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Abstract

This paper tests the validity of proximity as an estimate for environmental health hazard exposure, and suggests how it may be
used as an indicator in future environmental health and justice research. Using geostatistics and geographic information systems, air
pollution monitoring data in Hamilton, Canada are interpolated to obtain local estimates of total suspended particulates. These
estimates are used address the following questions: How does the distribution of proximity to health hazards compare with
monitored air pollution data? Does the use of proximity rather than air pollution data significantly change the substantive
conclusions of environmental injustice in models with sociodemographic data? The results show that proximity measures can be
useful indicators if flexibly applied. Guidelines for future applications are discussed.
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1. Introduction

Although environmental justice research has devel-
oped and diversified (Holifield, 2001), cross-sectional
studies continue to analyze the extent to which low-
income and minority populations are disproportionately
exposed to environmental health hazards. Research
methodology has become a central issue (Bowen, 2001)
as uncertainty surrounds the analytic methods used to
model the nature and spatial extent of environmental
health hazards and their association with at-risk
communities. This is especially true of studies that use
spatial metrics to characterize exposures in the absence
of environmental monitoring data. The objective of this
paper is to test the validity of spatial metrics,
particularly proximity, to approximate hazard exposure.

We address this objective with an analysis of air
pollution in the City of Hamilton, Canada, which has
high-resolution air pollution monitoring data. Hamilton
has seen substantial environmental justice research,
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which provides an excellent frame of reference to test
proximity metrics. This paper addresses the following
questions: How does the distribution of proximity to
health hazards compare with monitored air pollution
data? Does the use of proximity rather than air pollution
data significantly change the substantive conclusions of
environmental injustice in models with sociodemo-
graphic data?

2. The need to validate proximity measures

Environmental justice researchers recognized the need
to cross-validate exposure assessment methods (McMas-
ter et al., 1997; Sheppard et al., 1999; Harner et al.,
2002). Where environmental monitoring data were
available, advanced techniques such as plume dispersion
modeling and spatial interpolation have been used
(Buzzelli et al., 2003; Jerrett et al., 2001; Chakraborty
and Armstrong, 2001). However, detailed emission and
monitoring data are often unavailable. In addition,
various spatial metrics are needed to proxy for ambient
health hazards, including: co-location of hazards
and disadvantaged communities (Greenberg, 1993);



14 M. Buzzelli, M. Jerrett | Environmental Hazards 5 (2003) 13-21

« Census Centroids
[E Air Monitoring Stations
Major Roads and Expressways
7% Industrial Land Use

4 8 Kilometers|

Fig. 1. Air monitoring, major roads, and industrial land uses in Hamilton, 1995/1996.

buffering (Glickman, 1994; Chakraborty and Arm-
strong, 1997; Neumann et al., 1998); and proximity to
hazards as an estimate of exposure (Bolin et al., 2002;
Cutter et al., 2001; Perlin et al., 2001).

In the absence of environmental monitoring data, a
need exists to ensure that spatial metrics adequately
characterize exposure and result in the same substantive
conclusions (Neumann et al., 1998; Sexton and Adgate,
1999; Bowen and Wells, 2002). The issue is of particular
concern because geographic information systems (GIS)
can easily facilitate the use of spatial metrics but
inappropriate application can bypass sound methodol-
ogy (Maantay, 2002). At the same time, proxies are
flexible and can signal the need for further justice
research. Spatial metrics can ““...provide a benchmark
for further scholarly research, a practical community
indicator of environmental justice, and an initial
comparison measure between cities” (Harner et al.,
2002, 319). Spatial metrics of exposure can in turn lead
to the implementation of environmental monitoring,
perhaps based on preliminary analyses of inequitable
health outcomes (IOM, 1999; Hertzman et al., 1987;
Macey et al., 2001; Maantay, 2002).

Testing and validating proximity measures has several
advantages over other spatial metrics, in particular the
ability to model a continuous hazard field and its
potential impact along socioeconomic status (SES)
gradients. Methodological concerns in environmental
justice research revolve around how best to model
exposure to hazards. This results in a second problem of
characterizing exposure among target groups. Co-
location and buffer analyses are limited because of
arbitrary administrative boundaries drawn around at
risk communities or arbitrary buffer radii. Hazards are

treated as present or absent; the surrounding population
as either exposed or unexposed within administrative
boundaries, such as census blocks. On the other hand,
proximity studies measuring distances between popula-
tions of interest and hazard sites are based on a
continuous hazard field to characterize potential ex-
posure. Ultimately, if a connection with the health
literature is to be made, exposure should be examined
along social status gradients, rather than simply for
binary presence or absence.'

