

ODEQ PCB Water Quality Monitoring Programs

Jim Coyle Toxics Monitoring Coordinator

Agnes Lut
Columbia River Coordinator

ODEQ Water Quality Criteria

OAR Division 41, Table 20			Micrograms Per Liter for Protection of Aquatic Life				Nanograms per Liter for Protection of Human Health			
		Priority Pollutant	Carcinogen	Fresh Acute Criteria	Fresh Chronic Criteria	Marine Acute Criteria	Marine Chronic Criteria	Water and Fish Ingestion	Fish Consumption Only	Drinking Water M.C.L.
	PCBs	Υ	Y	2	0.014	10	0.03	0.079	0.079	

•The <u>current</u> PCB human health water quality criteria is 0.079 ng/L or 79 pg/L, based on a fish consumption rate of 6.5 g/day.

•When the criteria are <u>revised</u> based on our new fish consumption rate (175 g/d), the criteria will be 6.4 pg/L.

The Oregon Legislature provided funding to DEQ to acquire a new High Resolution Mass Spectrometer / High Resolution Gas Chromatograph

This instrument will enhance DEQ's ability to measure a variety of contaminants (PCDD/DFs PCBs PBDEs) at environmentally relevant levels

Purpose

- Establish state-wide, watershed-based toxic pollutant monitoring and evaluation program
- Measure environmental concentrations of toxic pollutants in Oregon waters and biota relevant to established criteria
- Support pollutant reduction strategies and assess progress towards meeting established criteria

State of Oregon
Department of
Environmental
Quality

Spatial Scope Initial / Ultimate

Initial 3 years

Focus on Willamette River Basin and associated tributaries

Long-term

 All major basins, state-wide on a rotating schedule (3 basins/year)

Toxic Pollutants of Interest

Rationale for 2008 target analytes

- Included toxic pollutants likely to:
 - be present in Oregon's surface waters
 - pose the greatest threat to human health and the environment
- List included pollutants measured by DEQ Drinking Water Protection Program and many pesticides measured by Pesticide Stewardship Partnership
- Future monitoring to include toxic persistent and bioaccumulative pollutants recommended by SB 737 Workgroup

Quality

Toxic Pollutants of Interest

(Continued)

Water

PAHs PCBs

PBDEs Metals

Current-use & Legacy Pesticides

Industrial Materials & Solvents

Contaminants of Emerging Concern

- pharmaceuticals, personal care products, plasticizers

Fish

Dioxins/ Furans OC Pesticides
PCB Congeners PBDE Congeners
Mercury

Department of Environmental

Quality

Environmental Media of Interest

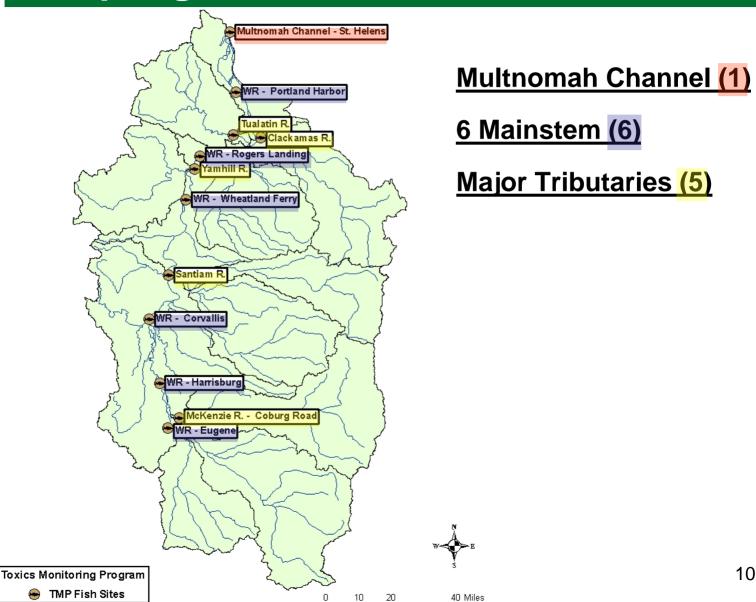
<u>Water</u>

- Grab samples
 - "Low-Flow" September 2008
 - Just prior to scheduled dam releases
 - "Rising-Flow" December 2008
 - Relatively light precipitation

Department of Environmental

Quality

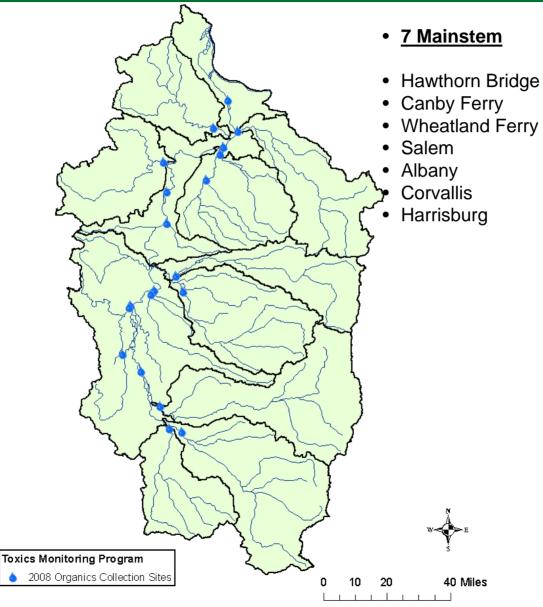
Environmental Media of Interest (Continued)


