLE PRES. :
 COMMENTS : **AIR CAN** SAMPLE TEMP. :
 AMBIENT TEMP.:

<u>COMPONENTS</u>	<u>NORM.</u>	<u>GPM @</u>	<u>GPM @</u>
	<u>MOLE%</u>	<u>14.65</u>	<u>14.73</u>
HELUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.01	-	-
NITROGEN	0.37	-	-
CO2	2.21	-	-
METHANE	67.40	-	-
ETHANE	6.54	1.739	1.749
PROPANE	6.30	1.726	1.735
ISOBUTANE	2.12	0.690	0.694
N-BUTANE	4.61	1.445	1.453
ISOPENTANE	2.65	0.964	0.969
N-PENTANE	2.50	0.901	0.906
HEXANES+	5.28	2.278	2.291
TOTAL	100.00	9.743	9.797

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1658.8	1667.9
GROSS SATURATED REAL =	1629.8	1638.9

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **1.0149**
 COMPRESSIBILITY FACTOR : **0.99242**

NOTE: REFERENCE GPA 2261(4STM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 12
COMPANY NAME: AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 6, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 1168
NAME/DESCRIP: ETC 0305.FC.3B; 25A/18

FIELD DATA

SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.03	-	-
NITROGEN	0.47	-	-
CO2	2.20	-	-
METHANE	64.38	-	-
ETHANE	6.23	1.657	1.666
PROPANE	6.00	1.644	1.653
ISOBUTANE	2.04	0.664	0.667
N-BUTANE	4.49	1.407	1.415
ISOPENTANE	2.70	0.982	0.987
N-PENTANE	2.61	0.941	0.946
HEXANES+	<u>8.84</u>	<u>3.814</u>	<u>3.835</u>
TOTAL	100.00	11.109	11.169

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1801.6	1811.5
GROSS SATURATED REAL =	1770.1	1780.0

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 1.1085
COMPRESSIBILITY FACTOR : 0.99062

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

Operating Data

Plant pressure = $\frac{P_A}{P_B} = 55/55$

Discharge 706

NGL Sat 62

outlet flow 8.8 MM

Inlet A/B 6.664 / 2.5 MM

Slave temp 16.34

Dewy controller 68

~~PSI~~ 720

Injection Rate 2.65 GPM

Reboiler temp 330

flash tank 42 $^{\circ}$ PSI / 76 $^{\circ}$ F

~~E~~ NGL Sk. n

Inlet 72 $^{\circ}$ F / 700 $^{\circ}$ PSI

~~E~~ 6 Temp 260 $^{\circ}$ PSI / 90 $^{\circ}$ C

3 phase pressure 666 $^{\circ}$ PSI / -10 $^{\circ}$ F

Reboiler 230 $^{\circ}$ F

3.85 GPM

Rifle Boulton Station Flare

Air Pollution Testing, Inc. : Analyzer Calibration Datasheet

Facility :	Rifle Range	Date :	10-7-10
Location :	Rifle	APT Job # :	E TC 0305
Unit :	Flame	Page # :	

Analyzer Information

Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Analyzer ID #	1420 C-7	1415 C-9	551	552		
Analyzer Scale	0-25	0-20	0-5000	0-5000		
Calibration Range	0-21.1	0-19.7	0-1500	6-847		

Calibration Gas Cylinder Information (Cylinder ID#/Expiration date and Concentration)

Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Zero	0	0	0	0		
CC#						
Expiration date						
Low			31.0	30	/	
CC#			AAL19994	ALM052218		
Expiration date			6-13	4-13	/	
Mid	10.0	10.1	757	50.1	/	
CC#	ALM017884	—	ALM061294	CC131241		
Expiration date	6-13	—	6-13	11-11	/	
High	21.1	19.7	1500	845	/	
CC#	ALM00243	—	ALM03634	CC1098539		
Expiration date	4-73	—	6-13			

Calibration Error

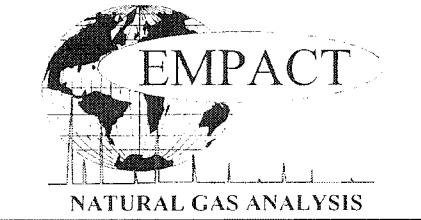
Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Zero	0.0	0.0	0.1	1507.9	2.9	
Low			30.9	311.3		
Mid	10.0	10.0	50.8	766.6		
High	21.1	19.7	85.1	1507.9		

Initial Bias Check

Run #:		Start:	↓	Stop:		
Analyzer Type	O ₂	CO ₂	CH ₄	NH ₃		
Zero	0.0	0.05	1.2	1.7		
Low						
Mid	10.0	10.1	308.8	321.4		
High						

Air Pollution Testing, Inc. : Analyzer Calibration Data Sheet					
Facility : <i>Rifle Boulton</i>				Date : <i>10-7-00</i>	
Location : <i>Rifle Co</i>				APT Job # : <i>ETL 0305</i>	
Unit : <i>flare</i>				Page # :	
Run # : <i>1</i>	Start Time : <i>1217</i>			Stop Time : <i>1317</i>	
Calibration Results					
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NR</i>	
Zero	<i>0.0</i>	<i>0.0</i>	<i>0.8</i>	<i>0.6</i>	
Low					
Mid	<i>9.9</i>	<i>10.1</i>	<i>301.2</i>	<i>30.6</i>	
High					
Run # : <i>2</i>	Start Time : <i>1339</i>			Stop Time : <i>1439</i>	
Calibration Results					
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NR</i>	
Zero	<i>0.0</i>	<i>0.0</i>	<i>1.8</i>	<i>0.0</i>	
Low					
Mid	<i>9.9</i>	<i>10.0</i>	<i>3.02, 4</i>	<i>30.0</i>	
High					
Run # : <i>3</i>	Start Time : <i>1457</i>	Stop Time : <i>1557</i>			
Calibration Results					
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NR</i>	
Zero	<i>0.1</i>	<i>-0.1</i>	<i>0.9</i>	<i>0.6</i>	
Low					
Mid	<i>10.0</i>	<i>9.83</i>	<i>309.1</i>	<i>30.1</i>	
High					

ETC-0305 Air Pollution Testing Inc. : EPA Method 2 • Pilot Traverse Datasheet											
Job #:	Site :		Operator :		Stack Diameter (inches) :		40.5"				
Facility :	R.F.C. Bolton			Upstream Disturbance (inches) :							
Date :	10-21-05			Downstream Disturbance (inches) :							
Probe ID :	P498			Schematic of Sampling Location :			40.5				
Pilot Constant:	0.71 0.871 .821										
Run #:	1-1 outlet			Run #:	1-2 outlet			Run #:	1-3 outlet		
O2%:	CO2%	CO2%:	CO2%:	O2%:	CO2%	CO2%:	O2%:	CO2%:	CO2%:	CO2%:	CO2%:
H20%:	CDAS	CDAS	CDAS	H20%:	CDAS	CDAS	H20%:	CDAS	CDAS	CDAS	CDAS
Ps (°Hg):	.001	measured / estimate	measured / estimate	Ps (°Hg):	.001	measured / estimate	Ps (°Hg):	.001	measured / estimate	.001	measured / estimate
Pb (°Hg):	810	Pb (°Hg):	810	Pb (°Hg):	810	Pb (°Hg):	Pb (°Hg):	810	Pb (°Hg):	810	Pb (°Hg):
Start Time:	12:18	Stop Time:	12:24	Start Time:	12:27	Stop Time:	12:32	Start Time:	12:36	Stop Time:	12:41
Post Test Pilot Leak Check Good?:	✓			Post Test Pilot Leak Check Good?:	✓			Post Test Pilot Leak Check Good?:	✓		
Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes
1-1	.03	81		1-2	0.015	88		1-3	.02	88	
1-2	.025	81		2	.015	88		2	.025	88	
3	.02	81		3	.015	88		3	.022	88	
4	.015	81		4	.01	88		4	.015	88	
5	.015	81		5	.01	88		5	.01	88	
6	.01	81		6	.01	88		6	.01	88	
7	.003	81		7	.005	89		7	.005	89	
8	.003	81		8	.005	88		8	.005	89	
2-1	.01	81		2-1	.02	87		2-1	.015	89	
2	.01	81		2	.02	87		2	.015	89	
3	.005	80		3	.015	87		3	.01	89	
4	.005	80		4	.015	87		4	.01	89	
5	.001	80		5	.01	87		5	.005	89	
6	.005	80		6	.005	87		6	.005	89	
7	.005	80		7	.002	87		7	.005	89	
8	.001	80		8	.002	87		8	.003	89	
Averages:										Averages:	0.0983 80.8
Averages:										Averages:	0.09126 87.5
Averages:										Averages:	0.08663 88.5
Reviewers Signature:										Reviewers Signature:	10/20/04 (10/20/04)


Air Pollution Testing, Inc. : EPA # 10-10-10 - Moisture Determination Data Sheet									
APM Job #:	Date:	Location:	Operator:	Run #:	Method:	COAS	COAS:	COAS	COAS
APC-0305	10-10-10	Ridge Bottom	Bendon Canon	3	COAS	COAS	COAS	COAS	COAS
Run # 3 (outlet)									
980									
Master Box Id:	MS-19								
Master D#:	171								
Pre-Test Pump Leak Check:	0.0000								
Post-Test Pump Leak Check:	0.0000								
Sampling Time (minutes)	Vacuum (in Hg)	Orifice Setting (in Hg)	Meter Temp. (°F)	Inlet (°F)	Outlet (°F)	Condenser Temp. (°F)	Meier Volume (in³)	Initial Volume (in³)	Note
5	1.0	1.0	82	87	37	37	921.431		
10	1.0	1.0	82	87	37	37	927.88		
15	1.0	1.0	81	87	37	37	931.34		
20	1.0	1.0	81	87	37	37	934.78		
25	1.0	1.0	81	87	37	37	938.24		
30	1.0	1.0	81	86	37	37	941.65		
35	1.0	1.0	81	86	37	37	945.13		
40	1.0	1.0	80	86	37	37	948.50		
45	1.0	1.0	80	86	38	38	952.04		
50	1.0	1.0	80	86	38	38	955.99		
55	1.0	1.0	80	86	38	38	958.89		
60	1.0	1.0	80	86	38	38	962.25		
65	1.0	1.0	80	86	38	38	965.73		
Stack ID (inches):									
Upstream Disturbance (inches):									
Downstream Disturbance (inches):									
Moisture Determination									
Imp. #	Tare	Final	Gain						
1	415.5	408.1	7.4						
2	446.8	444.4	3.6						
3	313.9	317.9	4.4						
4	450.6	455.5	4.9						
Total	1557	1555	5.1						
Performance Signature									
CO	1.0	1.0	83.58	57.42	41.300				

