Simulating Impacts of Highly Intermittent Sources

Read: NO₂ from backup generators

Ranil Dhammapala Atmospheric Scientist

ranil.dhammapala@ecy.wa.gov 360-480-2976

Background

- Hard to pass by assuming (unrealistic) worst case emissions
- Clarification memo of 2011
 - Max hourly ER spread over 500/8760 hours may still under-estimate impacts
 - With multiple operating modes, hard to know if it is "continuous or frequent enough to contribute to the annual" design value
 - Doesn't exempt planned intermittent emissions like BuG testing.
- Can sometimes pass by using:
 - 1st highest impacts on 8th highest emitting day
 - 2nd highest impacts on 7th highest emitting day
 - 3rd highest impacts on 6th highest emitting day, etc.

Ecology's alternative pathway: use a stochastic method to account for intermittency

- Pairs emissions with all combinations of meteorology
- Separate 5-year AERMOD run for each operating mode at max hourly ER
 - Use ARM2/ PVMRM... whatever Dfault option
 - Reflect permit conditions (e.g. daytime testing only)
- Output MAXDAILY POST file.

Modus operandi

- Developed R script with parallel processing to:
 - Randomly draw X days for each POSTfile/ SRCGRP combo
 - For monthly tests, selects 1 day from each calendar month
 - For power outages, selects same days at nearby facilities
 - Can allow some neighbors to run on backup power for longer, if desired
 - Allows for emissions that don't happen every year
 - Assign zeros to other days
 - Repeat for all operating modes
 - Line up matrices of days, get 98th %iles at each receptor
 - Repeat 1000 times
 - Median of 98th percentiles → DV
 - Median is ~ stable & repeatable
 - Also show % of exceeding NAAQS
 - Median of 1000 maxima → ASIL compliance

	1-Jan	2-Jan	3-Jan	•••	30-Jun	1-Jul	2-Jul	•••	29-Dec	30-Dec	31-Dec
Power Outage	0	0	1		0	0	0		0	1	0
Monthly test	0	1	0		1	0	0		1	0	0
Electrical switchgear test	0	1	0		0	0	1		0	0	1
Some geeky engineering test	0	0	0		0	0	1		1	0	0
Daily max of above, μg/m³	0	a	b		С	0	d		е	f	g

- If 1, pull POSTfile conc for that receptor-date, else 0 $\mu g/m^3$
- Receptor DV from iteration = 98th percentile of daily maxima (a..g)

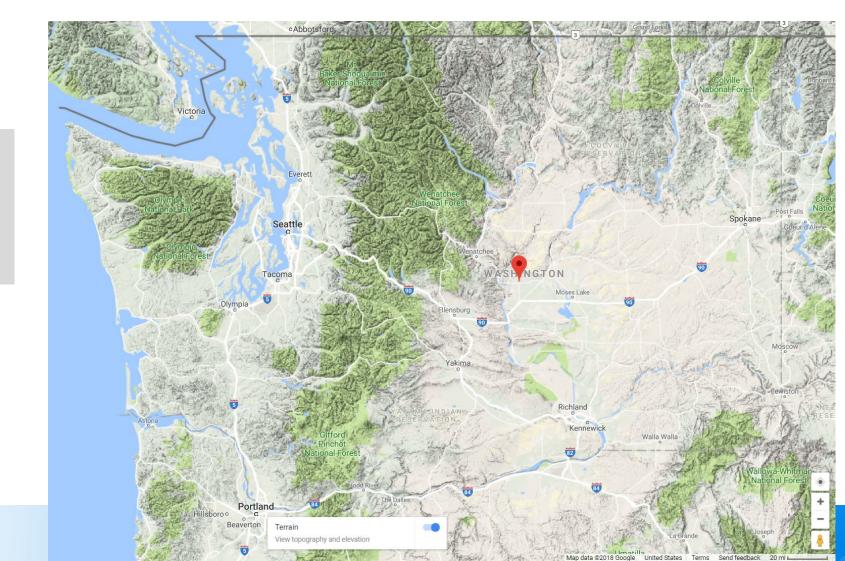

```
MC_R_script(postfile_days_array_file.csv,-
           receptor_file= NULL,
            pollutant = "NO2",
             background=40,
desired_output_filename="MC_output.csv",
           num_processors= 20,
     PowerSourceGroup= "nolights",
  MonthlySourceGroup= "maintenance",
srcgrps_not_in_all_years = "commissioning",
              UTMzone= 10)
```