Fish tissue (fillet)

- 12 Sites
- 5 adults / site
- Organic analyses performed on composites
- Species
 - Smallmouth Bass (Northern sites)
 - Northern Pikeminnow (Southern sites)

DEQ

State of Oregon
Department of
Environmental
Quality


Sampling Locations - Fish

Sampling Locations – Water (Organics)

State of Oregon
Department of
Environmental
Quality

13 Tributaries

- Clackamas
- Tualatin
- Molalla
- Pudding
- Yamhill
- North Santiam
- South Santiam
- Calapooia
- Mary's
- Long Tom
- McKenzie
- Coast Fork
- Middle Fork

State of Oregon
Department of
Environmental
Quality

PCB – Related Findings

- Not detected in water (MRL: 20 ng/l)
- Congeners detected in fillets at all WRB sites sampled
- Congener "fingerprints" appear to be somewhat different between species
- Total PCB concentrations at or above EPA recommended human health "Screening Value" for subsistence fishers at all sites
- Total PCB concentrations at or below EPA recommended Screening Values for <u>recreational</u> <u>fishers</u> at all but two sites

Columbia River Ecological Condition and Contaminant Source Assessment

State of Oregon
Department of
Environmental
Quality

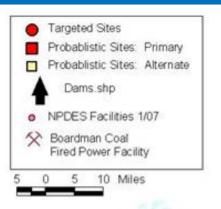
 \$384,000 EPA Regional Environmental Monitoring and Assessment Program (REMAP) Grant awarded to Oregon DEQ in 2008

Monitoring began in Summer 2009

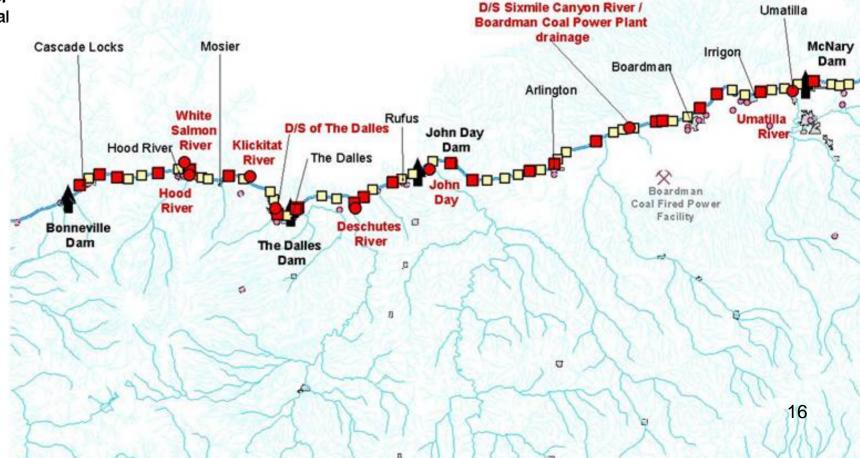
REMAP Project Objectives:

- 1.Do priority contaminants identified by the EPA's Columbia River Toxics Reduction Working Group pose a <u>human health or ecological risk</u>?
- 2.What are <u>contaminant background levels</u> in the water column, common food-fish fillets, and small prey fish?
- 3.Are <u>tributary</u> fish and water contaminant levels similar to the mainstem?
- 4.Are contaminant levels near The Dalles wastewater treatment plant or the Boardman coal-fired power plant higher than in other areas?

Department of Environmental


Quality

Building on the following Lower Columbia River Studies:


- Coastal EMAP, 1999-2000 (ODEQ, w/EPA-ORD funding)
- Lower Columbia River and Estuary Ecosystem Monitoring: Water Quality and Salmon Sampling Report, 2007 (USGS/NOAA/LCREP)
- PBDE Flame Retardants in Washington Rivers and Lakes: Concentrations in Fish and Water, 2005-6 (WDOE)
- Concentrations of 303(d) Listed Pesticides, PCBs, and PAHs Measured with Passive Samplers Deployed in the Lower Columbia River, 2005 (WDOE)

State of Oregon
Department of
Environmental
Quality

31 Sites (23 probabilistic / 8 targeted)

Environmental

Quality

Columbia River Toxics Reduction Working Group Tier 1 Pollutants

Water Column: Mercury

Methyl Mercury

General Water Quality

E. coli

SPMDs: DDT & Metabolites

PCB Congeners

PBDE Congeners

PAHs

Chlorinated Pesticides

Fish Fillets:

DDT & Metabolites

Smallmouth Bass

PCB Congeners

Largemouth Bass

PBDE Congeners

Northern Pikeminnow

Chlorinated Pesticides

Walleye

Mercury

State of Oregon
Department of
Environmental
Quality

Thank you....