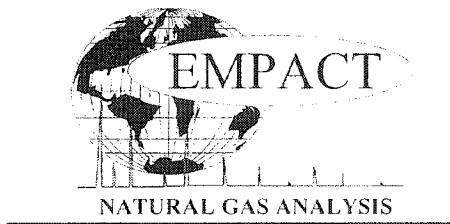
Job #:	RTC-0105		Slack Diameter (inches):	4					
Facility:	R Site Boltoon		Upstream Disturbance (inches):						
Date:	10-05-10		Downstream Disturbance (inches):						
Probe ID:	P-4498		Schematic of Sampling Location:						
Pilot Constant:	0.811 .861								
Run #:	1-1 outlet		Run #:	1-3 outlet					
O2%:	CO2%:	CO2%:	O2%:	CO2%					
CO2%:	CO2%:	CO2%:	CO2%:	CO2%:					
H20%:	measured / estimate	measured / estimate	H20%:	measured / estimate					
Ps (°Hg):	810	810	Ps (°Hg):	810					
Pb (°Hg):	0.2	0.2	Pb (°Hg):	0.2					
Start Time:	12:45	12:49	Start Time:	13:03					
Stop Time:		13:53	Stop Time:	13:08					
Post Test Pilot Leak Check Good?:	✓	Post Test Pilot Leak Check Good?:	✓	Post Test Pilot Leak Check Good?:	✓				
Point #	Delta P	Ts	Notes	Point #	Delta P	Ts	Notes		
1-1	.01	85		1-1	.01	85			
2	.01	85		2	.015	86			
3	.01	85		3	.01	86			
4	.005	84		4	.01	86			
5	.005	84		5	.005	86			
6	.01	84		6	.01	86			
7				7					
8				8					
2-1				2-2					
2-3				2-4					
2-5				2-6					
2-7				2-8					
Averages:	0.090	84.5		Averages:	0.094	85.83	Averages:	0.099	86.67
							Reviewer's Signature:		

Alt Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Data sheet											
Job #:	ETC-0305	Facility:	R.F.I.E. Bottom	Operator:	Branden Caren	Point #:	1	Point #:	5	Point #:	9
Date:	10-7-10	Probe ID:	9498	Site:	2	Point #:	6	Point #:	10	Point #:	11
Pilot Constant:	0.877 * 821				3	Point #:	7	Point #:	11	Point #:	12
Run #:	3-1 inlet	Run #:	3-2 inlet	Run #:	3-3 inlet	Run #:	3-4 inlet	Run #:	3-5 inlet	Run #:	3-6 inlet
O2%:	CO2%:	O2%:	CO2%:	O2%:	CO2%:	O2%:	CO2%:	O2%:	CO2%:	O2%:	CO2%:
H20%:	CO2% measured / estimate	H20%:	CO2% measured / estimate	H20%:	CO2% measured / estimate	H20%:	CO2% measured / estimate	H20%:	CO2% measured / estimate	H20%:	CO2% measured / estimate
Ps (°H2O):	Pb (°Hg):	Ps (°H2O):	Pb (°Hg):	Ps (°H2O):	Pb (°Hg):	Ps (°H2O):	Pb (°Hg):	Ps (°H2O):	Pb (°Hg):	Ps (°H2O):	Pb (°Hg):
Start Time:	1521	Stop Time:	1526	Start Time:	1530	Stop Time:	1538	Start Time:	1540	Stop Time:	1544
Post Test Pilot Leak Check Good?	✓	Post Test Pilot Leak Check Good?	✓	Post Test Pilot Leak Check Good?	✓	Post Test Pilot Leak Check Good?	✓	Post Test Pilot Leak Check Good?	✓	Post Test Pilot Leak Check Good?	✓
Point #	Delta P	Ts	Notes	Point #	Delta P	Ts	Notes	Point #	Delta P	Ts	Notes
1-1	.001	.93		1-2	.005	.93		1-3	.005	.94	
2	.005	.92		2	.005	.93		2	.005	.94	
3	.01	.92		3	.005	.93		3	.01	.94	
4	.01	.92		4	.01	.93		4	.01	.94	
5	.01	.92		5	.01	.93		5	.005	.94	
6	.01	.92		6	.005	.93		6	.01	.94	
7				7				7			
8				8				8			
9				9				9			
10				10				10			
11				11				11			
12				12				12			
Averages:	.0902	60		Averages:	.08041	93		Averages:	.08536	94	
Reviewers-Signature :				Reviewers-Signature :				Reviewers-Signature :			

Inlet Gas Analysis

PROJECT NO. : **201010075** ANALYSIS NO. : **13**
 COMPANY NAME : **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 20, 2010
 ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 7, 2010
 PRODUCER : TO:
 LEASE NO. : CYLINDER NO. : **0505**
 NAME/DESCRIP : **ETC0305.RB.1A; RIFLE BOULTON**

*****FIELD DATA*****


SAMPLED BY : **DANE** SAMPLE TEMP. :
 SAMPLE PRES. : AMBIENT TEMP.:
 COMMENTS : **SPOT**

COMPONENTS	NORM.	GPM @	GPM @
	MOLE%	14.65	14.73
HELIUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.65	-	-
NITROGEN	3.20	-	-
CO ₂	3.41	-	-
METHANE	78.69	-	-
ETHANE	7.75	2.061	2.072
PROPANE	1.62	0.444	0.446
ISOBUTANE	0.70	0.228	0.229
N-BUTANE	0.88	0.276	0.277
ISOPENTANE	0.37	0.135	0.135
N-PENTANE	0.29	0.105	0.105
HEXANES+	2.44	1.053	1.059
TOTAL	100.00	4.302	4.323

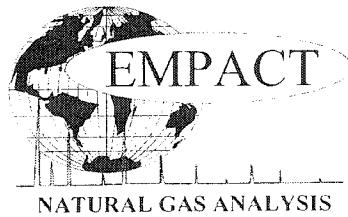
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1176.3	1182.7
GROSS SATURATED REAL =	1155.7	1162.1

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **0.7601**
 COMPRESSIBILITY FACTOR : **0.99642**

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 14
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 22, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 7, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 899
NAME/DESCRIP : ETC 0305.RB.1B; 25A/18

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

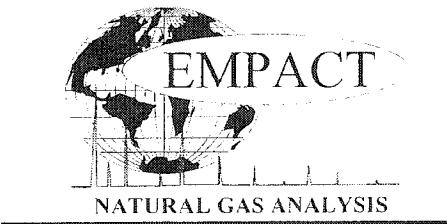
COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	12.51	-	-
NITROGEN	44.22	-	-
CO2	1.54	-	-
METHANE	34.94	-	-
ETHANE	3.43	0.912	0.917
PROPANE	0.72	0.197	0.198
ISOBUTANE	0.32	0.104	0.105
N-BUTANE	0.41	0.129	0.129
ISOPENTANE	0.18	0.065	0.066
N-PENTANE	0.14	0.050	0.051
HEXANES+	<u>1.59</u>	<u>0.686</u>	<u>0.690</u>
TOTAL	100.00	2.143	2.156

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	549.0	552.0
GROSS SATURATED REAL =	539.4	542.4

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.9042
COMPRESSIBILITY FACTOR : 0.99848

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO.: 15
COMPANY NAME: AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 22, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 7, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO.: 586
NAME/DESCRIP: ETC 0305.RB.2A; 25A/18


FIELD DATA

SAMPLED BY : SAMPLE TEMP.:
SAMPLE PRES.: AMBIENT TEMP.:
COMMENTS : AIR CAN

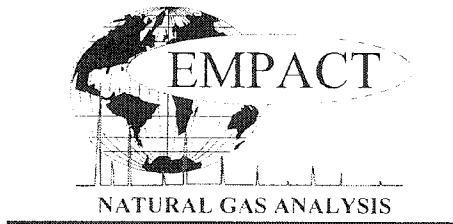
COMPONENTS	NORM.	GPM @	
	MOLE%	14.65	14.73
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.91	-	-
NITROGEN	3.43	-	-
CO2	5.00	-	-
METHANE	81.05	-	-
ETHANE	2.67	0.710	0.714
PROPANE	2.33	0.638	0.642
ISOBUTANE	0.66	0.215	0.216
N-BUTANE	0.92	0.288	0.290
ISOPENTANE	0.40	0.145	0.146
N-PENTANE	0.31	0.112	0.112
HEXANES+	2.32	1.001	1.006
TOTAL	100.00	3.109	3.126
BTU @ 60 DEG F		14.65	14.73
GROSS DRY REAL =		1123.7	1129.8
GROSS SATURATED REAL =		1104.0	1110.2

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.7577
COMPRESSIBILITY FACTOR : 0.99661

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **16**
 COMPANY NAME: **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 20, 2010
 ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 7, 2010
 PRODUCER :
 LEASE NO. :
 NAME/DESCRIP : **ETC 0305.RB.2B; 25A/18**

*****FIELD DATA*****


SAMPLED BY :
 SAMPLE PRES. :
 COMMENTS : **AIR CAN**

COMPONENTS	NORM.	GPM @	GPM @
	MOLE%	14.65	14.73
HELIUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	2.41	-	-
NITROGEN	8.82	-	-
CO2	4.59	-	-
METHANE	75.62	-	-
ETHANE	2.39	0.636	0.639
PROPANE	2.12	0.581	0.584
ISOBUTANE	0.59	0.192	0.193
N-BUTANE	0.81	0.254	0.255
ISOPENTANE	0.35	0.127	0.128
N-PENTANE	0.28	0.101	0.101
HEXANES+	2.02	0.872	0.876
TOTAL	100.00	2.763	2.776

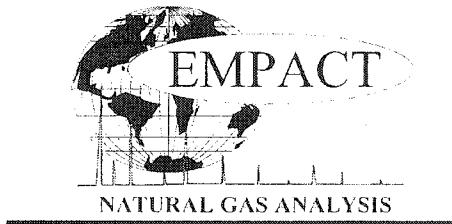
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1033.7	1039.4
GROSS SATURATED REAL =	1015.6	1021.3

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **0.7684**
 COMPRESSIBILITY FACTOR : **0.99700**

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 17
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 7, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 981
NAME/DESCRIP : ETC 0305.4B.3AA; 25A/18

