

Washington and Oregon 303(d) Organics Listings in Lower Columbia during Study Development in 2002

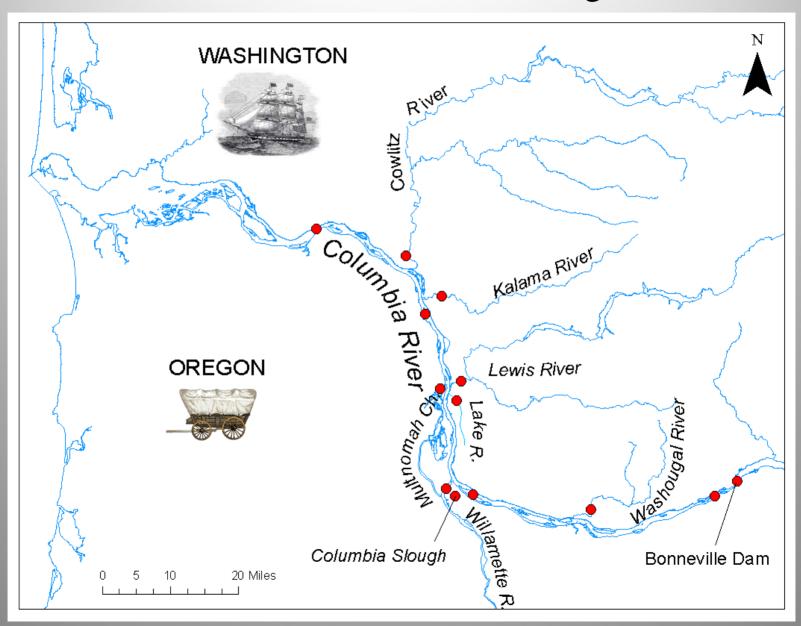
Washington (draft 2002/2004 List)

RM	Media	Parameter	Reference
20	Tissue	DDE	Laflamme and Gilroy, 1996
20	Tissue	Total PCBs	Laflamme and Gilroy, 1996
30	Tissue	Total PCBs	Laflamme and Gilroy, 1996
49	Tissue	Dieldrin	Tetra Tech, 1993
49	Tissue	Total PCBs	Tetra Tech, 1993
75	Tissue	Dieldrin	Tetra Tech, 1993
75	Tissue	Total PCBs	Tetra Tech, 1993

¹ additional arsenic listing in tissue

Oregon (2002 List)

RM	Media	Parameter	Reference
0-35.2	Tissue	DDE	Laflamme and Gilroy, 1996
0-35.2	Tissue	PCB	Laflamme and Gilroy, 1996
35.2-98	Tissue	DDE	Laflamme and Gilroy, 1996
35.2-98	Tissue	РСВ	Laflamme and Gilroy, 1996
142- 188.6	Water and Tissue	РСВ	USGS, 1999
98-142	Tissue	DDE	Laflamme and Gilroy, 1996
98-142	Tissue	PCB	Laflamme and Gilroy, 1996
98-148	Water	РАН	USGS, 1999


³ additional arsenic listings

⁴ addition arsenic on 1998 list in water

Study Objectives

- Measure ambient concentrations and estimate loadings of 303(d) listed organic compounds at 13 sites in the Lower Columbia River between Bonneville Dam (rm 147) and Beaver Army Terminal (rm 47).
- Evaluate seasonal differences in contaminant loadings.
- Identify and rank sources of these contaminants to the main stem Columbia.