The following approach tests proximity against a
reliable frame of reference—monitored air pollution
data for the City of Hamilton, Ontario (Fig. 1). Prior
environmental justice research in Hamilton (Jerrett et al.,
2001; Buzzelli et al., 2003) is compared to the proximity
method developed by Cutter et al. (2001): cumulative
proximal exposure (CPE). Bolin et al. (2002) have
presented an equivalent method to integrate different
hazards (e.g., toxic emissions and traffic pollutants).
CPE has a strong basis in the geographical literature on
spatial externalities, in particular the distance decay
function. It can also integrate several hazards without
reference to expensive monitoring data. For Hamilton,
monitored ambient total suspended particulates (TSP)
are available from the Ontario Ministry of the
Environment (MOE). These data are spatially inter-
polated for localized values and compared with CPE
to land wuses emitting this air pollutant: industrial
and transportation sources. Comparisons are made

!This is the approach taken in the population health literature which
his explicitly concerned with social status gradients. This would seem
to be a useful conceptual way forward for the environmental justice
literature to make a health connection.
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directly between TSP and CPE, and indirectly in their
associations with variables representing SES and race, as
would be done in a full environmental justice analysis.

3. Data and methods

Arc View 3.2 GIS (ESRI Corp, Redlands, CA) is used
to integrate TSP, proximity measures, and census data
at the census tract level of aggregation within Hamilton.
The relationship between TSP and proximity are
examined, and building directly on prior environmental
justice research for Hamilton, both are regressed on
sociodemographic variables from the 1996 census.

3.1. TSP interpolation

TSP particles range up to 50 microns (um) in
aerodynamic diameter. Fine particles (up to 2.5pum,
PM, 5) have been most closely associated with signifi-
cant health effects including lung cancer and cardiopul-
monary mortality (Krewski et al., 2000; Pope et al.,
2002), although earlier research also found associations
between health effects and PM;, or TSP. A recent study
in Hamilton reported significant health effects asso-
ciated with TSP, including cardiopulmonary and all
cause mortality (Burra et al., 2002). In Hamilton, TSP is
typically composed of aerosols and metals originating
from combustion and industrial processes, including
sulphur, nitrogen compounds, lead, and carbon. Local
emissions are heavily influenced by the central city’s
heavy steel fabrication complex that can emit up to one-
third of all local TSP, anchoring this pollutant’s
distribution. For these reasons, Hamilton has been the
basis of substantial environmental justice and health
research and is therefore a good frame of reference for
validating CPE.>

Local estimates of ambient TSP levels were obtained
by spatially interpolating Hamilton’s air monitoring
network. TSP was measured in the standard pgm >, at
20 stations located throughout the city in 1995 (Fig. 1).?
The year 1995 is closest to the census of 1996 for which
we have a large number of stations to allow for spatial
interpolation; government funding cutbacks had re-
duced the network to only 13 stations in 1996. In
contrast to PM,, for example, TSP tends to show a
more punctuated distribution because of its large
fraction size and short-range transport, even within an
urban region.

Small-area spatial variability in TSP necessitates an
interpolation technique that takes into account local and

2We originally intended to use other pollutants, but these are not
monitored at a sufficient number of locations for the period of this
study to make for a reliable test of proximity.