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELIUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	1.68	-	-
NITROGEN	6.22	-	-
CO2	4.48	-	-
METHANE	78.02	-	-
ETHANE	2.13	0.566	0.569
PROPANE	2.55	0.699	0.702
ISOBUTANE	0.57	0.185	0.186
N-BUTANE	0.85	0.266	0.268
ISOPENTANE	0.40	0.145	0.146
N-PENTANE	0.31	0.112	0.112
HEXANES+	<u>2.79</u>	<u>1.204</u>	<u>1.210</u>
TOTAL	100.00	3.177	3.193

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1107.9	1114.0
GROSS SATURATED REAL =	1088.5	1094.6

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.7783
COMPRESSIBILITY FACTOR : 0.99661

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 18
COMPANY NAME: AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 7, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 1437
NAME/DESCRIP : ETC 0305.RB.3BB; 25A/18

FIELD DATA

SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	1.25	-	-
NITROGEN	4.89	-	-
CO2	4.62	-	-
METHANE	79.87	-	-
ETHANE	2.17	0.577	0.580
PROPANE	2.58	0.707	0.711
ISOBUTANE	0.58	0.189	0.190
N-BUTANE	0.85	0.266	0.268
ISOPENTANE	0.40	0.145	0.146
N-PENTANE	0.31	0.112	0.112
HEXANES+	<u>2.48</u>	<u>1.070</u>	<u>1.076</u>
TOTAL	100.00	3.066	3.083

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1112.5	1118.6
GROSS SATURATED REAL =	1093.0	1099.2

RELATIVE DENSITY (AIR=1 @ 14.696 PSIA 60F) : 0.7639
COMPRESSIBILITY FACTOR : 0.99665

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

Operating Data

Matt B. McGregor

From: Dane C. Murray
Sent: Wednesday, October 13, 2010 5:45 AM
To: Matt B. McGregor
Subject: FW: Rifle Boulton Dehy Data

From: Duletsky, Sam [mailto:Sam.Duletsky@energytransfer.com]
Sent: Monday, October 11, 2010 9:32 AM
To: Dane C. Murray
Subject: Rifle Boulton Dehy Data

Hi, Dane,

As we discussed, here is the dehy info for Rifle Boulton:

Hanover Dehy, 500,000 Btu/hr
S.N. 0505-155
Inlet pressure 792 psi, 81 degrees

Glycol Temp. = 355 degrees
Glycol pump is a Kimray 210 15 rated at 210 gal./hr.
Current strokes per minute = 11 per min., maximum rated at 32 strokes per minute

Contact tower = 64 degrees, 790 psi
Flash tank = 134 degrees, 38 psi

Gas throughput on testing day = 269.5 mscf

Sam Duletsky
ETC Canyon Pipeline
1950 Highway 6&50
Fruita, CO 81521

970-858-3425, ext. 80313
970-596-1161 (cell)

Greasewood Gas Plant Flare

Air Pollution Testing, Inc. : Analyzer Calibration Datasheet

Facility : <i>Grease Ward</i>	Date : <i>10-8-10</i>
Location : <i>Rio Blanco CO</i>	APT Job # : <i>ETC 0305</i>
Unit : <i>Flame</i>	Page # :

Analyzer Information

Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NH₃</i>		
Analyzer ID #	<i>1420C-7</i>	<i>1415C-9</i>	<i>551</i>	<i>551</i>		
Analyzer Scale	<i>0-25</i>	<i>0-20</i>	<i>0-5000</i>	<i>0-5000</i>		
Calibration Range	<i>0-21.1</i>	<i>0-19.7</i>	<i>0-1500</i>	<i>0-84.5</i>		

Calibration Gas Cylinder Information (Cylinder ID#/Expiration date and Concentration)

Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NH₃</i>		
Zero	<i>0</i>	<i>0</i>	<i>0</i>	<i>0</i>		
CC#						
Expiration date						
Low			<i>31.0</i>	<i>30</i>		
CC#			<i>ALM19994</i>	<i>ALM052218</i>		
Expiration date			<i>6-13</i>	<i>4-13</i>		
Mid	<i>10.0</i>	<i>10.1</i>	<i>759</i>	<i>50.1</i>		
CC#	<i>ALM013884</i>		<i>ALM061294</i>	<i>CL131241</i>		
Expiration date	<i>6-13</i>		<i>6-13</i>	<i>11-11</i>		
High	<i>21.1</i>	<i>19.7</i>	<i>1500</i>	<i>84.5</i>		
CC#	<i>ALM000243</i>		<i>ALM03634</i>	<i>CL1098531</i>		
Expiration date	<i>4-13</i>		<i>6-13</i>			

Calibration Error

Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NH₃</i>		
Zero	<i>0.0</i>	<i>0.0</i>	<i>0.8</i>	<i>0.0</i>		
Low			<i>306.5</i>	<i>30.6</i>		
Mid	<i>10.0</i>	<i>10.1</i>	<i>765.9</i>	<i>50.0</i>		
High	<i>21.1</i>	<i>19.7</i>	<i>1507.5</i>	<i>84.5</i>		

Initial Bias Check

Run #:		Start:	Stop:		
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>NH₃</i>	
Zero	<i>0.0</i>	<i>0.0</i>	<i>1.3</i>	<i>0.6</i>	
Low					
Mid	<i>9.9</i>	<i>10.2</i>	<i>805</i>	<i>9.6</i>	
High					

Air Pollution Testing, Inc. : Analyzer Calibration Data Sheet					
Facility : <i>Grease wood</i>				Date : <i>10-81-0</i>	
Location : <i>Riv Bluff CO</i>				APT Job # : <i>ETC 0305</i>	
Unit : <i>Flame</i>				Page # .	
Run # : <i>1</i>	Start Time	<i>921</i>		Stop Time : <i>1021</i>	
Calibration Results					
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>N₂</i>	
Zero	<i>0.1</i>	<i>0.0</i>	<i>0.8</i>	<i>0.1</i>	
Low					
Mid	<i>10.0</i>	<i>10.1</i>	<i>311.0</i>	<i>31.1</i>	
High					
Run # : <i>2</i>	Start Time : <i>10:41</i>		Stop Time : <i>11:41</i>		
Calibration Results					
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>N₂</i>	
Zero	<i>0.0</i>	<i>0.1</i>	<i>2.6</i>	<i>0.0</i>	
Low					
Mid	<i>10.0</i>	<i>10.0</i>	<i>311.8</i>	<i>30.6</i>	
High					
Run # : <i>3</i>	Start Time : <i>1159</i>		Stop Time : <i>1259</i>		
Calibration Results					
Analyzer Type	<i>O₂</i>	<i>CO₂</i>	<i>CH₄</i>	<i>N₂</i>	
Zero	<i>0.1</i>	<i>0.0</i>	<i>1.1</i>	<i>0.5</i>	
Low					
Mid	<i>10.0</i>	<i>10.0</i>	<i>308.7</i>	<i>30.3</i>	
High					

Air Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Dashed																				
Job # :	ETC 0305	Operator :	Brendan Coven																	
Facility :	Greenwood	Site :																		
Date :	10-8-16	Points :	1	5	9															
Probe ID :	P-498	2	6	10																
Pilot Constant :	841 - 821	3	7	11																
Run # :	2-1 out	Run # :	2-2 out	Run # :	2-3 out	Run # :	2-4 out	Run # :	2-5 out											
O2% :	C01B	O2% :	C01S	O2% :	C01S	O2% :	C01B	O2% :	C01S											
H20% :	C01S	H20% :	C01S	H20% :	C01S	H20% :	C01S	H20% :	C01S											
Ps (H2O) :	- 001	Ps (H2O) :	- 001	Ps (H2O) :	- 001	Ps (H2O) :	- 001	Ps (H2O) :	- 001											
Start Time :	10:44	Start Time :	10:52	Start Time :	10:55	Start Time :	11:07	Start Time :	11:10											
Post Test Pilot Leak Check Good? :	✓	Post Test Pilot Leak Check Good? :	✓	Post Test Pilot Leak Check Good? :	✓	Post Test Pilot Leak Check Good? :	✓	Post Test Pilot Leak Check Good? :	✓											
Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Notes
1-1	.001	81		1-1	.001	82		1-1	.001	83		1-1	.001	83		1-1	.001	83		
2	.001	81		2	.001	82		2	.001	82		2	.001	83		2	.001	83		
3	.001	81		3	.001	82		3	.001	82		3	.001	83		3	.001	83		
4	.001	81		4	.001	82		4	.001	82		4	.001	83		4	.001	83		
5	.001	81		5	.002	82		5	.002	82		5	.002	83		5	.002	83		
6	.001	81		6	.002	83		6	.002	83		6	.002	83		6	.002	83		
7	.001	81		7	.002	83		7	.002	83		7	.002	83		7	.002	83		
8	.001	80		8	.002	83		8	.002	83		8	.002	83		8	.002	83		
2-1	.002	80		2-1	.002	83		2-1	.002	83		2-1	.002	83		2-1	.002	83		
2	.002	80		2	.002	83		2	.002	83		2	.002	83		2	.002	83		
3	.002	80		3	.002	83		3	.002	83		3	.002	83		3	.002	83		
4	.002	80		4	.002	83		4	.002	83		4	.002	83		4	.002	83		
5	.002	80		5	.002	83		5	.002	83		5	.002	83		5	.002	83		
6	.002	80		6	.002	82		6	.002	82		6	.002	83		6	.002	83		
7	.002	80		7	.002	82		7	.002	82		7	.002	83		7	.002	83		
8	.002	81		8	.002	82		8	.002	82		8	.002	83		8	.002	83		
Averages :	.063	\$0.5		Averages :	.059	\$0.5		Averages :	.059	\$0.5		Averages :	.051	\$0.5		Averages :	.051	\$0.5		Reviewers Signature : 0.051 83

Air Pollution Testing Inc. : EPA Method 2 - Pilot Traverse Data Sheet											
Job #:	ERC 0305		Operator : <u>Brendan Cohen</u>								
Facility:	Gas Agnewood		Site:								
Date:	10-8-10		Points :		1	5	9				
Probe ID:	P-499				2	6	10				
Pilot Constant:	0.821				3	7	11				
	3-1 out		Run #:		3-2 out						
02%:	CO%		CO%:		CO%						
H20%:	CO%		CO%:		CO%						
Ps (H2O):	measured / estimate		H20%:		measured / estimate						
Pb (Hg):	779		Ps (H2O):		779						
Start Time:	.001		Pb (Hg):		.001						
Stop Time:	12:00		Start Time:		12:00						
Post Test Pilot Leak Check Good? :	✓		Stop Time:		12:17						
Post Test Pilot Leak Check Good? : ✓											
Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes	Point #	Delta P	T _s	Notes
1-1	.005	85		1-1	.005	89		1-1	.005	88	
2	.005	85		2	.01	89		2	.01	88	
3	.01	85		3	.01	89		3	.01	87	
4	.005	85		4	.005	89		4	.005	87	
5	.005	85		5	.005	89		5	.005	87	
6	.005	85		6	.002	89		6	.002	87	
7	.005	85		7	.002	89		7	.005	87	
8	.002	85		8	.003	89		8	.005	87	
2-1	.002	90		2-1	.003	88		2-1	.005	86	
2	.002	91		2	.002	88		2	.002	86	
3	.002	91		3	.002	88		3	.002	86	
4	.002	91		4	.005	88		4	.005	87	
5	.005	91		5	.005	88		5	.002	87	
6	.005	91		6	.002	88		6	.002	87	
7	.002	91		7	.002	88		7	.002	87	
8	.002	91		8	.002	88		8	.002	86	
										.0596	
										0.614	
										Averages : 0.614	
										Averages : 88.3	
										Averages : 88.5	
										Averages : 0.0614	
										Averages : 87	
										Reviewers Signature : <u>0.0614 87</u>	

