

Harmiul Algal Blooms (HABs) in Oregon and their Impacts on Ecosystems and Drinking Water Supplies

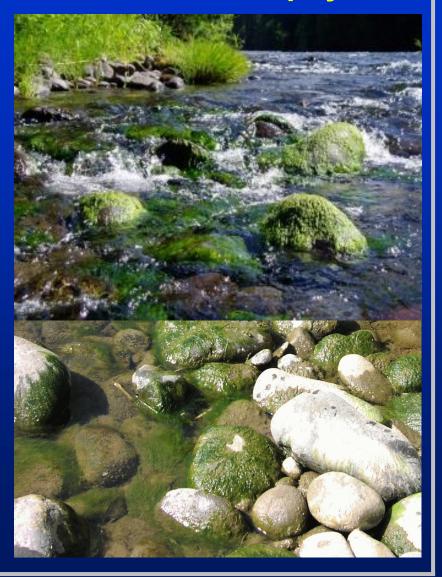
Hydrologist
U.S. Geological Survey
Oregon Water Science Center
Portland, Oregon

EPA Region 10 Workshop Manchester, WA June 27-28, 2017

U.S. Department of the Interior U.S. Geological Survey

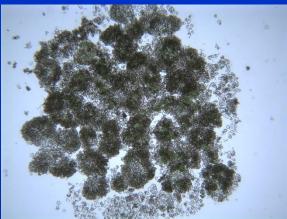
Harmful Algal Blooms in Oregon and their Impacts on Ecosystems and Drinking Water

- Widespread and growing issue
- Over 50 water bodies affected
- Large Cascade COE reservoirs
- Willamette River in downtown Portland
- Urban Laurelhurst Park Pond, Blue Lake
- Agricultural Willow Creek Reservoir, irrigation ponds, canals
- Coastal Lakes (10-mile and Cullaby Lakes)
- Lawson Bar, South Umpqua R. permanent advisory

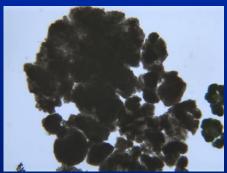


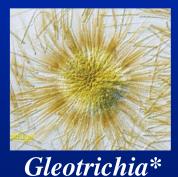
Algal Blooms Include..

Floating Phytoplankton


and Benthic "Periphyton"

Potentially Toxic Cyanobacteria in Plankton





Dolichospermum mendote*

Dolichospermum [formerly Anabaena]

Microcystis

Cylindrospermopsis*

* Photos by Barry Rosen, USGS

Potentially Toxic Benthic Cyanobacteria

Nostoc

Oscillatoria

Some Impacts from HABs

Habitat/
aesthetics

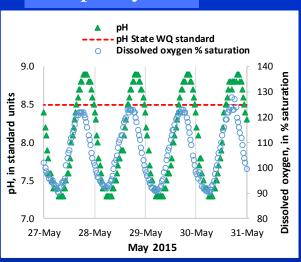
DO/pH cycles

Sloughing/ turbidity

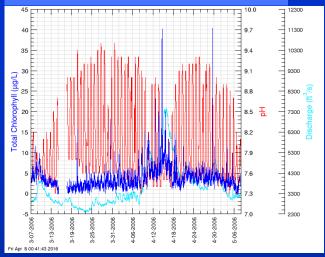
Trophic shifts (inverts/fish)

HABs

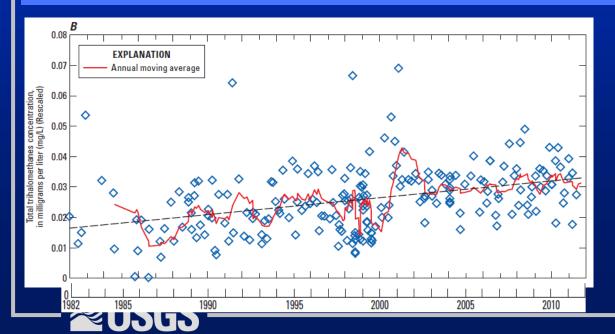
Clog irrigation/ drinking water Intakes/screens


Cyanotoxins/ Public health Crop safety

Taste and odors/ Geosmin, MIB Organic carbon/ DBPs


Habitat/aesthetics

DO/pH cycles


http://or.water.usgs.gov/clackamas/monitors/

Periphyton Sloughing

http://or.water.usgs.gov/clackamas/monitors/

Drinking Water Impacts (Disinfection by-products, T&Os, Cyanotoxins)

Carpenter and others 2013 (USGS SIR 2013-5001)