3Fig. 1 displays 18 stations. Two are located just west of the map
extent.
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Fig. 2. Kriged estimates of TSP in Hamilton, 1995.

global trends in the spatial process. Universal kriging
was chosen after having tested alternative interpolators
(see Jerrett et al., 2001 and Buzzelli et al., 2003 for
details of interpolator selection). Universal kriging is
appropriate  when trends (spatial dependence) are
present in a spatial process (Burrough and McDonnell,
2000), a feature of TSP found in earlier research on
Hamilton (Farhang, 1983; Pengelly et al., 1984; Jerrett
et al., 2001). Universal kriging also preserves the original
data units while simultaneously estimating global and
local TSP levels (TSP in geometric means). Estimates
were assigned to census tract centroids weighted
by residential land use in S-Plus 6 software using the
point kriging technique. The kriged surface is shown in
Fig. 2.4

While Hamilton’s network is extensive compared to
other intra-urban monitoring in other places, the
number and distribution of stations necessitated sensi-
tivity analyses. The first test looked at the similarity of
the estimated surface with that of earlier years, including
years with more monitoring stations and less suburban
sparseness. The 1985 (34) and 1990 (23) stations
estimated census tract values correlated at r = 0.93,
while the 1995 stations correlated with these two earlier
years at r = 0.71. Earlier research suggested a systematic
temporal change in the distribution of TSP, due in part
to a spatial restructuring of industrial activity (Buzzelli
et al., 2003). A comparison with an estimated surface for

“For a complete discussion of the alternative interpolators explored,
see Buzzelli et al. (2003).
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Table 1
Descriptives of health hazard exposures
Mean Standard deviation Minimum Maximum Range

Kriged TSP (total suspended particulates) 55.28 8.09 39.33 87.63 48.30
CPE 1 mile (land use) 4.01 5.55 0.00 18.94 18.94
CPE 1 mile (major roads) 2.55 2.25 0.00 8.44 8.44
CPE 1 mile (total) 6.56 5.45 0.00 22.00 22.00
CPE 5 miles (land use) 54.06 24.29 7.47 92.02 84.55
CPE 5 miles (major roads) 54.49 10.61 23.98 70.34 46.36
CPE 5 miles (total) 108.56 24.71 48.18 141.48 93.30
CPE maximum distance (land use) 111.03 16.58 70.44 133.26 62.81
CPE maximum distance (major roads) 132.78 9.96 103.19 146.10 4291
CPE maximum distance (total) 243.82 22.87 173.63 270.74 97.11

Note: CPE stands for cumulative proximal exposure, and represents an inverse distance weighting from all hazard locations to each point of interest

(in this case census tract centroids). All distances are in cumulative meters, as specified in Formula (1).

1994 (same 20 stations) corroborates this, correlating at
r = 0.85. A more variable surface in 1995 would appear
to reflect the TSP distribution, rather than sparseness in
the monitoring network. Another sensitivity analysis
cross-validated the internal validity of the 1995 kriging
approach by successively removing each air monitoring
station from the kriging estimation and producing a new
surface in its absence, for a set of twenty new surfaces.
The estimates were then compared with (1) the original
monitored TSP values and (2) the estimated values used
in the analysis, as derived from the full set of monitors.
Correlations for the former did not fall below r = 0.93;
most equaled or exceeded r = 0.98. Similar results were
obtained in comparisons with the estimates from the full
network. Visualization of the new cross-validation
surfaces also showed they largely resembled that of the
complete set of monitoring stations in 1995. These
sensitivity analyses suggest that the 1995 surface
accurately represents the spatial process of TSP dis-
tribution and thus provide a good frame of reference for
testing the validity of distance as an exposure proxy.’
Table 1 displays the descriptive statistics for TSP
estimates.

3.2. Proximity measures

To test proximity against geostatistical TSP estimates,
the same census tract centroids were used in combina-
tion with a new set of spatial data, specifically locational
data of major roads and heavy manufacturing facil-
ities—the principal anthropogenic generators of ambi-
ent particles (Health Canada, 1998).° Road network
data were drawn from a comprehensive and topologi-
cally integrated geo-database for Canada developed by

SFor an analysis of conditions under which kriging should not be
applied see Le et al. (2001).

®Minor roads are not considered major urban regional contributors
to TSP levels. They are also ubiquitous and unlikely to result in
inequitable exposures.

DMTI Spatial Inc. (Markham, Ontario, Canada). This
geo-database includes road coverages (i.e., arcs and
vertices) and urban land uses. Several roadway arcs were
removed from the database, as they had not yet been
completed or constructed by 1996 (primarily along the
Lincoln Alexander Expressway in the suburbs, then in
the planning stages).” In other cases, roadway arcs
lacked representative segments, and these were added
while some very short arcs contained several segments
that had to be simplified. To simplify the distance
measures, all segments were generalized such that none
was closer than 200m to each other. A total of 210
segments were used to compute distances with census
tract centroids.® This included roadways up to 1 mile
(1609 m) beyond the city limit. In addition, a buffer
incorporated trans-boundary pollution from traffic just
beyond the edge of the city.