Lower Columbia River Monitoring Stations

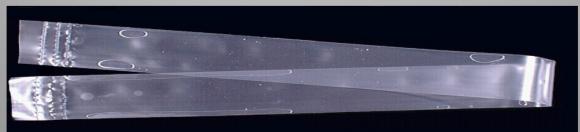
List of Sampling Sites

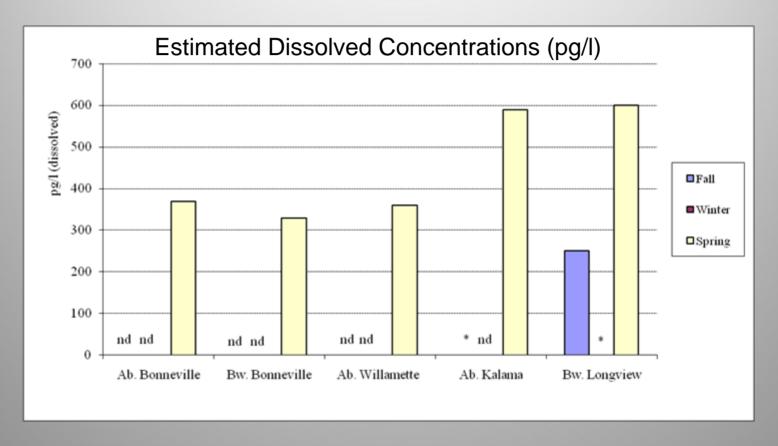
Site No.	River Mile (ap	pprox.) Location
1	147	Above Bonneville
2	142	Below Bonneville
3	121	Washougal River
4	103	Above Willamette River
5	102	Columbia Slough
6	102	Willamette River
7	88	Lake River
8	87	Lewis River
9	86	Multnomah Channel
10	75	Above Kalama River
11	73	Kalama River
12	68	Cowlitz River
13	54	Below Longview

Bottom Mooring

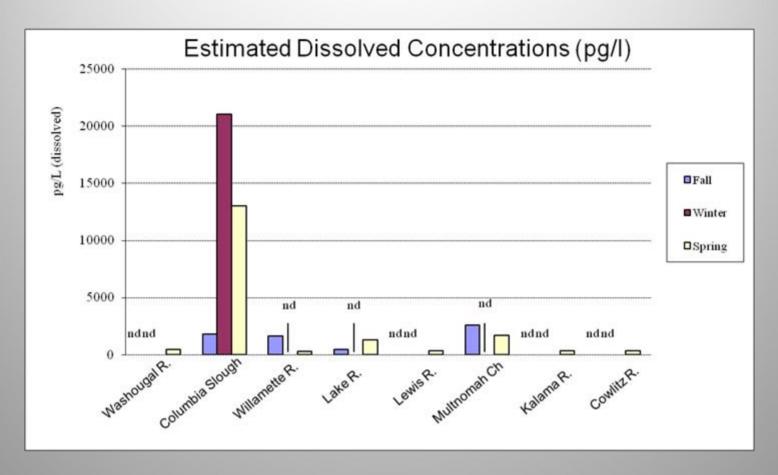
Shipping and Storage

Membrane


SPMD Components


Loading in Canister

Arrays Loaded in Canister



Total PCB Concentrations in Mainstem Columbia River Below Bonneville Dam

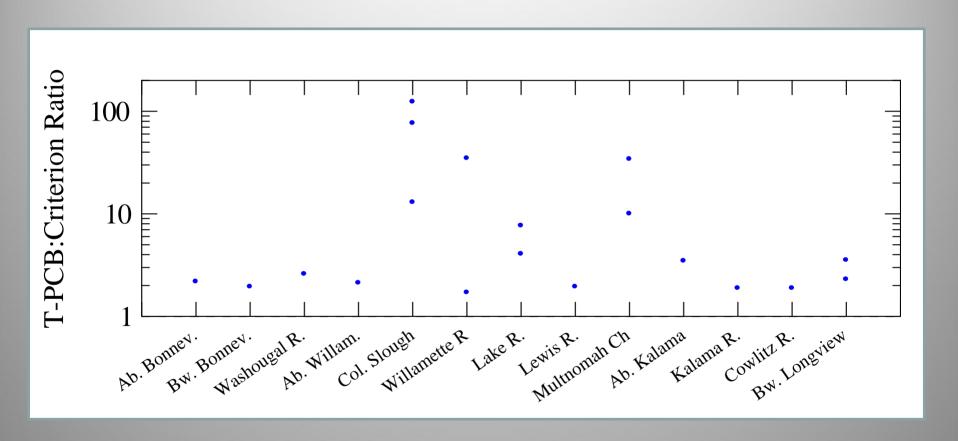
➤T-PCB levels <u>increase</u> moving downstream (based on Ecology spring data)

Total PCBs in Tributaries

- ➤ Columbia Slough, Willamette River and Multnomah Channel are sources of PCBs
- ➤ No consistent seasonal pattern,

Ranking of Tributaries for PCBs

Based on Concentration


Rank	Location
1	Columbia Slough
2	Multnomah Channel
3	Lake River
4	Willamette River
5	Washougal River
6	Lewis River
7	Kalama River
8	Cowlitz River