Air Pollution Testing, Inc. : EPA 90-10										Moisture Determination Data Sheet							
APT. No.:	ETC-0205	Date:	10/18/10	Location:		Greasewood		Operator:		Brenden Colucci		Schematic of Stack:					
Run #:		1 (Outlet)		Ambient Temperature (°F):		70°		Tare:		CO ₂ Gas		Final:					
Master Box ID:		MS-10		Probe Length (ft):		25ft		Moisture (percent):		7-6		Gain:					
Master OH#:		1.71		Static Pressure (inHg):		12.6		Start Time:		02-1		Total:					
Post-Test Pump Leak Check:		0.0210"		Testbot:		4		Stop Time:		10:21		Total:					
Sampling Time (minutes)	Vacuum (inHg)	Orifice Setting (inHg)	Meter Temp. (°F)	Inlet (°F)	Condenser Temp. (°F)	Meter Volume (ft ³)	Initial Volume (ft ³)	Notes									
5	6	1.0	52	53	31	960.81	965.825										
10	7	1.0	52	53	31	973.71											
15	2	1.0	52	53	31	977.50											
20	2	1.0	53	55	31	981.39											
25	2	1.0	53	55	31	985.25											
30	2	1.0	53	55	31	989.18											
35	2	1.0	53	55	31	993.11											
40	2	1.0	54	55	31	996.96											
45	2	1.0	54	55	31	1000.865											
50	2	1.0	54	55	32	1004.9465											
55	2	1.0	54	55	32	1007.72											
60	2	1.0	54	55	32	1011.368											
Stack ID (inches):										Moisture Determination							
Upstream Disturbance (inches):										Imp. #	Tare	Final	Gain				
Downstream Disturbance (inches):										1	410.1	398.9	11.2				
										2	439.5	451.2	11.7				
										3	303.5	367.5	4.0				
										4	450.8	458.9	8.1				
										Total	12.6						
										Re-measurement	45.953						
										Re-measurement	3125						
										Final	53.8						

Eric Onos		Date: 10-8-10		Moisture Determination Detached	
Location: Greer Works	Operator: Brenden Coker	coats: LAS	coats: CQ9S		
Run # 2 (outlet)	Master Box ID: M5-10	Ambient Temperature (oF): 55	Barometric Pressure (inches): 27.9		
Master Box Vol: 0.900	Master CH#:	Probe Length (ft): 25	Moisture (g/m³): 8.1		
Flow Test Pump Leak Check: 0.000 @ 10' Hg	Static Pressure (Hg): 0.00	Start Time: 10:21	Stop Time: 11:41		
Schematic of Stack:					
Sampling Time (minutes)	Vacuum (in Hg)	Orifice Setting (in Hg)	Meter Temp. (oF)	Inlet (oF)	Condenser Temp. (oF)
5	1.0	51	56	33	33
10	1.0	52	54	33	33
15	1.0	52	56	33	33
20	1.0	52	56	32	32
25	1.0	54	58	32	32
30	1.0	51	58	32	32
35	1.0	55	59	32	32
40	1.0	55	55	33	32
45	1.0	56	60	33	33
50	1.0	56	60	33	33
55	1.0	56	60	33	33
60	1.0	56	60	33	33
Moisture Determination					
Imp. #	Tare	Final	Gain		
1	30.8.9	457.0	+8.1		
2	451.2	441.2	-10.0		
3	307.3	309.4	+1.9		
4	458.9	469.0	+5.1		
Total: 5.1					
Revised Signature					
60	1.0	52.54	32.67	42.53	

Air Pollution Testing, Inc.: EPA L

Moisture Determination Data Sheet

APT Job #: ETC 0305

Date 10-8-10

Location: Greenwood

Operator: Reuben Cohen

Run #: 3 (Carter)

Molar Box ID: M5-10

279

Molar Box Yr: 0.980

Molar CH4: 1.71

CPG

Flow Test Pump Leak Check

0.000 0.000 0.000

10/14/10

Post-Test Pump Leak Check 0.000 0.000 0.000

10/15/10

Methane: A

10/15/10

Schematic of Stack:

Sampling Time (minutes)	Vacuum (in-Hg)	Orifice Setting (cm^3/min)	Molar Temp. ($^{\circ}\text{F}$)	Condenser Temp. ($^{\circ}\text{F}$)	Molar Volume (ft^3)	Initial Volume	Notes
5	1.0	56	57	33	57.5		
10	1.0	56	59	33	57.5		
15	1.0	56	60	33	64.40	61.000	
20	1.0	57	62	33	67.08		
25	1.0	58	63	33	71.47		
30	1.0	58	63	33	72.968		
35	1.0	58	63	33	72.944		
40	1.0	58	63	33	72.93		
45	1.0	58	63	33	72.93		
50	1.0	59	64	33	85.41		
55	1.0	59	64	33	85.38		
60	1.0	59	64	33	85.38		

Stack ID (inches): 40.5
Upstream Disturbance (inches): 30
Downstream Disturbance (inches): 8

Moisture Determination

Imp. #	Tare	Final	Gain
1	462.1	396.1	-6
2	441.2	452.2	11
3	381.4	389.8	2
4	464.0	466.6	2.6