DMTI data were also used to measure distances from
point-source manufacturing facilities. DMTI data iden-
tify land parcels zoned as industrial, though zoning does
not necessarily equate with active industrial activity, or
with TSP emissions. DMTI data were therefore vali-
dated in two steps. First, many of the small land parcels
zoned ‘industrial’ in the DMTI database were ‘ground
truthed’ to determine if they in fact could be sources of
TSP. Several parcels not found in the city’s main

"Due to a deep and long-lasting recession, Hamilton, much like the
rest of Ontario, saw little development during the first half of the
1990s. Right-of-ways for roadways such as the “LINC” idly waited the
boom years of the latter 1990s for construction and use.

8Use of more standard line generalization algorithms did not
produce satisfactory results: either too many segments were removed
from long arcs which became over generalized and too many remained
along shorter road segments, or, too few were removed altogether
resulting in little change. The former case resulted in crude general-
izations of otherwise long and sinuous links while the latter did little to
change the road network and attendant vertices. Buffering maintained
a representative number of segments and was amenable to the
cumulative distance measurements needed for the analysis. Several
buffer distances were explored before the 200-m distance was finally
implemented.
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Fig. 3. CPE to major roads and industrial land uses, Hamilton, 1995/1996.

industrial zones (mainly downtown, but also central
western, and suburban eastern) but found in the mid-
central part of the city, were also excluded. Second, the
Ontario MOE’s data from the National Pollutant
Release Inventory (NPRI) helped to corroborate that
most industrial sources were located in the northeast
heavy manufacturing core. Taken together, these
procedures confirmed the location of 168 land parcels
as industrial TSP point-source emitters in Hamilton,
again including a buffer to include facilities up to 1 mile
beyond the municipal boundary.

With roads and industrial facilities identified, distance
measures were then taken between census tract centroids
and these features, specifically road buffer centroids and
the edges of industrial land parcels.” Using several
variants, distance measures followed the CPE method
developed by Cutter et al. (2001):

#emission points ds
CPE= ) (1.0-%), (1)
j J

where CPE is therefore the inverse weight of the
cumulative distance, dj, between each census tract
centroid, i, and all emission points, j; e is the rate of
reduction in exposure; 7;, is the distance at which
exposure from facility j is considered negligible. Fig. 3
displays CPE as applied to one residential land use
weighted centroid, for its ten nearest road and industrial
land use neighbors. Descriptive statistics comparing
TSP and CPE are shown in Table 1.

The form of the CPE model is flexible enough to
incorporate qualitative information about the nature
and extent of spatial processes. The rate of reduction in
exposure, e, may be varied to emulate a non-linear

®Use of industrial land parcel centroids produce the same statistical
results in the end, by merely introducing a systematic difference in the
distance measurements. Parcel edges are used here because they reflect
the true configuration of this land use, on ‘the ground’, in the city.

distance decay function that can accommodate local
climate and topographic functions. As Cutter et al.
(2001) reported, it is not always clear which type of
non-linear function is most appropriate. To cross-
validate the usefulness and demonstrate the flexibility
of CPE in this case, e is modified such that CPE
resembles the regional distribution of TSP. The CPE
may also be adjusted by varying T to reflect assump-
tions made about the distance at which exposure
becomes negligible. Cutter et al. (2001) used distance
bands from 1 to 5 miles. In this case, each of these
was chosen in addition to the maximal distance
separating i and j, for an overall regional view: T was
set to 1 mile (1609m), 5 miles (8047m) and the
maximum distance separating i and j (17,471 m for
roadways; 17,068 m for industrial land parcels) across
the region (see Table 1)."

3.3. Statistical tests

Correlation and bivariate regression models are
presented for the TSP and CPE variables. CPE is tested
against TSP for both land use types and each distance
interval; that is, for both roadways and heavy manu-
facturing land uses, each at 1 mile, 5 miles, and the
longest distance separating these and census tract
centroids. TSP is treated as a function of CPE in a
series of bivariate linear regressions and a visualization
of curves fit with the various CPEs using different
functional forms. Testing against TSP in this manner
allows us to determine which land uses, and at what
distances, we can rely on proximity to proxy for ambient
TSP levels.