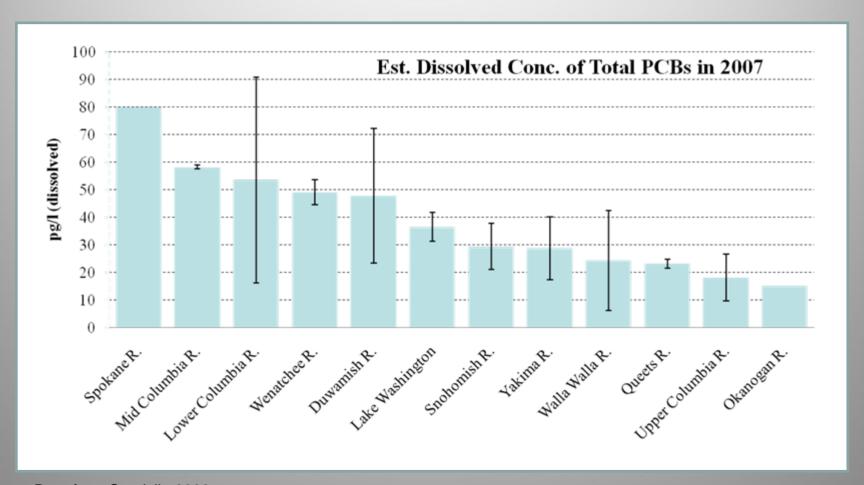
Based on Load

Rank	Location	¹Load (g/day)
1	Multnomah Channel	140
2	Willamette River	14
3	Cowlitz River	12
4	Lewis River	7
5	Columbia Slough	4
6	Washougal River	1
7	Kalama River	0.5
8	Lake River	(?) NF

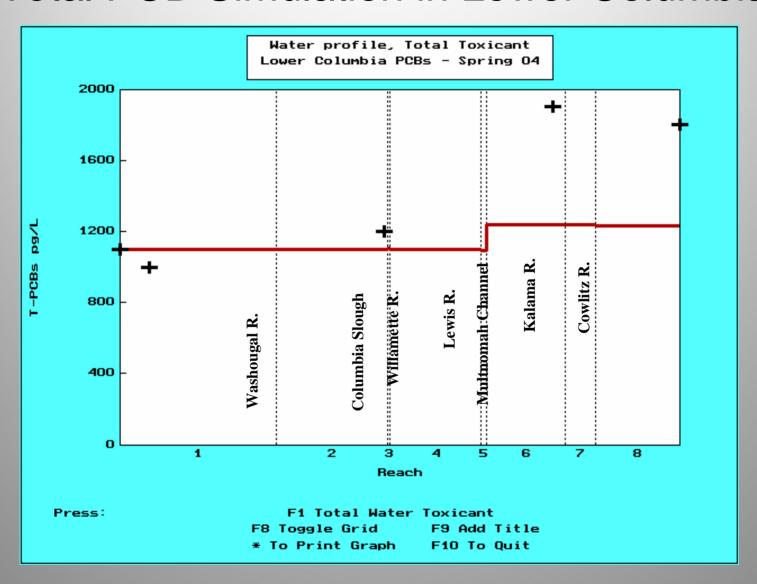
1= Based on Spring Congener data NF= No Flow Information

Comparison of Total PCB Levels with WA Human Health Water Quality Criteria (170 pg/l)

Comparison of PCB Levels between Studies at Beaver Army Terminal Determined Using SPMDs


		Residual		Estimated Diss. Conc.	
Study	Year	Spring (ng)	Fall (ng)	Spring (pg/l)	Fall (pg/l)
ECY PBT Trends	2008	280	160	81	75
ECY PBT Trends	2007	255	162	91	16
USGS Lower Columbia	2005	135-145	230	nc	nc
ECY Lower Columbia	2004	184	110 ¹	600	250¹
USGS Columbia River	1998	575-615	600	300	500

Ng= residuals for 5 SPMDs
Pg/l= Estimated dissolved concentration
Nc= Not calculated
1= Aroclor method


References

ECY PBT Trends= Sandvik, 2009 ECY Lower Columbia= Johnson and Norton, 2005 USGS Lower Columbia= LCREP, 2007 USGS Columbia River= McCarthy et al, 1999

