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policies of the U.S. EPA
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<EPA Triaging Chemical Exposure Data Needs and Tools for

United States
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Advancing Next-Generation Risk Assessment

= |dentify available New Approach Methodologies (NAMs) for exposure data streams

= Examine the landscape of exposure data (both traditional and NAMs) for an inventory
of chemicals relevant to APCRA partners

= |dentify key information or activities that would enable or enhance fit-for-purpose
exposure estimates, predictions, or assessments

" Provide exposure metrics to support the APCRA inventory and hazard-focused case
study activities

" Evaluate exposure NAMs against traditional methods to evaluate utility in different
regulatory contexts
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Hazard

Toxicokinetics
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Exposure

Risk is Multifaceted

Evaluating chemicals for risk to humans or the
environment requires information on hazard and
exposure potential

Exposure potential quantifies the degree of contact
between a chemical and a receptor

Toxicokinetic information is required to bridge hazard
and exposure (what real-world exposure is required to
produce an internal concentration consistent with a
potential hazard?)

Regulatory bodies are tasked with evaluating risks
associated with 1000s of chemicals in commerce. For
example, as of 2019 there were ~40,000 chemicals on
EPA’s TSCA Active Inventory
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Critical Exposure-Relevant Domains
= Chemical use and release. Provides critical

Forward information for identifying chemical sources,
Models Consumer - Chemical Manufacturing exposure pathways, and relevant predictive
CHEMICAL roductsand // | . .
USE ureble Goods o models for a given chemical.
and < |
N

Media occurrence, environmental surveillance,

Waste

RELEASE // J

, _ \ Exposure
/ ‘ — — ji . . . .
door i Dt urfaces e L and biomonitoring. Provides exposure data for
Water Ground Water

evaluating predictive models.
EXPOSURE ONSUMEIF OCW /éUSTRIAUAMBIENT ECOLOG\kCAL
\L X sure

= Exposure estimates. Predictions of chemical

ENVIRONMENTAL \, /W&~ P ih ' _ _ _
SURVEILLANCE flu i oamars _ Ecologic intake in mg/kg/day that can be compared with
d o oraan auna . . . .
BIOMONITORING RECEP TORSS y hazard information to inform risk.
amp ’ng Biomarkers
Biomarkers . . . )
Evaluation O COKINETICS  Fotexposure ofExposure = Toxicokinetics. Provides real-world exposure

context to in vitro high-throughput screening
data and biological receptor monitoring
information.

Office of Research and Development



wEPA Classes of NAMs for Exposure

United States
Environmental Protection
Agency

= Chemical descriptors that provide information on chemicals
in an exposure context (e.g., how chemicals are used)

= Machine-learning approaches that use these descriptors to
fill gaps in existing data

= High-throughput exposure models for various pathways

= High-throughput measurements to fill gaps in monitoring
data

= New evaluation frameworks for integrating models and
monitoring to provide consensus exposure predictions

= High-throughput approaches for measuring and predicting
chemical toxicokinetics

= All these pieces together provide the tools for high-
throughput chemical prioritization
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= “APCRA inventory” - case study chemical list

* 6621 chemical substances compiled by APCRA partners for potential use in
retrospective or prospective case studies- primarily single component

 Selected from regulatory lists from EPA, Health Canada, ECHA, EFSA, NICNAS
" |nvestigated the coverage of this inventory

|”

= “Traditional” exposure data

e Regulatory reporting

* Targeted monitoring data

* Regulatory exposure assessments
* In-vivo toxicokinetic information

= Exposure NAMs across all four domains
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Machine learning models
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Predictions from a Collaborative
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Agency NAM dataset

Regulatory or agency data
reporting of chemical use

New quantitative and qualitative
chemical use descriptors from EPA’s
Chemicals and Products Database
(CPDat, Dionisio et al., 2018)

Machine learning models for
chemical function
(Phillips et al. 2017)

Green

the literature (Sayre et al., 2019)

In-silico machine learning models
for protein binding

and clearance (Sipes et al. 2017,
Ingle et al. 2018)

*

In-vitro protein binding
and clearance (Wetmore et al. 2015, Pearce et
al. 2017, Wambaugh et al 2019a.)
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= The number of chemicals for which release data are available is still

* NAM limited
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data poor chemicals
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= The number of chemicals for which release data are available is still

* NAM limited
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I Mixtures and inorganics I
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SEPA Exposure Predictions
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= High-throughput exposure models covering different exposure pathway classes

% NAM have generated exposure estimates for large numbers of chemicals compared to
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SEPA Exposure Predictions
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= High-throughput exposure models covering different exposure pathway classes
have generated exposure estimates for large numbers of chemicals compared to

* NAM
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In Vivo TK Data
* High-Throughput In Vitro TK Data

* In Silico (QSAR) TK Parameters

Tox21

ToxCast

APCRA Inventory .

= High throughput in vitro measurement of toxicokinetics has expanded the
guantity and domain of chemicals with data, allowing for the development or
Je NAM refinement of in silico models

6621 Inventory Chemicals
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SEPA Toxicokinetics

United States In silico approaches have
Environmental Protection expanded the availability of
Agency
HTTK parameters to nearly all
chemicals tested for in vitro
. bioactivity (96% of Tox21 and
In Vivo TK Data 89% of ToxCast) allowing for in
vitro to in vivo extrapolation of
bioactive concentrations
* High-Throughput In Vitro TK Data
* In Silico (QSAR) TK Parameters
Tox21
ToxCast
APCRA Inventory
6621 Inventory Chemicals
= High throughput in vitro measurement of toxicokinetics has expanded the
guantity and domain of chemicals with data, allowing for the development or
refinement of in silico models
* NAM
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= In all exposure-relevant domains, high-throughput NAMs have substantially increased the number of
chemicals for which data are available and improved coverage of chemical inventories.

= Methods for estimating chemical releases (quantitative estimates of emission into different
environmental compartments) are needed; predictions for releases can reduce uncertainty in HT
exposure models that currently rely on production volume as surrogates for emission rates.

= Methods should be developed for addressing mixtures or UVCBs. Approaches are needed for
identifying representative compositions or structures for multicomponent substances, and for making
use of this information in in silico modeling (i.e., QSAR) frameworks.

= Measurement NAMs (i.e., non-targeted approaches) have the potential to substantially increase the
scope of evaluation datasets for predictive exposure models.

= Continuing to develop and refine NAMs for exposure and toxicokinetic domains will improve the
quality of and expand the scope of risk-based metrics available for chemical prioritization.
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= Will aid in assessing fit-for-use of exposure NAMs in various regulatory contexts
(classification and labelling, prioritization, first-tier versus full assessments)

= Comparison of Quantitative Use Relationship (QSUR) models for chemical function with
industry reported data

* EPA’s Chemical Data Reporting for Industrial Uses (Public)
* ECHA Plastics Additives Initiative (PLASI)

* Health Canada Chemicals Management Plan Information Gathering

= Comparison of traditional exposure assessments (Health Canada Chemicals
Management Plan) to high-throughput model predictions

e Consumer Assessments

* Environmental media (i.e., ambient/far-field)
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