10Cutter et al. (2001) used imperial measures that are commonly
applied in the justice literature, and correspond to guidelines suggested
by the US EPA. Miles are therefore used here but equivalent meter
distances are also given.
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A final test compares CPE with TSP in regression
models involving SES variables. The census variables
used here have been found to be statistically significant
in ecarlier justice research in Hamilton (Buzzelli et al.,
2003). CPE at the various distance bands and land uses
are substituted for TSP estimates to determine if
substantive conclusions are significantly altered by use
of proximity versus monitored air pollution data.

4. Results

Fig. 4 shows the CPE surfaces for major roads and
industrial land uses at each distance interval. The
surfaces show the same general trend as the TSP surface
in Fig. 2 in terms of a central peak and general decline
toward the suburbs. The 1-mile CPE contains the most
local variability and gives the greatest weighting to the
industrial core. At this short distance, proximity to
Hamilton’s heavy manufacturing complex appears to be
important and suggests that CPE and TSP are closely
correlated. At 5 miles and the maximum regional extent,
the surfaces are nearly identical to each other and do
indicate a weighting toward the city’s industrial core but
they are much less variable, descending monotonically
toward the suburbs. We would expect a positive through
less direct association with TSP in these cases due to the
higher contribution from traffic sources.

Table 2 displays correlations between TSP and the
various CPE measures; roadways, industrial land uses,
and both together: each at the 1-mile, 5-mile, and full
regional distances. Whereas correlations between TSP
and roadways are weak (either positive or negative)
correlations, the correlations are quite high and
significant for industrial land use. In terms of proximity,
however, correlations do not change significantly.
Correlations between both land use types and TSP at
all distances are driven by the CPE of industrial land
use.

These correlations suggest that proximity measures
may be more reliable where point source air pollution
emissions are spatially clustered. The importance of
Hamilton’s agglomerated steel fabrication complex to
regional TSP levels results in a much higher correlation
between TSP and the CPE of industrial land use. The
presence of major roadways throughout the region,
versus the concentration of industrial land uses, appears
to reduce any regional disparities. If this is true, then
TSP distribution should be a function of distance from
its sources. This distance decay assumption underlies
much justice and environmental health research. In
bivariate regressions, however, Rﬁ are weak at best. The
strongest association is found for the CPE of industrial
land uses at the 5-mile distance band and the full
regional extent, as well as the 1-mile band for industrial
land uses and roadways combined (R2~0.22 — 0.24).

Fig. 4. CPE surfaces for combined land uses at three distance bands.

Scatter diagrams and curve-fitting reveal that poor
linear regression results are due to non-linear relation-
ships between TSP and CPE, especially at the 5-mile and
full regional distances. At 1 mile, the bivariate distribu-
tion of TSP and CPE among Hamilton’s census tracts is
linear (though weak). At greater distances, a quadratic
function in particular produces a much better fit since
the bivariate distribution is exponential in form. The
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linear relationship at the 1 mile distance, together with
the exponential relationships beyond that, suggest that
the standard CPE model can be modified for better local
and regional representation. To adjust for the negative
skew and linearize the relationship between TSP and
CPE, greater weight was applied to shorter distances.
This was done by modifying the CPE model thus:

#emission points d: —e
CPE= ) (7’) . )
j J

0.21
—0.30
0.17
0.83"
0.33*
0.96"
0.92¢
0.76*
1.00

—0.09

—0.19
0.30*
0.78*
0.63"
0.45%
1.00

By taking the negative reciprocal exponent of the rate
of reduction of the distances, inverse distance weighting is
inherently applied and the order of distances is main-
tained (i.e., there is no need to take the inverse of the
distance values, as in the original formula). The negative
reciprocal transformation applies relatively more weight
to the shorter distances in the spatial system. Those
performing best had the desired effect of raising the
goodness of fit between TSP and CPE. For industrial land
uses alone, the change was minor. But for both land uses
combined, modification of e (—8 and —9) brought
substantial improvements, especially at the maximum
regional distance where R2 rose from 0.15 to 0.42.