Total 1088
Revised Signature

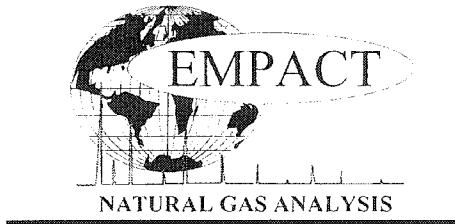
33
60 1 1.0 59.86 41.830

Air Pollution Testing Inc. - EPA Method 2 - Pilot Traverse Datasheet						
Job #:	Project Name			Site:		
ETC 0203	Greaseworks			Brendan Coker		
Facility:	10-8-10			Operator:		
Date:	P-498			Schematic of Sampling Location:		
Probe ID:	815-821			Downstream Disturbance (inches):		
Pilot Constant:						
Run #:	1-1			Run #:		
O2%:	CO2%: <u>CO2s</u>			Run #:		
CO2%:	CO2%: <u>CO2s</u>			Run #:		
H2O%:	H2O%: measured / estimate			Run #:		
Ps (H2O):	7.79			CO2%: <u>CO2s</u>		
Pb (Hg):	7.05			CO2%: <u>CO2s</u>		
Start Time:	10:00			H2O%: measured / estimate		
Stop Time:	10:05			Ps (H2O): <u>7.29</u>		
Post Test Pilot Leak Check Good? <u>✓</u>				Pb (Hg): <u>7.29</u>		
Post Test Pilot Leak Check Good? <u>✓</u>				Start Time: <u>10:14</u>		
Post Test Pilot Leak Check Good? <u>✓</u>				Stop Time: <u>10:22</u>		
Post Test Pilot Leak Check Good? <u>✓</u>				Post Test Pilot Leak Check Good? <u>✓</u>		
Point #	Delta P	T _s	Notes	Point #	Delta P	T _s
1-1	.002	56		1-1	.002	56
2	.002	56		2	.002	56
3	.002	56		3	.001	56
4	.001	56		4	.002	56
5	.002	56		5	.002	56
6	.002	56		6	.001	56
7	.002	56		7	.001	56
8	.002	56		8	.001	56
9	.002	56		9	.001	56
10	.002	56		10	.001	56
11	.002	56		11	.001	56
12	.002	56		12	.001	56
13	.002	56		13	.001	56
14	.002	56		14	.001	56
15	.002	56		15	.001	56
16	.002	56		16	.001	56
17	.002	56		17	.001	56
18	.002	56		18	.001	56
19	.002	56		19	.001	56
20	.002	56		20	.001	56
21	.002	56		21	.001	56
22	.002	56		22	.001	56
23	.002	56		23	.001	56
24	.002	56		24	.001	56
25	.002	56		25	.001	56
26	.002	56		26	.001	56
27	.002	56		27	.001	56
28	.002	56		28	.001	56
29	.002	56		29	.001	56
30	.002	56		30	.001	56
31	.002	56		31	.001	56
32	.002	56		32	.001	56
33	.002	56		33	.001	56
34	.002	56		34	.001	56
35	.002	56		35	.001	56
36	.002	56		36	.001	56
37	.002	56		37	.001	56
38	.002	56		38	.001	56
39	.002	56		39	.001	56
40	.002	56		40	.001	56
41	.002	56		41	.001	56
42	.002	56		42	.001	56
43	.002	56		43	.001	56
44	.002	56		44	.001	56
45	.002	56		45	.001	56
46	.002	56		46	.001	56
47	.002	56		47	.001	56
48	.002	56		48	.001	56
49	.002	56		49	.001	56
50	.002	56		50	.001	56
51	.002	56		51	.001	56
52	.002	56		52	.001	56
53	.002	56		53	.001	56
54	.002	56		54	.001	56
55	.002	56		55	.001	56
56	.002	56		56	.001	56
57	.002	56		57	.001	56
58	.002	56		58	.001	56
59	.002	56		59	.001	56
60	.002	56		60	.001	56
61	.002	56		61	.001	56
62	.002	56		62	.001	56
63	.002	56		63	.001	56
64	.002	56		64	.001	56
65	.002	56		65	.001	56
66	.002	56		66	.001	56
67	.002	56		67	.001	56
68	.002	56		68	.001	56
69	.002	56		69	.001	56
70	.002	56		70	.001	56
71	.002	56		71	.001	56
72	.002	56		72	.001	56
73	.002	56		73	.001	56
74	.002	56		74	.001	56
75	.002	56		75	.001	56
76	.002	56		76	.001	56
77	.002	56		77	.001	56
78	.002	56		78	.001	56
79	.002	56		79	.001	56
80	.002	56		80	.001	56
81	.002	56		81	.001	56
82	.002	56		82	.001	56
83	.002	56		83	.001	56
84	.002	56		84	.001	56
85	.002	56		85	.001	56
86	.002	56		86	.001	56
87	.002	56		87	.001	56
88	.002	56		88	.001	56
89	.002	56		89	.001	56
90	.002	56		90	.001	56
91	.002	56		91	.001	56
92	.002	56		92	.001	56
93	.002	56		93	.001	56
94	.002	56		94	.001	56
95	.002	56		95	.001	56
96	.002	56		96	.001	56
97	.002	56		97	.001	56
98	.002	56		98	.001	56
99	.002	56		99	.001	56
100	.002	56		100	.001	56
101	.002	56		101	.001	56
102	.002	56		102	.001	56
103	.002	56		103	.001	56
104	.002	56		104	.001	56
105	.002	56		105	.001	56
106	.002	56		106	.001	56
107	.002	56		107	.001	56
108	.002	56		108	.001	56
109	.002	56		109	.001	56
110	.002	56		110	.001	56
111	.002	56		111	.001	56
112	.002	56		112	.001	56
113	.002	56		113	.001	56
114	.002	56		114	.001	56
115	.002	56		115	.001	56
116	.002	56		116	.001	56
117	.002	56		117	.001	56
118	.002	56		118	.001	56
119	.002	56		119	.001	56
120	.002	56		120	.001	56
121	.002	56		121	.001	56
122	.002	56		122	.001	56
123	.002	56		123	.001	56
124	.002	56		124	.001	56
125	.002	56		125	.001	56
126	.002	56		126	.001	56
127	.002	56		127	.001	56
128	.002	56		128	.001	56
129	.002	56		129	.001	56
130	.002	56		130	.001	56
131	.002	56		131	.001	56
132	.002	56		132	.001	56
133	.002	56		133	.001	56
134	.002	56		134	.001	56
135	.002	56		135	.001	56
136	.002	56		136	.001	56
137	.002	56		137	.001	56
138	.002	56		138	.001	56
139	.002	56		139	.001	56
140	.002	56		140	.001	56
141	.002	56		141	.001	56
142	.002	56		142	.001	56
143	.002	56		143	.001	56
144	.002	56		144	.001	56
145	.002	56		145	.001	56
146	.002	56		146	.001	56
147	.002	56		147	.001	56
148	.002	56		148	.001	56
149	.002	56		149	.001	56
150	.002	56		150	.001	56
151	.002	56		151	.001	56
152	.002	56		152	.001	56
153	.002	56		153	.001	56
154	.002	56		154	.001	56
155	.002	56		155	.001	56
156	.002	56		156	.001	56
157	.002	56		157	.001	56
158	.002	56		158	.001	56
159	.002	56		159	.001	56
160	.002	56		160	.001	56
161	.002	56		161	.001	56
162	.002	56		162	.001	56
163	.002	56		163	.001	56
164	.002	56		164	.001	56
165	.002	56		165	.001	56
166	.002	56		166	.001	56
167	.002	56		167	.001	56
168	.002	56		168	.001	56
169	.002	56		169	.001	56
170	.002	56		170	.001	56
171	.002	56		171	.001	56
172	.002	56		172	.001	56
173	.002	56		173	.001	56
174	.002	56		174	.001	56
175	.002	56		175	.001	56
176	.002	56		176	.001	56
177	.002	56		177	.001	56
178	.002	56		178	.001	56
179	.002	56		179	.001	56
180	.002	56		180	.001	56
181	.002	56		181	.001	56
182	.002	56		182	.001	56
183	.002	56		183	.001	56
184	.002	56		184	.001	56
185	.002	56		185	.001	56
186	.002	56		186	.001	56
187	.002	56		187	.001	56
188	.002	56		188	.001	56
189	.002	56		189	.001	56
190	.002	56		190	.001	56
191	.002	56		191	.001	56
192	.002	56		192	.001	56
193	.002	56		193	.001	56
194	.002	56		194	.001	56
195	.002	56		195	.001	56
196</td						

Inlet Gas Analysis

G1 - evocod (10~8~10)

Test


Contact tower - 710 psi
68°F

Flash tank 32 psi
114°F

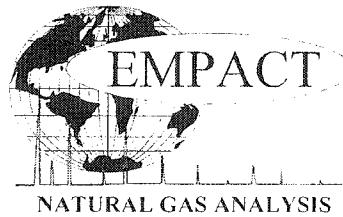
Reboil
375°F
3.5 psi

1.2 mmscf/day
(1.2)

10/4/2010

PROJECT NO. : 201010075 ANALYSIS NO. : 19
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 8, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 898
NAME/DESCRIP : ETC 0305.GW.1A; 25A/18 @ 10:15

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @	
		14.65	14.73
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	21.97	-	-
NITROGEN	77.96	-	-
CO2	0.05	-	-
METHANE	0.02	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000

BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	0.2	0.2
GROSS SATURATED REAL =	0.2	0.2

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.9976
COMPRESSIBILITY FACTOR : 0.99963

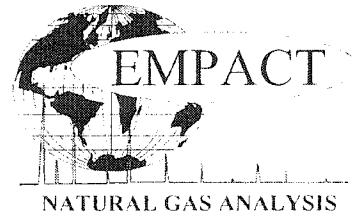
NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **20**
COMPANY NAME : **AIR POLLUTION TESTING** ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : **ETC 0305** SAMPLE DATE : OCTOBER 8, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : **733**
NAME/DESCRIP : **ETC 0305.GW.1B**

FIELD DATA

SAMPLED BY : SAMPLE TEMP. :

SAMPLE PRES. : AMBIENT TEMP. :


COMMENTS :

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	22.02	-	-
NITROGEN	77.84	-	-
CO2	0.04	-	-
METHANE	0.08	-	-
ETHANE	0.01	0.003	0.003
PROPANE	0.01	0.003	0.003
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.006	0.006

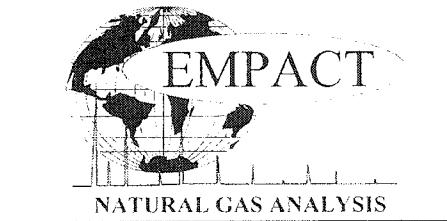
BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	1.2	1.2
GROSS SATURATED REAL =	1.2	1.2

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **0.9975**
COMPRESSIBILITY FACTOR : **0.99963**

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 21
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 20, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 8, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 951
NAME/DESCRIP : ETC 0305.GWP.2A; 25A/18 @ 11:30

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM.	GPM @	GPM @
	MOLE%	14.65	14.73
HELIUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	21.95	-	-
NITROGEN	77.81	-	-
CO2	0.07	-	-
METHANE	0.17	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000

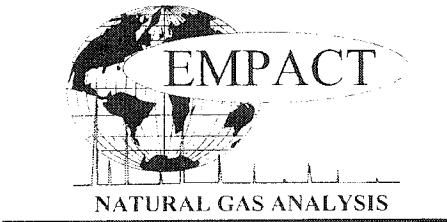
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	1.7	1.7
GROSS SATURATED REAL =	1.7	1.7

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.9971
COMPRESSIBILITY FACTOR : 0.99963

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 22
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 21, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 8, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 1202
NAME/DESCRIP : ETC 0305.GWP.2B; 25A/18 @ 11:35

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM.	GPM @	GPM @
	MOLE%	14.65	14.73
HELUM	0.01	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	22.01	-	-
NITROGEN	77.90	-	-
CO2	0.04	-	-
METHANE	0.04	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000

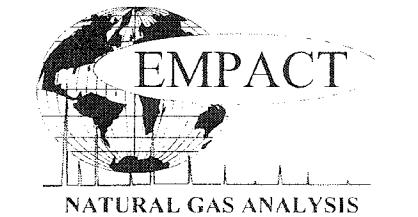
BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	0.4	0.4
GROSS SATURATED REAL =	0.4	0.4

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.9974
COMPRESSIBILITY FACTOR : 0.99963

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : 201010075 ANALYSIS NO. : 23
COMPANY NAME : AIR POLLUTION TESTING ANALYSIS DATE: OCTOBER 21, 2010
ACCOUNT NO. : ETC 0305 SAMPLE DATE : OCTOBER 8, 2010
PRODUCER : TO:
LEASE NO. : CYLINDER NO. : 1021
NAME/DESCRIP : ETC 0305.GWP.3A; 25A/18 @ 12:40

FIELD DATA


SAMPLED BY : SAMPLE TEMP. :
SAMPLE PRES. : AMBIENT TEMP.:
COMMENTS : AIR CAN

COMPONENTS	NORM. MOLE%	GPM @ <u>14.65</u>	GPM @ <u>14.73</u>
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	21.99	-	-
NITROGEN	77.95	-	-
CO2	0.06	-	-
METHANE	0.00	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	<u>0.000</u>	<u>0.000</u>
TOTAL	100.00	0.000	0.000

BTU @ 60 DEG F	<u>14.65</u>	<u>14.73</u>
GROSS DRY REAL =	0.0	0.0
GROSS SATURATED REAL =	0.0	0.0

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.9977
COMPRESSIBILITY FACTOR : 0.99963

NOTE: REFERENCE GPA 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

PROJECT NO. : **201010075** ANALYSIS NO. : **24**
COMPANY NAME : **AIR POLLUTION TESTING** ANALYSIS DATE: **OCTOBER 21, 2010**
ACCOUNT NO. : **ETC 0305** SAMPLE DATE : **OCTOBER 8, 2010**
PRODUCER : **TO:**
LEASE NO. : **CYLINDER NO. : 829**
NAME/DESCRIP : **ETC 0305.GWP.3B; 25A/18 @ 12:50**

FIELD DATA

SAMPLED BY : **SAMPLE TEMP. :**
SAMPLE PRES. : **AMBIENT TEMP.:**
COMMENTS : **AIR CAN**

COMPONENTS	NORM.	14.65	14.73
	MOLE%		
HELUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	22.00	-	-
NITROGEN	77.90	-	-
CO2	0.06	-	-
METHANE	0.03	-	-
ETHANE	0.01	0.003	0.003
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.003	0.003

BTU @ 60 DEG F	14.65	14.73
GROSS DRY REAL =	0.5	0.5
GROSS SATURATED REAL =	0.5	0.5

RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : **0.9977**
COMPRESSIBILITY FACTOR : **0.99963**

NOTE: REFERENCE GP4 2261(ASTM D1945 & ASME-PTC), 2145, & 2172 CURRENT PUBLICATIONS

Operating Data

Appendix 3

Calibration Data and Certificates

Environmental Supply Company, Inc.