Comparison of Total PCB Levels in Freshwater Areas of Washington

Total PCB Simulation in Lower Columbia

Predicted vs. Measured Fish Tissue Concentrations

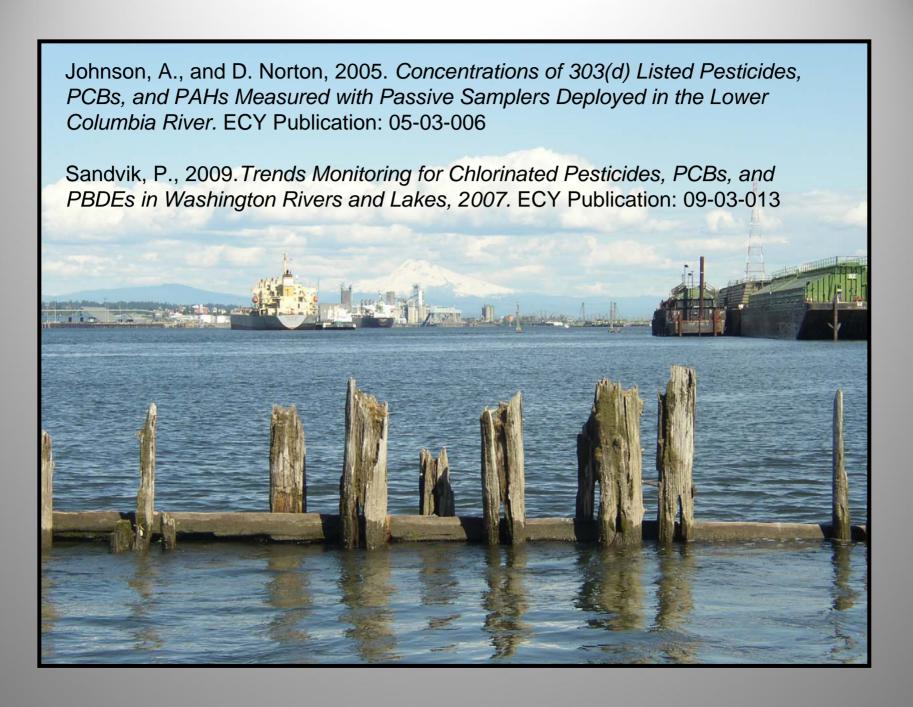
	Co	n Water lumn ntration*	EPA	Predicted Fish Tissue Concentratio EPA n		Mean Concentration in Fillets† (ug/Kg, wet) Common Largescale White 3 Species			
Chemical	(pg/L)	(ug/L)	BCF	(ug/Kg, wet)	Carp ¹	Sucker ²	Sturgeon ³	•	
T-DDT	1,900	0.0019	53,600	102	137	34	49	73	
Dieldrin	190	0.00019	4,670	0.9	< 0.02	< 0.02	< 0.01	< 0.02	
T-PCBs	470	0.00047	31,200	15	188	40	58	95	
T-HMW PAH	250	0.00025	30	0.01	<5	<5	<5	<5	

^{*}Dissolved data from present study; PCB mean for spring 2004 only.

[†]Tetra Tech (1996)

¹One composite of seven individual fish

²Nine composites of eight individual fish


³Twelve individual fish

Summary of Findings

- The Willamette River and Multnomah Channel are significant sources of PCBs to the mainstem Columbia River.
- A screening-level loading assessment suggests there are other important PCB sources to the lower river that were not monitored in this study. These sources appear to be located primarily between Vancouver and Longview.
- Human health criteria are commonly exceeded for PCBs (based on congener data from Ecology and USGS) in the lower Columbia.
- PCBs exceed human health criteria above Bonneville Dam due to upstream sources

Recommendations

- Comprehensive source loading data (municipal/industrial discharges and stormwater) is lacking in the lower Columbia.
- Any efforts to reduce PCB levels in the lower Columbia should eventually include controls on sources upstream of Bonneville Dam as well.
- Source tracing for PCBs should be conducted upstream in priority watersheds and discharges.
- Since much of the resident fish tissue data is 10 years old resampling of fish tissue is recommended.
- Establish additional long-term monitoring stations in Lower Columbia River to track changes in PCBs overtime. Consistent sampling and analysis methods should be employed.
- Managing and controlling toxics in the lower Columbia River is going to require a different approach than traditional control strategies used for conventional pollutants

