

Schematic overview of background ozone concentrations. Source: Figure 3-7, 2013 Ozone ISA, U.S. Environmental Protection Agency.

Strengths and Limitations of Current Tools to Characterize

Background Ozone

A key aspect of air quality management is identifying the driving sources of air pollution. In the United States, the U.S. Environmental Protection Agency (EPA) uses the concept of "background ozone" to describe ozone (O_3) coming from sources other than anthropogenic emissions of O_3 precursors. EPA has identified provisions in the U.S. Clean Air Act that provide regulatory relief to local jurisdictions that are unduly impacted by background O_3 . Each of these provisions relies on technical tools—including photochemical models, monitors, satellite data, and ozonesondes—to accurately quantify O_3 originating from controllable, anthropogenic sources versus background O_3 . The articles in this month's *EM* explore the strengths and limitations of current tools used to quantify background O_3 .

A key aspect of air quality management is identifying the driving sources of airpollution.

To begin, Hogrefe, et al. delve into the details of air quality models that are critical for characterizing source contributions to O₃ concentrations at different locations across the United States. The authors describe the interplay between large-scale hemispheric or global models with higher resolution regional models. The hemispheric and global models are well-suited to capture long-range intercontinental O₃ transport, as well as vertical exchange between the stratosphere and the troposphere. Regionalscale models often use a horizontal grid spacing of 12-km or finer to capture O_3 formation that is dependent on spatial gradients near urban areas and other large emissions sources. It is crucial to couple these two types of models to fully capture the full suite of processes that lead to O₃ formation. Hogrefe, et al. identify improvements needed in both types of modeling systems to quantify the magnitude of background O₃ contributions more definitively across space and time.

Second, Neu, et al. describe how satellite data are being used to inform air quality models. The authors identify satellites as an important tool for constraining air quality models because, unlike surface monitors, they can provide more complete spatial coverage. They show how model assimilation of satellite data improves model estimates of total O₃ and increases estimates of the magnitude of background O₃. The authors also describe recent outputs developed as part of NASA's Health and Air Quality Applied Science Team (HAQAST). That effort specifically resulted in a new dataset of "satellite-informed boundary conditions" that could be used by U.S. state and local governments to couple global-scale information with regionally focused regulatory model simulations.

Next, Stauffer, et al. couple statistical analysis of zonesonde

measurements at Trinidad Head, CA, with routine O_3 surface monitors in California, satellite-derived carbon monoxide surfaces, and meteorology data. The authors identify four types of ozonesonde vertical profiles, each associated with a different set of O_3 sources. The types are ordered based on the magnitude of O_3 aloft from lowest (type 1) to highest (type 4). Stauffer, et al. demonstrate the additional nuanced information that can be gleaned when vertical profiles of O_3 are available. One important finding is that conditions leading to higher O_3 aloft in California do not appear to necessarily correspond to conditions leading to high surface O_3 .

Finally, Jaffe, et al. describe the uncertainties associated with each of the tools addressed in the other three articles and identify the need for targeted investment to address current shortcomings. The authors describe how models are necessary for characterizing source contributions and quantifying background O₃ since ambient surface O₃ measurements cannot be used alone to quantitatively distinguish between sources of O₃. They further describe how models are used to make demonstrations for regulatory purposes and present a case study comparing model results from two U.S. regions with different source signatures. They show that while the source contributions vary dramatically between these regions, the model had a similar positive bias in both cases. It is necessary to not only constrain total O_3 in the model, but also to properly attribute the source(s) of the biases. If bias is incorrectly attributed evenly across sources or conversely incorrectly attributed to a single source or group of sources, a constrained model may not appropriately apportion total O₃ between controllable and uncontrollable source categories. Jaffe, et al. conclude by suggesting key areas of investment that would provide the ambient data necessary to improve modeling capabilities most effectively. em

Heather Simon, Ph.D., is a Physical Scientist with the U.S. Environmental Protection Agency's (EPA) Office of Air Quality Planning and Standards and a member of *JA&WMA*'s Editorial Review Board (ERB). **Golam Sarwar, Ph.D.,** is a Research Physical Scientist with EPA's Office of Research and Development and a member of *EM*'s Editorial Advisory Committee (EAC).

E-mail: **Simon.Heather@epa.gov**; **Sarwar.Golam@epa.gov**.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency (EPA).