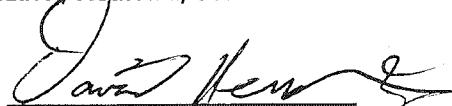
Quality Source Sampling Systems & Accessories

Wind Tunnel Pitot Calibration

S-type Pitot ID: **P-498** Date: **28-Jan-10**
 Standard Pitot ID: **001** Personnel: **DH**
 Cp(std): **0.99** Cp(actual): **0.821**
 Part Number: P(bar): **29.91**
 Test Velocity (fps): **50** T(°F): **50**

A-SIDE	ΔP_{std} (in. H ₂ O)	ΔP_s (in. H ₂ O)	Cp(s)	Deviation*
	0.585	0.855	0.819	0.001
		0.581	0.858	0.815
		0.583	0.850	0.820
		0.583	0.853	0.819
		AVERAGE		0.818
		Std deviation		0.002

B-SIDE	ΔP_{std} (in. H ₂ O)	ΔP_s (in. H ₂ O)	Cp(s)	Deviation*
	0.584	0.839	0.826	0.001
		0.582	0.838	0.825
		0.583	0.845	0.822
		0.581	0.836	0.825
		AVERAGE		0.825
		Std deviation		0.002


$$Cp(s) = Cp(std) \sqrt{\frac{\Delta P(std)}{\Delta P(s)}}$$

$$Cp(A) - Cp(B) = \boxed{0.007} \quad \{ \text{must be } < 0.010 \}$$

$$* \text{Deviation} = \{Cp(s) - AVG Cp(s)\} \quad \{ \text{must be } < 0.010 \}$$

Standard deviation of the deviations must be less than 0.02 for both

Pitot tube S/N P-498 was calibrated in accordance with the CFR 40, Part 60
Appendix A, Method 2, Section 10.

Signature

01/28/10
Date

DENVER, DURANGO, SALT LAKE CITY

AIR POLLUTION TESTING, INC.
THERMOCOUPLE AND DRY GAS METER CALIBRATION DATA

GAS METER ID :	M5-10 Pre
DATE :	24-Jun-10
BARO. PRESS. (MBAR) :	840

GAS METER CALIBRATION

Run #1	DH	Vmet	Tin	Tout	Vref	Tref	DP	Vac	Time
Start	0.5	726.929	75	75	599.176	76	0.34	1	10:13 AM
Stop	0.5	736.294	76	78	608.431	78	0.34	1	10:33 AM
Avg.	0.5	9.365	76	77	9.255	77	0.34	1	20.0

Run #2	DH	Vmet	Tin	Tout	Vref	Tref	DP	Vac	Time
Start	1.5	736.294	76	78	608.431	78	0.79	5	10:40 AM
Stop	1.5	748.116	78	86	620.113	81	0.79	5	10:55 AM
Avg.	1.5	11.822	77	82	11.682	80	0.79	5	15.0

Run #3	DH	Vmet	Tin	Tout	Vref	Tref	DP	Vac	Time
Start	3.0	749.254	79	82	621.483	81	1.4	8	11:03 AM
Stop	3.0	760.13	80	83	632.442	82	1.4	8	11:13 AM
Avg.	3.0	10.876	80	83	10.959	82	1.40	8	10.0

	Run #1	Run #2	Run #3	Average
Yref	0.994	0.994	0.994	0.994
Yd	0.978	0.976	0.988	0.980
DH@	1.63	1.73	1.76	1.71

THERMOCOUPLE CALIBRATION

Calibration Temperature Reading (F)	Pyrometer Reading (F)	ABS Difference)	(Relative % R
0	1	0.2	
50	49	0.2	
100	99	0.2	
150	150	0.0	
250	251	0.1	
500	498	0.2	
800	801	0.1	
Max Absolute Difference %		0.2	

PITOT LEAK CHECK

0.00 @ 6" H2O Positive	X
0.00 @ 6" H2O Negative	X

Technician: ACB

DENVER OFFICE
5530 Marshall Street
Arvada, CO 80002
(303) 420-5949
FAX (303) 420-5920
(800) 268-6213

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

- 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
- 2) Record barometric pressure before and after calibration procedure.
- 3) Run at tested vacuum (from Orifice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet.
- 4) Record data and information in the **GREEN** cells. **YELLOW** cells are calculated.

DATE: 10/12/2010		METER SERIAL #: na		CRITICAL ORIFICE SET SERIAL #: 15275		BAROMETRIC PRESSURE (in Hg): 25.17		INITIAL (mmbar): 852		FINAL (mmbar): 25.17		AVG (P _{bar}): 25.16808			
ORIFICE #	RUN #	K' FACTOR		TESTED VACUUM (in Hg)		DGM READINGS (FT ³)		AMBIENT		DGM INLET		DGM OUTLET		DGM AVG	
		K'	TESTED	INITIAL	FINAL	NET (V _m)	INITIAL	FINAL	INITIAL	FINAL	INITIAL	FINAL	Y	Average Y	ΔH _g
18	1	0.5069	15	99.783	106.014	6.231	67	62	63	62	64	64	62.75	10.00	1.1
	2	0.5069	15	106.014	113.295	7.251	67	63	64	64	66	66	64.25	10.00	1.1
	3	0.5069	15	113.295	119.841	6.576	67	64	64	66	67	67	65.25	10.00	1.1
						20.058							0.382	0.16	

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS:

The following equations are used to calculate the standard volumes of air passed through the DGM, V_m(std), and the critical orifice, V_o(std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.

0.980

1.71

Net volume of gas sample passed through DGM, corrected to standard conditions

$$V_m = \frac{V_m(\text{std})}{K_1} \quad K_1 = \frac{V_m(\text{std})}{V_m}$$

$$(1) \quad V_m(\text{std}) = K_1 * V_m * \frac{P_{bar} * (T_m / 13.6)}{T_m}$$

= Net volume of gas sample passed through the critical orifice, corrected to standard conditions

$$(2) \quad V_{orifice} = K' * \frac{P_{bar} * (T_m)}{\sqrt{T_m}}$$

= Volume of gas sample passed through the critical orifice, corrected to standard conditions

(3)

$$Y = \frac{V_{orifice}}{V_m}$$

= DGM calibration factor

$$K' = \frac{V_{orifice}}{V_m}$$

= Average K' Factor from Critical Orifice Calibration

$$V_m = \frac{V_{orifice}}{K'}$$

= DGM calibration factor

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

RATA CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: Interference Free™ Multi-Component EPA Protocol Gas****Assay Laboratory**

AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D00FC
 Project No.: 08-89934-006

Customer

AIR POLLUTION TESTING INC
 JOHN MILLER
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number: ALM017884
 Cylinder Pressure***: 2015 PSIG

Certification Date: 17Jun2010

Exp. Date: 16Jun2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
CARBON DIOXIDE	10.1 %	+/- 1%	Direct NIST and VSL
OXYGEN	10.0 %	+/- 1%	
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1675	02Oct2012	K012067	13.93 %	CARBON DIOXIDE
NTRM 2658	02Oct2010	ALM065029	9.930 %	OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
FTIR//1602651 OXYMAT/6E/W5-951	14Jun2010 28May2010	FTIR PARAMAGNETIC

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis**Second Triad Analysis****Calibration Curve****CARBON DIOXIDE**

Date: 16Jun2010 Response Unit: %

Z1=-0.00166 R1=13.86853 T1=10.05251

R2=13.88164 Z2=-0.00048 T2=10.05386

Z3=0.00221 T3=10.07651 R3=13.90303

Avg. Concentration: 10.10 %

OXYGEN

Date: 17Jun2010 Response Unit: AREA

Z1=0.00000 R1=9.94300 T1=10.09000

R2=9.94100 Z2=0.00000 T2=10.09000

Z3=0.00000 T3=10.08000 R3=9.94000

Avg. Concentration: 10.04 %

Concentration=A+Bx+Cx²+Dx³+Ex⁴

r=9.99992E-1

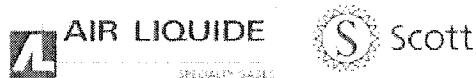
Constants: A=0.00000E+0

B=6.42999E-1 C=4.99900E-3

D=0.00000E+0 E=0.00000E+0

Concentration=A+Bx+Cx²+Dx³+Ex⁴

r=0.999998


Constants: A=-0.02746038

B=-0.99864554 C=

D= E=

QUALITY ASSURANCE

APPROVED BY: ADAM HANLEY
 (signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

RATA CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: Interference Free™ Multi-Component EPA Protocol Gas**

Assay Laboratory
 AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D0OFC
 Project No.: 08-87900-002

Customer
 AIR POLLUTION TESTING INC
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards, Procedure G-1; September, 1997.

Cylinder Number: ALM000245
Cylinder Pressure*:** 2015 PSIG

Certification Date: 26Apr2010

Exp. Date: 25Apr2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
CARBON DIOXIDE	19.7 %	+/- 1%	Direct NIST and VSI
OXYGEN	21.1 %	+/- 1%	
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1675	02Oct2012	K012067	13.93 %	CARBON DIOXIDE
NTRM 2350	01Dec2011	K017995	23.20 %	OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
FTIR/1602651 OXYSMAT/6E/W5-951	16Apr2010 26Apr2010	FTIR PARAMAGNETIC

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis

Carbon Dioxide
 Date: 24Apr2010 Response Unit: %
 Z1=0.00255 R1=13.89503 T1=19.67026
 R2=13.90329 Z2=-0.00145 T2=19.68371
 Z3=0.00053 T3=19.69015 R3=13.93421
 Avg. Concentration: 19.71 %

Oxygen
 Date: 26Apr2010 Response Unit: VOLTS
 Z1=0.00000 R1=23.26000 T1=21.15000
 R2=23.25000 Z2=0.00000 T2=21.18000
 Z3=0.00000 T3=21.16000 R3=23.26000
 Avg. Concentration: 21.13 %

Second Triad Analysis

Calibration Curve
 Concentration=A+Bx+Cx²+Dx³+Ex⁴
 r=9.99992E-1
 Constants: A=0.00000E+0
 B=7.75974E-1 C=7.99200E-3
 D=0.00000E+0 E=0.00000E+0

Concentration=A+Bx+Cx²+Dx³+Ex⁴
 r=0.999999
 Constants: A=-0.01985233
 B=0.999350024 C=
 D= E=

QUALITY ASSURANCE

APPROVED BY: ADAM HANLEY
 (signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

COMPLIANCE CLASS

Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

AIR LIQUIDE AMERICA SPECIALTY GASES LLC
500 WEAVER PARK RD
LONGMONT, CO 80501

P.O. No.: D00FC
Project No.: 08-89388-003

Customer

AIR POLLUTION TESTING INC
JOHN MILLER
5530 MARSHALL STREET
ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number: AAL19994
Cylinder Pressure*:** 2000 PSIG

Certification Date: 10Jun2010

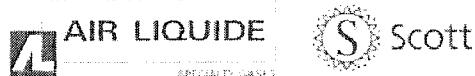
Exp. Date: 09Jun2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
METHANE	31.0 PPM	+/- 2%	NIST and VSL
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol procedures, September 1997.