Finally, the effect of redefining ¢ was tested for
associations with SES variables found to be significant
with TSP in prior research (Buzzelli et al.,, 2003).
Specifically, dwelling value has been the most consistent
‘predictor’ of the variation in TSP; its negative correla-
tion is shown in Table 3. The proportion of Latin-
American population is also significantly positive. With
the TSP model as a frame of reference, we may gauge
the performance of both the standard CPE model and
the variation introduced here. Table 3 shows that both
covariates in all CPE models take the same sign as in the
TSP model, though statistical significance of the Latin-
American variable is lost with the standard CPE
method. Although model fit could vary given that TSP
is not a simple function of CPE, the substantive
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;f conclusions that may be reached by informed use of
CPE appear to be consistent with those derived from
geostatistical modeling of monitored air pollution data.
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Table 3

Comparisons of multiple associations between TSP, proximity, socioeconomic status, and race

Intercept Average dwelling value % Latin-American population Model fit: adj. R sq.
TSP model® 4.23 —1.97E-06 3.54E—02 0.30
(t=74.45) (t=—-4.97) (t=13.28) (» = <0.01)
CPE at 5 miles (standard) 168.12 —4.43E-04 0.17 0.26
(t=16.28) (t = —6.15) (t = 0.085) (» = <0.01)
CPE at 5 miles (modified e) 789.25 —1.96E-03 40.72 0.22
(t=11.00) (t=-391) (t=2.99) (» = <0.01)
CPE at full regional extent (standard) 293.02 —3.74E—-04 1.42 0.25
(t=129.89) (t=—-547) (t=0.77) (» = <0.01)
CPE at full regional extent (modified ¢) 1634.63 —3.65E-03 33.26 0.40
(t=22.81) (t=-7.13) (t=2.39) (» = <0.01)

#Transformation of TSP to approximate the Gaussian distribution results in better model fit.

sufficiently flexible and inexpensive to explore environ-
mental justice hypotheses. If proximity measures de-
monstrate the potential for injustice, this may indicate a
need for more expensive monitoring or dispersion
studies. The results show that manipulation of the
CPE makes it a flexible technique for preliminary
environmental justice research, in much the same way
that buffer analyses have been used (Harner et al., 2002),
but with the advantages of continuous exposure and
social status gradients as well as capacity to integrate
multiple hazards.

In presenting the CPE model, Cutter et al. (2001)
recognize the simplifying assumptions that go with using
a spatial metric for exposure, beyond those implicated in
air pollution hazards. Awareness of local circumstances
can improve the applicability of distance measures. In
this case, the distribution of TSP in Hamilton served as
a frame of reference for testing the applicability of CPE.
In fact, an estimated TSP surface and monitoring
network is unnecessary to make this kind of qualitative
judgment. The land uses of interest, and the CPE model,
can be calibrated based on local knowledge of the
distribution of pollutants to produce reasonable proxies
for health hazard distribution. Local knowledge of the
influence of heavy industry provides enough qualitative
information to weigh these land uses and produce
favorable results.

Having said that, how does one apply proximity as
the metric of exposure without the benefit of an air
monitoring network or other extraneous information?
Proximity may be weighted by quantity and toxicity of
hazards and these qualitative adjustments add further to
the sophistication of proximity as an indicator (Bowen
et al., 1995; Neumann et al., 1998; Cutter et al., 2001).
For instance, should the focus be a particular ‘at risk’
community (Chakraborty and Armstrong, 2001) where
hazards may be weighted according to the level of risk
they pose? Perhaps what is needed is a host of

supplemental tools such as community risk assessment
(NRC, 1983). This could explore the need for more
expensive approaches such as Community Risk Assess-
ments (NRC, 1983). In addition, the relative weighting
of communities across space permit the inclusion of two
or more hazards such that a composite picture of
environmental justice is possible (Bolin et al., 2002).

Finally, a middle ground may also be attainable.
Although an extensive air-monitoring network is needed
for spatial interpolation of TSP, only a few stations are
necessary to calibrate a CPE surface or to cross-validate
its correlations with real monitoring data. Perhaps the
principal insight from these observations is that any
proxy for environmental health hazard exposure should
be applied flexibly. Alternative exposure metrics should
be reported, and they should inform substantive
conclusions about the validity of the measure in
different applications.
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