Cyanotoxins

- Potent Liver, Kidney, and Neurologic Toxins
- UCMR4 (2018-2021) –Includes Microcystins, Anatoxin-a, Cylindrospermopsin, Nodularians, and additional HAAs
- EPA's Cyanotoxins Toxicity Assessment and Proposed Drinking Water and Recreational Criteria

Toxin	10-day Health Advisory					
	Bottle-fed infants and pre-school children	School-age children and adults				
Microcystins	0.3 μg/L	1.6 μg/L				
Cylindrospermopsin	0.7 μg/L	3 μg/L				

- Microcystins Found in 30% of Lakes during National Lakes
 Assessment
- Similar Detection Rate in Pacific Northwest Streams during 2015

Monitoring HABs

- Sampling considerations patchy abundance in vertical and horizontal dimensions (wind affected)
- Algal cells (fluorescence by Chl-a, phycocyanin, flow cam, qualitative/quantitative counts, genetics)
- Bacteria indicators/genetic markers
- Culturing and assessment of toxin production, genes for taxonomy, pigment characteristics to improve satellite detection
- Toxin testing strips, ELISA, HPLC, LC/MS, and SPATT passive samplers

2016 Pilot Study of Drinking Water Sources

2016 Survey of Drinking Water Sources

Clackamas River / tributaries
North Santiam River
McKenzie River
Upper Willamette River
Coast Fork Willamette River
Upper Tualatin River

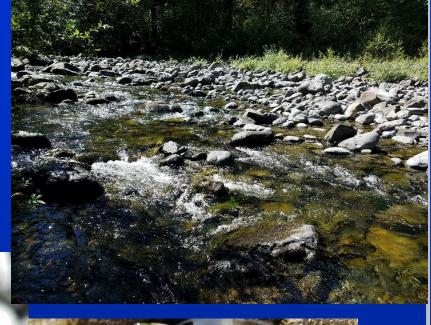
Approach

- 50 samples of cyanobacteria collected and analyzed for 4 primary cyanotoxins: cylindrospermopsin, microcystin, saxitoxin, and anatoxin-a using ELISA
- Deployment of solid-phase algal toxin trackers
 (SPATTs) at 4 drinking water intakes, and other sites

Cyanotoxin Testing Method

- Add hand-picked cyanobacteria (~2-10 mL of sample) to ~5 mL stream water in a 20 mL vial
- 3 freeze-thaw cycles to release toxins
- Filter samples through 0.7 µm GF/F filters
- Perform Enzyme-Linked Immunosorbent Assays (ELISA) for 4 cyanotoxins

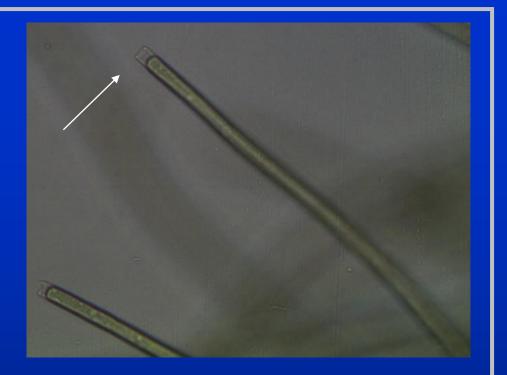
- Positive detection when filtrate concentration exceeded the lowest standard
- Given the nature of these samples, results are qualitative, yet informative



Important Caveats

- Samples were not unialgal (or axenic) cultures, so it is possible that multiple cyanobacterial strains are present.
- -Toxins may accumulate in <u>sediments</u>, particularly in the filamentous forms (*Oscillatoria, Phormidium, Lyngbya*)
- Possible interferences can be evaluated with spikes of natural samples

PhormidiumFish Creek, Clackamas Basin



PhormidiumFish Creek, Clackamas Basin

Tested Positive:

Cylindrospermopsin Microcystin Anatoxin-a

Wollea

Upper Clackamas River, associated with or within mats of large stalked diatoms (Cymbella janischii)

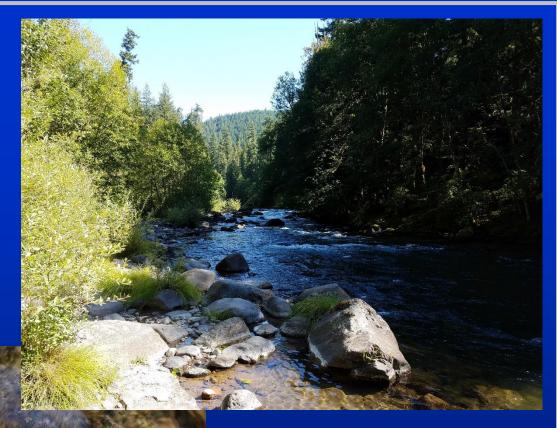
Photographs by Barry Rosen, USGS

Tested Positive: Cylindrospermopsin Microcystin Saxitoxin

PhormidiumCoast Fork Willamette River

Tested Positive:
Microcystin
Anatoxin-a

Nostoc parmeloides Oak Grove Fork Clackamas River



Tested Positive:

Cylindrospermopsin Microcystin Anatoxin-a

Nostoc parmeloides Upper North Santiam River

<u>SUMMARY</u>

 35 of 39 Periphyton Samples (~90%) Tested Positive for One or More Cyanotoxins

Cyanotoxin	# Detections	Percent
Cylindrospermopsin	33	85%
Microcystins/Nodularins	28	72%
Anatoxin- <i>a</i>	17	44%
Saxitoxin	16	41%

USGS Unpublished Data Subject to Revision

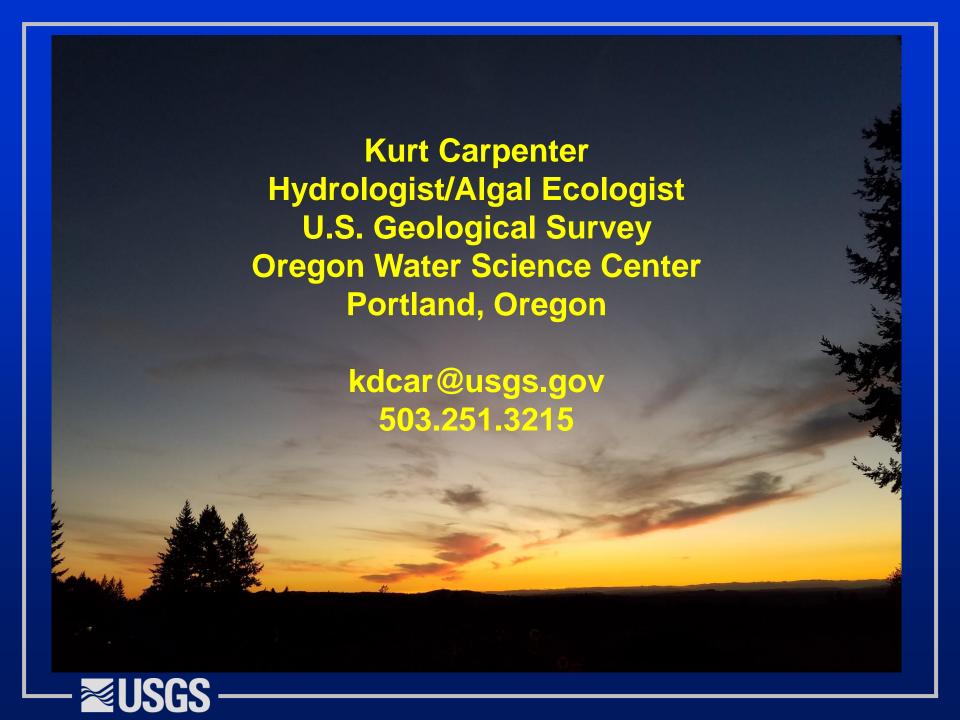
- No Cyanotoxins were Detected in the Quality Assurance Equipment Blank
- Standard Curves: Good R² Values (0.99-1.0)

SPATTs - Solid Phase Algal Toxin Trackers

26 Cyanotoxin Detections in 20 SPATTs

Cyanotoxin	Total number of detections	Clackamas (n=8)	N. Santiam (n=3)	McKenzie (n=3)	Upper Willamette (n=1)	Coast Fork (n=1)	Middle Fork (n=1)	Tualatin (n=3)
Cylindrospermopsin	11	63%	100%	nd	nd	nd	nd	100%
Anatoxin-a	8	50%	67%	33%	nd	nd	nd	nd
Microcystins	5	0%	67%	33%	nd	nd	100%	33%
Saxitoxin	2	13%	33%	nd	nd	nd	nd	nd

USGS Unpublished Data Subject to Revision


SPATTs - Solid Phase Algal Toxin Trackers

- HP20 "Dianon" microbead resins sorb cyanotoxins over time
- Qualitative results, good screening tool
- Embroidery hoops contain 3 grams (dry wt) of resin (HP20) placed inside 2 layers of 100 µm nitex mesh
- Precondition 24 h in 100% methanol before deployment
- Post deployment: Freeze, then elute with 50% methanol
- Blow off methanol in fume hood
- Analyze with ELISA etc
- DEMO