REFERENCE STANDARD


TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2750	02Oct2011	ALM048818	49.80 PPM	METHANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP/6890/US00006537	10Jun2010	FID

QUALITY ASSURANCE

APPROVED BY: SAM BENNETT
(signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

COMPLIANCE CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: EPA Protocol Gas**

Assay Laboratory
 AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D00FC
 Project No.: 08-89388-002

Customer
 AIR POLLUTION TESTING INC
 JOHN MILLER
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards, Procedure G-1; September, 1997.

Cylinder Number: ALM061294
Cylinder Pressure*:** 2000 PSIG

Certification Date: 10Jun2010

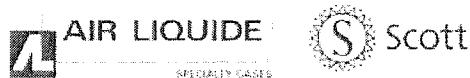
Exp. Date: 09Jun2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
METHANE	759 PPM	+/- 2%	NIST and VSL
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol procedures, September 1997.

REFERENCE STANDARD


TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2750	02Oct2011	ALM048818	49.80 PPM	METHANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP6890/US00006537	10Jun2010	FID

QUALITY ASSURANCE

APPROVED BY: SAM BENNETT
 (signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

COMPLIANCE CLASS

Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

AIR LIQUIDE AMERICA SPECIALTY GASES LLC
500 WEAVER PARK RD
LONGMONT, CO 80501

P.O. No.: D00FC
Project No.: 08-89388-001

Customer

AIR POLLUTION TESTING INC
JOHN MILLER
5530 MARSHALL STREET
ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number: ALM036340
Cylinder Pressure***: 2000 PSIG

Certification Date: 10Jun2010

Exp. Date: 09Jun2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
METHANE	1,500 PPM	+/- 2%	NIST and VSL
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol procedures , September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2750	02Oct2011	ALM046818	49.80 PPM	METHANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP/6890/US00006537	10Jun2010	FID

QUALITY ASSURANCE

APPROVED BY: SAM BENNETT
(signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

RATA CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: EPA Protocol Gas**

Assay Laboratory
 AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D0OFC
 Project No.: 08-87157-003

Customer
 AIR POLLUTION TESTING INC
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number: ALM052218
Cylinder Pressure*:** 2000 PSIG

Certification Date: 08Apr2010

Exp. Date: 07Apr2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
PROPANE	39.0 PPM	+/- 1%	Direct NIST and VSL
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1667	02Oct2012	ALM036360	49.80 PPM	PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP/6890/US00034400	08Apr2010	TCD/FID

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis**PROPANE**

Date: 08Apr2010 Response Unit: AREA
 Z1=0.00000 R1=221583.0 T1=134455.0
 R2=221836.0 Z2=0.00000 T2=134578.0
 Z3=0.00000 T3=134558.0 R3=222495.0
 Avg. Concentration: 30.04 PPM

Second Triad Analysis**Calibration Curve**

Concentration=A+Bx+Cx²+Dx³+Ex⁴
 r=0.999998
 Constants: A=-0.3528476
 B=0.00022553 C= .
 D= E= .

QUALITY ASSURANCE

APPROVED BY: JOHN ROZOF
 (signature on file)

3434 Route 22 West, Branchburg, New Jersey 08876 USA

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER: Air Pollution Testing
SGI ORDER #: 0138195
ITEM #: 10
P.O.#: D0OFC

CYLINDER #: CC-131241
Cylinder Pres: 2000 PSIG
CGA OUTLET: 350

CERTIFICATION DATE: 11/6/2008
EXPIRATION DATE: 11/6/2011

CERTIFICATION HISTORY

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY
Propane	11/6/2008	50.1 ppm	50.1 ppm	+/- 1%

BALANCE Nitrogen
PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Propane	GMIS-1	CC-113884	100.4 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION DATE(S)
Propane	H. Packard 6890	US00001434	GC - FID	11/6/2008

THIS STANDARD IS NIST TRACEABLE IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

FRED PIKULA

DATE: 11/6/2008

3434 Route 22 West, Branchburg, New Jersey 08876 USA

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE
PROCEDURE #: G1

CUSTOMER: Air Pollution Testing
SGI ORDER #: 0138195
ITEM#: 11
P.O.#: D0OFC

CYLINDER #: CC-109853
CYLINDER PRES: 2000 PSIG
CGA OUTLET: 350

CERTIFICATION DATE: 11/10/2008
EXPIRATION DATE: 11/10/2011

CERTIFICATION HISTORY

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY
Propane	11/10/2008	84.5 ppm	84.5 ppm	+/- 1%

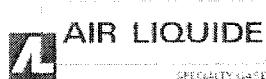
BALANCE Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Propane	GMIS-1	CC-113884	100.4 ppm

INSTRUMENTATION


COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION DATE(S)
Propane	H. Packard 6890	US00001434	GC - FID	11/6/2008

THIS STANDARD IS NIST TRACEABLE IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.
DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

FRED PIKULA

DATE: 11/10/2008

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

RATA CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: EPA Protocol Gas****Assay Laboratory**

AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D00FC
 Project No.: 08-87900-006

Customer

AIR POLLUTION TESTING INC
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards: Procedure G-1; September, 1997.

Cylinder Number: ALM023575
Cylinder Pressure*:** 2000 PSIG

Certification Date: 30Apr2010

Exp. Date: 29Apr2013

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
PROPANE	303 PPM	+/- 1%	Direct NIST and VSL
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1669	02Dec2010	ALM020021	497.0 PPM	PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP/6890/US0003440	13Apr2010	TCD/FID

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis**Second Triad Analysis****Calibration Curve****PROPANE**

Date: 30Apr2010 Response Unit: AREA
 Z1=0.00000 R1=2169616, T1=1323570.
 R2=2161548, Z2=0.00000 T2=1320192.
 Z3=0.00000 T3=1318637, R3=2162688.
 Avg. Concentration: 303.0 PPM

Concentration=A+Bx+Cx²+Dx³+Ex⁴
 r=0.99999
 Constants: A=-0.63623131
 B=0.000227849 C=
 D= E=

QUALITY ASSURANCE

APPROVED BY: JOHN ROZOF
 (signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

RATA CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: EPA Protocol Gas****Assay Laboratory**

AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D00FC
 Project No.: 08-91494-003

Customer

AIR POLLUTION TESTING INC
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number: ALM021204
Cylinder Pressure*:** 2000 PSIG

Certification Date: 03Aug2010

Exp. Date: 02Aug2013
Batch No: LGM0002918

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
PROPANE	493 PPM	+/- 1%	Direct NIST and VSL
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1669	02Dec2010	ALM020021	497.0 PPM	PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP/6890/US00034440	14Jul2010	TCD/FID

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis**Second Triad Analysis****Calibration Curve**

PROPANE
 Date: 03Aug2010 Response Unit: AREA
 Z1=0.00000 R1=2219022. T1=2202857.
 R2=2221170. Z2=0.00000 T2=2205384.
 Z3=0.00000 T3=2205543. R3=2223349.
 Avg. Concentration: 493.3 PPM

Concentration=A+Bx+Cx²+Dx³+Ex⁴
 r=0.999999
 Constants: A=0.13534477
 B=0.000224442 C=

D= E=

QUALITY ASSURANCE

APPROVED BY: JOHN ROZOF
 (signature on file)

500 WEAVER PARK RD, LONGMONT, CO 80501 Phone: 888-253-1635 Fax: 303-772-7673

RATA CLASS*Dual-Analyzed Calibration Standard***CERTIFICATE OF ACCURACY: EPA Protocol Gas**

Assay Laboratory
 AIR LIQUIDE AMERICA SPECIALTY GASES LLC
 500 WEAVER PARK RD
 LONGMONT, CO 80501

P.O. No.: D00FC
 Project No.: 08-91010-005

Customer
 AIR POLLUTION TESTING INC
 5530 MARSHALL STREET
 ARVADA CO 80002

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number: CC279553
Cylinder Pressure*:** 2000 PSIG

Certification Date: 27Jul2010

Exp. Date: 26Jul2013
Batch No: LGM0001368

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
PROPANE	847 PPM	+/- 1%	Direct NIST and VSI
NITROGEN	BALANCE		

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1669	02Dec2010	ALM020021	497.0 PPM	PROPANE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
HP/6890/US00034440	14Jul2010	TCD/FID