Jim Coyle Toxics Monitoring Coordinator 503- 693-5788

Agnes Lut Columbia River Coordinator 503-229-5247

Laboratory Ar	lalytes	by Sample Matrix.	ODE & COMMISSION REMAI					
P(CB Co	ngeners (Tissue & SPMDs)	PAHs (SPMDs)	Chlorinated Pesticides (Tissue & SPM				
	BZ No.	Compound Name	Anthracene	Aldrin				
#	8	2,4'-dichlorobiphenyl	Benz(a)anthracene	Alpha-Chlordane				
	18	2,2',5-trichlorobiphenyl	Dibenz(a,h)anthracene	Dieldrin				
37	28	2,4,4'-trichlorobiphenyl	Biphenyl	Endosulfan I				
	44	2,2',3,5'-tetrachlorobiphenyl	Chrysene	Endosulfan II				
	52	2,2',5,5'-tetrachlorobiphenyl	Fluoranthene	Endosulfan sulfate				
	66	2,3',4,4'-tetrachlorobiphenyl	Benzo(b)fluoranthene	Endrin				
	77	3,3',4,4'-tetrachlorobiphenyl	Benzo(k)fluoranthene	Heptachlor				
01-14 0	101	2,2',4,5,5'-pentachlorobiphenyl	Fluorene	Heptachlor epoxide				
State of Oregon	105	2,3,3',4,4'-pentachlorobiphenyl	Acenaphthene	Hexachlorobenzene				
Department of	110	2,3,3',4',6-pentachlorobiphenyl	Naphthalene	Lindane (gamma-BHC)				
Environmental	118	2,3',4,4',5-pentachlorobiphenyl	Acenaphthylene	Mirex				
Quality	126	3,3',4,4',5-pentachlorobiphenyl	1-methylnaphthalene	trans-Nonachlor				
•	128	2,2',3,3',4,4'-hexachlorobiphenyl	2-methylnaphthalene	cis-Nonachlor				
	138	2,2',3,4,4',5'-hexachlorobiphenyl	2,6-dimethylnaphthalene	oxychlordane				
	153	2,2',4,4',5,5'-hexachlorobiphenyl	2,3,5-trimethylnaphthalene	alpha-Chlordane				
	170	2,2',3,3',4,4',5-heptachlorobiphenyl	Benzo(g,h,i)perylene					
	180	2,2',3,4,4',5,5'-heptachlorobiphenyl	Phenanthrene	Water Analytes				
	187	2,2',3,4',5,5',6-heptachlorobiphenyl	1-methylphenanthrene	Ammonia				
	195	2,2',3,3',4,4',5,6-octachlorobiphenyl	Pyrene	Nitrate + nitrite	Tissue			
	206	2,2',3,3',4,4',5,5',6-nonachlorobiphenyl	Benzo(a)pyrene	Phosphorus (Total & Filtered)	% Lipids			
	209	2,2'3,3',4,4',5,5',6,6 '-decachlorobiphenyl	Indeno(1,2,3-c,d)pyrene	Chlorophyll - a	% Solids			
			Dibenzothiophene	Phaeophytin				
PI	BDE C	ongeners (Tissue & SPMDs)		E. coli				
]	BZ No.	Compound Name		Total Suspended Solids				
	28	2,4,4'-Tribromodiphenyl ether	DDT & Metabolites	Arsenic (Total)				
	47	2,2',4,4'-Tetrabromodiphenyl ether	(Tissue & SPMDs)	Selenium (Total)				
	66	2,3',4,4'-Tetrabromodiphenyl ether	2,4'-DDD	Copper (Total)				
	85	2,2',3,4,4'-Pentabromodiphenyl ether	4,4'-DDD	Lead (Total)				
	99	2,2',4,4',5-Pentabromodiphenyl ether	2,4'-DDE	Mercury (Total & Filtered)				
	100	2,2',4,4',6-Pentabromodiphenyl ether	4,4'-DDE	Methyl Mercury (Total & Filtered)				
	138	2,2',3,4,4',5'-Hexabromodiphenyl ether	2,4'-DDT	Sulfate (Total)				
	153	2,2',4,4',5,5'-Hexabromodiphenyl ether	4,4'-DDT	Total Organic Carbon				
	154	2,2',4,4',5,6'-Hexabromodiphenyl ether		Dissolved Organic Carbon				
	183	2,2',3,4,4',5',6-Heptabromodiphenyl ether		Hardness				
	209	Decabromodiphenyl ether						
1								