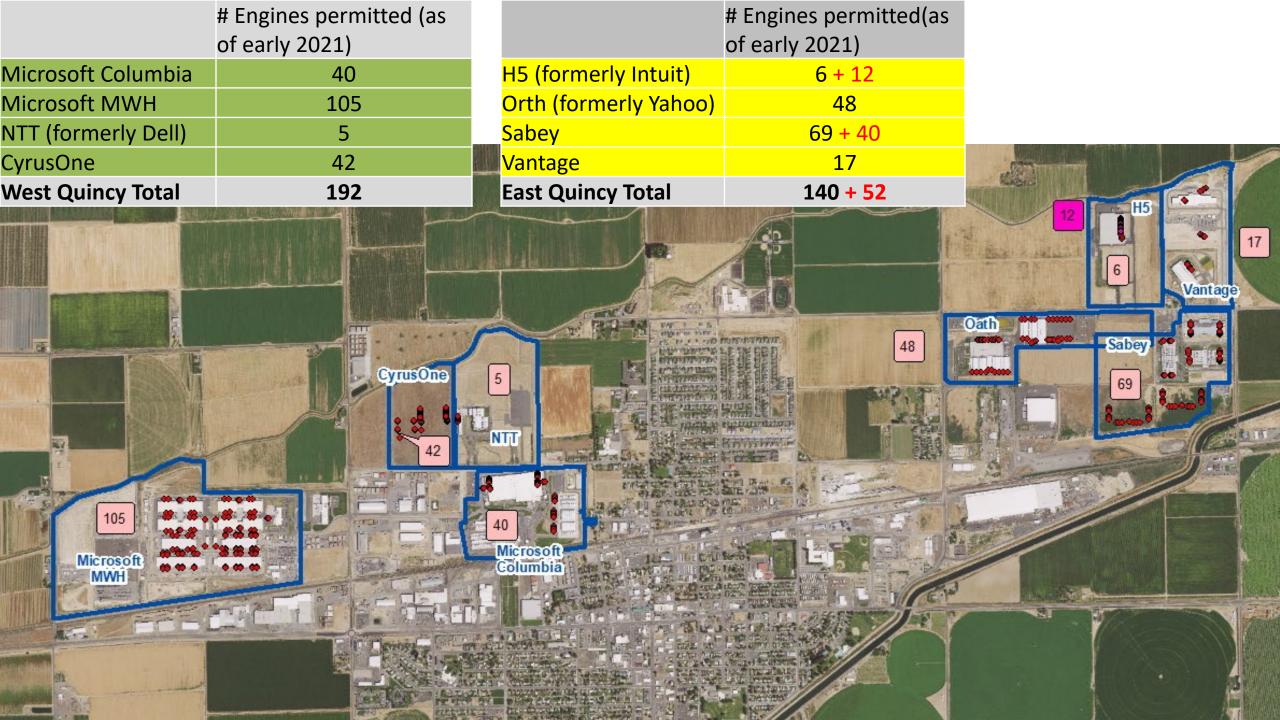
Runtime scales with # of processors

30K receptors, 15 op. modes, 12 processors → ~ 2 hrs runtime

Maxdaily_POSTfile_name	Source_Group	Num_operating_days_per_yr
MAXDAILY_AL_pt_SO2.DAT	No_power	8
MAXDAILY_AL_BL_SO2.DAT	AL_month	12
MAXDAILY_BPLANT_SO2.DAT	BPLANT	35
MAXDAILY_PS_SO2.DAT	PS	10

Outputs
DV table
for each
receptor &
interactive
map




Where is it used?

Prime example: NOCs in Quincy, WA data centers

- Quincy population: ~ 7500
- Most agricultural area
- Reliable, cheap hydroelectric power
- Well-developed Internet fiber infrastructure