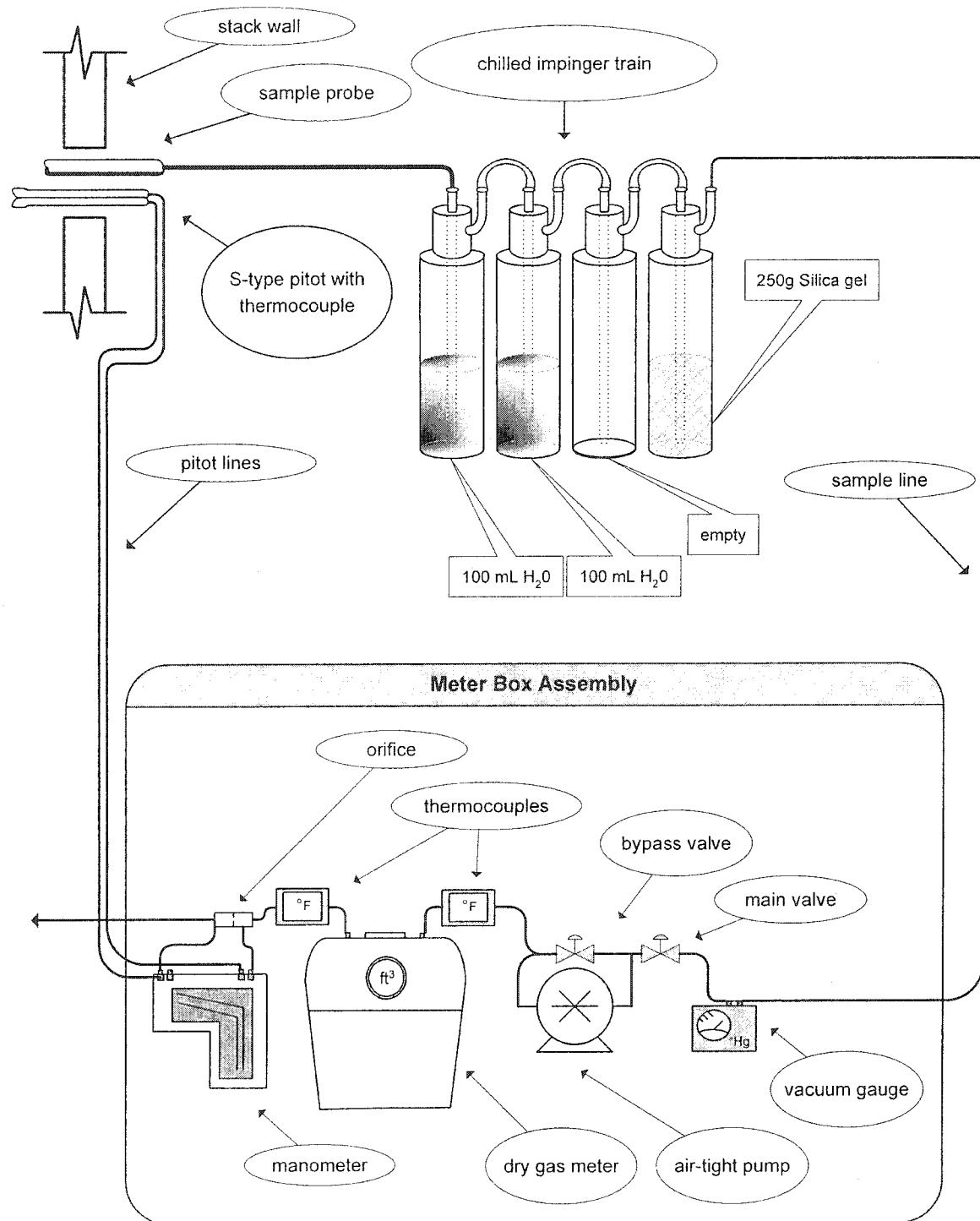
ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

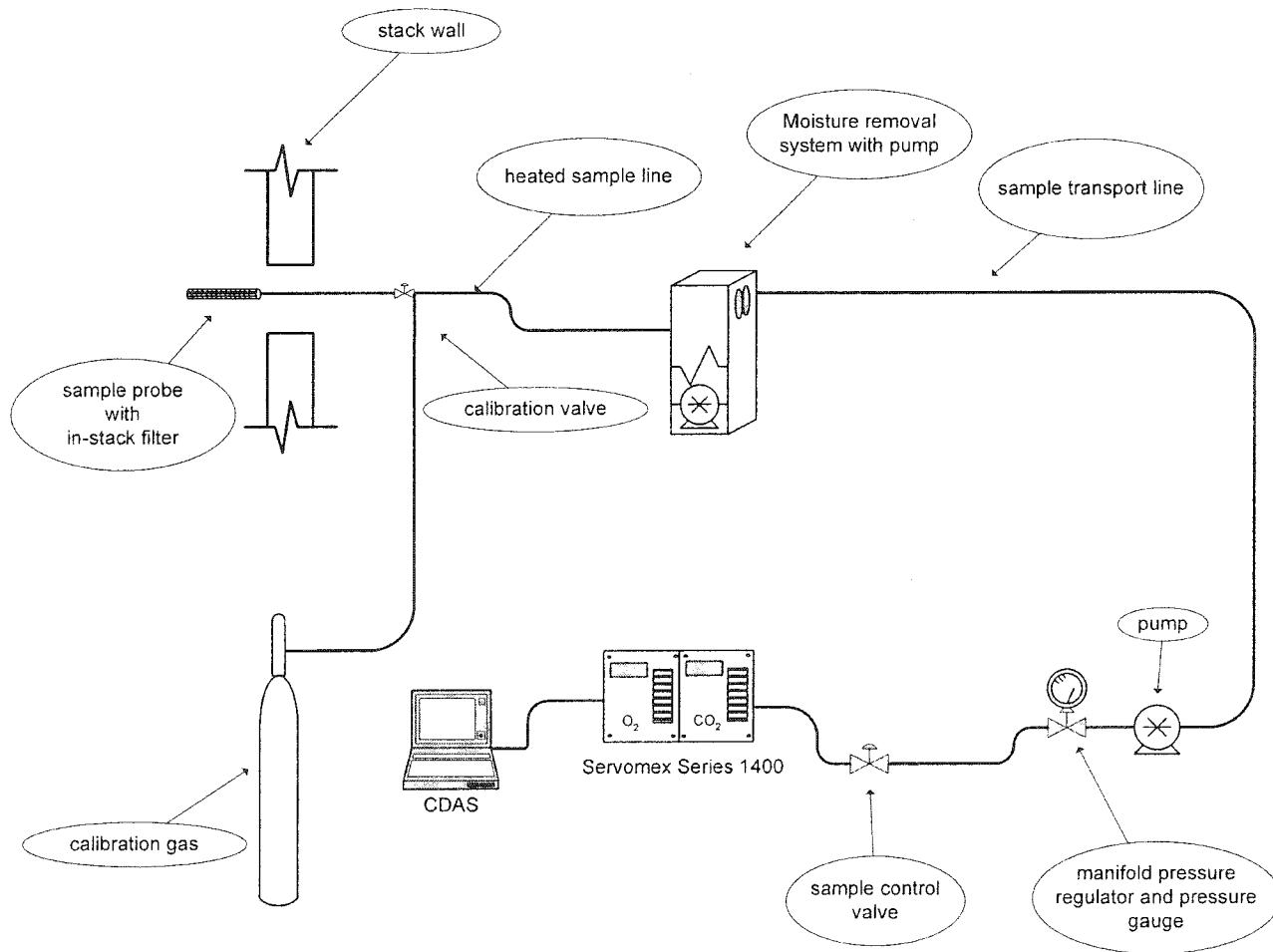
First Triad Analysis**Second Triad Analysis****Calibration Curve**

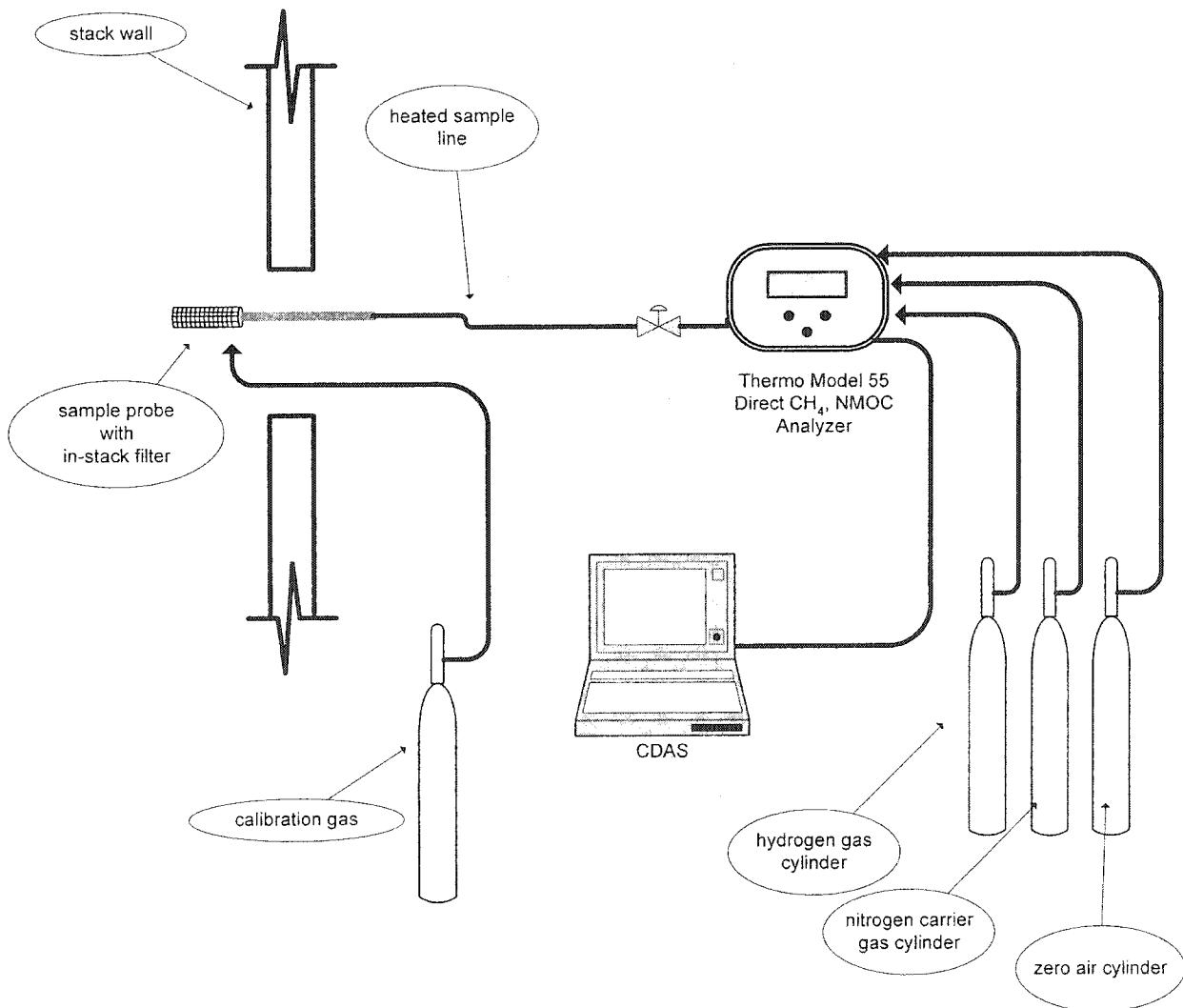
PROPANE
 Date: 27Jul2010 Response Unit: AREA
 Z1=0.00000 R1=2224731. T1=3835200.
 R2=2224839. Z2=0.00000 T2=3833325.
 Z3=0.00000 T3=3831399. R3=2222815.
 Avg. Concentration: 846.5 PPM

Concentration=A+Bx+Cx²+Dx³+Ex⁴
 r=0.999999
 Constants: A=0.13534477
 B=0.000224442 C=
 D= E=


QUALITY ASSURANCE

APPROVED BY: ADAM HANLEY
 (signature on file)


Appendix 4


Schematics

EPA Methods 1,2, & 4
sampling train schematic

EPA Method 3A
sampling train schematic

EPA Method 25A
sampling train schematic